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Abstract

Rogers [A note on coverings, Matematika 4 (1957) 1–6] proved, for a given closed convex body C in n-dimensional Euclidean
space Rn, the existence of a covering for Rn by translates of C with density cn ln n for an absolute constant c. A few years later,
Erdős and Rogers [Covering space with convex bodies, Acta Arith. 7 (1962) 281–285] obtained the existence of such a covering
having not only low-density cn ln n but also low multiplicity c′n ln n for an absolute constant c′. In this paper, we give a simple
proof of Erdős and Rogers’ theorem using the Lovász Local Lemma. Furthermore, we apply the result to the chromatic number of
the unit-distance graph under �p-norm.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For a bounded domain D ⊂ Rn and for a collection C := {C1, C2, . . .} of convex bodies Ci which covers D, i.e.,⋃
iCi ⊃ D, the density of the collection C with respect to D is defined as

d(C, D) =
∑

iVol(Ci)

Vol(D)
,

where Vol(·) is the Euclidean volume of a body and the sum is taken over all i for which Ci ∩ D �= ∅. For the whole
space, we define

d(C, Rn) = lim sup
r→∞

d(C, B(r, o)),

d(C, Rn) = lim inf
r→∞ d(C, B(r, o)),

where B(r, x) is a ball with radius r in Rn with center x, and o is the origin in Rn. If these two numbers are the same,
then their common value is called the density of the collection C in Rn, and is denoted by d(C, Rn). As usual, body
means a bounded set with positive volume.
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In 1957, Rogers [14] proved that, for a given closed convex body C in n-dimensional Euclidean space Rn and for
n�3, there is a covering for Rn by translates of C with density at most cn ln n for an absolute constant c. However, low
density does not imply low multiplicity, the number of copies of C ∈ C containing each point, of the covering. Even
though the global density of the covering is low, there can exist local clusters of high multiplicity. Even a partition of
the space like the collection of unit cubes of Rn has the optimal density of 1 but the multiplicity can go up to 2n at the
vertices of the cubes. In 1962, Erdős and Rogers [4] showed that, for sufficiently large n, there is a covering for Rn by
translates of C having not only density at most cn ln n but also multiplicity at most c′n ln n for an absolute constant c′.
Their proof is clever but technical. In this paper, we give a combinatorial proof using Lovász Local Lemma.

Theorem 1. For a given convex body C in the n-dimensional Euclidean space Rn, there is a covering for Rn by
translates of C such that each point x ∈ Rn is covered at most 10n ln n times for sufficiently large n.

Along with our main result, we have included in this article an upper bound on the chromatic number of the unit-
distance graph under �p-norm as an application of Theorem 1.

2. Tools of proof

2.1. Large inscribed ball/ellipse

It was proved by Ball [3] (and see [2] for the symmetric case) that every convex body C ⊂ Rn has an affine image
Ĉ ⊂ Rn satisfying the following two conditions (A1) and (A2):

(A1) Vol(Ĉ) = 1,
(A2) Ĉ has an inscribed ball B of radius r at least as large as the inscribed radius of the regular simplex of volume 1.

Thus,

r �
(

n!
nn/2(n + 1)(n+1/2)

)1/n

>
1

e
.

Let us remark that instead of the deep theorem of Ball, one can start with the classical result of John [9] that there
exists a ball B such that B ⊂ Ĉ ⊂ nB. Since Vol(nB)�1, this implies a lower bound r > 1/O(

√
n), which would be

sufficient for our arguments below.

2.2. Minkowski sum

As usual C + D means the sum of the bodies C and D, C + D := {x + y : x ∈ C, y ∈ D}, and hC means {hx : x ∈
C}. The ε-neighborhood of C, C+ε, is C + B(ε, o). Here ε�0. We define the inner ε-core, C−ε, as Rn\(Rn\C)+ε.
We have

C+ε := ∪{B(ε, x) : x ∈ C} and C−ε := {x : B(ε, x) ⊂ C}.

Lemma 1. Suppose that the convex body C contains the ball B(r, o). Then the expansion (1 + ε/r)C contains the
epsilon neighborhood C+ε. On the other hand, the contraction (1 − ε/r)C is contained in C−ε. See Fig. 1.

Proof. We use the fact that (a + b)C = aC + bC for any convex set and non-negative reals a and b. Then,(
1 + ε

r

)
C = C + ε

r
C ⊇ C + ε

r
B(r, o) = C+ε.

Similarly,(
1 − ε

r

)
C + B(ε, o) ⊆

(
1 − ε

r

)
C + ε

r
C = C,

hence (1 − ε/r)C ⊆ C−ε. �
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Fig. 1. (1 − ε/r)C ⊂ C−ε , (1 + ε/r)C ⊂ C+ε .

2.3. The Lovász Local Lemma

We follow the description from the monograph of Alon and Spencer [1].

Lemma 2. Let A1, A2, . . . , AN be events in an arbitrary probability space. A directed graph D = (V , E) on the set
of vertices V = {1, 2, . . . , N} is called a dependency digraph for the events A1, . . . , AN if for each i, 1� i�N , the
event Ai is mutually independent of all the events {Aj : (i, j) /∈ E}. Suppose that the maximum degree of D is at most
d, and that Prob(Ai)�p for all 1� i�N . If ep(d + 1)�1, then Prob(

⋂N
i=1Ai) > 0, i.e., with positive probability no

event Ai holds.

2.4. The volume of the difference body

For any convex set containing the center o the difference body C − C is a centrally symmetric convex set
containing it.

Lemma 3 (Rogers and Shephard [15]). Let C ⊂ Rn be a closed convex body. Then Vol(C − C)�
(

2n
n

)
Vol(C), with

equality, if and only if C is a simplex.

3. Proof

As a covering and an affine image of it have the same multiplicities, we can construct an appropriate covering by
using any affine image of C. So, we may assume that C itself possesses the properties (A1) and (A2). For simplicity,
we also assume that the ball B of (A2) is B(r, o).

Let h be a small positive real number, we will use h := 1/(4en
√

n). Consider the lattice hZn := {(hm1, . . . , hmn) :
m1, . . . , mn are integers}. We are going to construct a cover using only translates of C of the form C + z, z ∈ hZn.
Define Q0 as the half closed, half open basis cube of this lattice:

Q0 := {(x1, . . . , xn) : 0�xi < h for all i}.

Then the translations of the form Q0 + z with z ∈ hZn define a partition � of Rn. For Q ∈ � with Q = Q + z, denote
the translate C + z by C(Q).

We define a hypergraph H whose vertex set consists of all the cubes of � and whose edge set has two kinds of
hyperedges induced by each C(Q) as follows: Q1, Q2, Q3, . . . ∈ � form a “small edge” of C(Q), denoted by e(C(Q))

or e(Q), if Q1, Q2, Q3, . . . lie in C(Q); Q1, Q2, Q3, . . . ∈ � form a “big edge” of C(Q), denoted by E(C(Q)) or
E(Q), if Q1, Q2, Q3, . . . intersect C(Q). Clearly, all the “small edges” have the same size, and so do all the “big
edges”; their sizes are denoted by k and K , respectively.
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Since Vol(C)/Vol(Q)=1/hn, we have K �1/hn �k. The diameter of Q is h
√

n, so C−h
√

n ⊂ e(Q0), and E(Q0) ⊂
C+h

√
n. Apply Lemma 1 to C with ε := h

√
n:

k� Vol(C−h
√

n)

Vol(Q)
� Vol((1 − r−1h

√
n)C)

Vol(Q)

>
(1 − eh

√
n)n

hn
=

(
1 − 1

4n

)n 1

hn
> .75

1

hn
,

K � Vol(C+h
√

n)

Vol(Q)
� Vol((1 + r−1h

√
n)C)

Vol(Q)

<
(1 + eh

√
n)n

hn
=

(
1 + 1

4n

)n 1

hn
< e1/4 1

hn
. (1)

In particular, we have

k > 1
2K . (2)

Let � be a positive integer and let N := (2�)n and consider the set �N := {Q : Q=Q+hz with z ∈ Zn, −��zi < �

for all coordinates of z}. Let HN be the set of hyperedges of H containing any member of �N , and let CN be the
translates of C (of the forms C + hz, z ∈ Zn) generating HN . Note that |CN | (in general) is larger than N , but,
obviously, it is finite. Any subcollection C ⊂ CN generates a subhypergraph of HN , denoted by HC, in a natural way,
namely the small and big edges of HN generated by the members of C.

To prove Theorem 1, we show that, for every N , there is a collection C ⊂ CN and hence a hypergraph HC such
that each cube Q ∈ �N is covered by a “small edge” of HC but not covered by too many “big edges” of HC, say not
covered more than t times where t =10n ln n. Having such a cover of �N for every N = (2�)n, one can easily construct
an appropriate infinite cover of Rn by letting � → ∞ and using a standard compactness argument.

To construct such a cover of �N , we consider a random subcollection C of CN choosing its members randomly,
independently with probability p. The value of p we use is e−6/5t/K . To apply Lovász Local Lemma, for each cube
Q ∈ �N , let AQ be the (first kind of bad) event that Q is not covered by any “small edge” of HC, and let BQ be the
(second kind of bad) event that Q is covered by “big edges” more than t times. Since every Q ∈ �N is covered by
exactly k small edges and K big edges of HN , it is immediate that

Prob(AQ)�(1 − p)k �e−pk

and

Prob(BQ)�
(

K

T

)
pT �

(
eKp

t

)t

,

where T := �t� + 1. Furthermore, let d be the maximum degree in the dependency graph of the bad events. If we have

e

(
e−pk +

(
eKp

t

)t)
(d + 1) < 1, (3)

then, by the Local Lemma, there is a covering for �N by members of of CN having multiplicity less than t .
To bound d, for a given Q ∈ �N , observe that the event AQ ∪ BQ is dependent on the other event AQ′ ∪ BQ′ only if

there is a translate C′′ ∈ CN meeting both cubes Q and Q′. That is, there are x, x′ ∈ Q0 and z, z′, z′′ ∈ hZn such that
Q=Q0 +z, Q′=Q0 +z′, C′′=C+z′′, z+x ∈ C+z′′ and z′+x′ ∈ C+z′′. Thus (z+x−z′′)−(z′+x′−z′′) ∈ C−C,
(z − z′) ∈ (C − C) + (x′ − x). Since |x′ − x| is at most h

√
n, the degree d + 1 is bounded by the number of lattice

points z − z′ contained in (C − C)+h
√

n. If we put a translation of Q0 with these z ∈ hZn ∩ (C − C)+h
√

n, then these
cubes have disjoint interiors and are contained in the 2h

√
n neighborhood of C − C. See Fig. 2. (Actually, one can

consider cubes with these centers and get a slightly better bound, but we do not need that.) Thus we get an upper bound



Z. Füredi, J.-H. Kang / Discrete Mathematics 308 (2008) 4495–4500 4499

Fig. 2. Translates of C intersecting with Q + z.

for d + 1 as the ratio of volumes. The difference body C − C contains the ball B(2r, o), so Lemma 1 gives that

d + 1� Vol((C − C)+2h
√

n)

Vol(Q0)
�(1 + eh

√
n)n Vol(C − C)

1

hn
.

Lemma 3 gives that Vol(C − C)�
(

2n
n

)
which is at most 4n/2 (for every n�1). We obtain

d + 1 <

(
1 + 1

4n

)n (
2n

n

)
1

hn
< e1/4 1

2
4n 1

h

n

<

(
4

h

)n

. (4)

Substituting the appropriate choices of h, t and p (i.e., 1/h = 4en3/2, t = 10n ln n, p = e−1.2t/K) and using (2), (1)
and (4) one can obtain that the left-hand side of (3) is at most

�e

(
e−pK/2 +

(
eKp

t

)t) (
4

h

)n

= e

(
exp

[
− 5

e1.2
n ln n

]
+ exp[−2n ln n]

) (
(16e)n exp

[
3

2
n ln n

])
.

This is less than 1 for sufficiently large n. �

Remark. In the proof, we can also perform the computation with t = (c + o(1))n ln n, where c is the only root of the
equation (3/2)(c+1)/c = c/e (with better choices of h and p) which will give a better bound for the multiplicity.

4. Unit-distance graph

A long-standing open problem in combinatorial geometry is the chromatic number of the unit-distance graph in Rn;
here points are adjacent if their distance in the �2-norm is 1. For n = 2, we know the answer is between 4 and 7. Little
is known about other dimensions.

More generally, for given integers n, p with n�2 and 1�p�∞, we can consider graphs on n-dimensional real
space under the �p-norm. Specifically, we can define the graph G(Rn

p) with vertex set V and edge set E by

V = Rn,

�x �y ∈ E if and only if ‖�x − �y‖p = 1,

and consider �(G(Rn
p)).
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The present authors [10,6] examined the chromatic number of G, and proved a lower bound of (1.067)n and two
upper bounds

√
p/(2�n)(5(ep)1/p)n and 9n. We apply Theorem 1 above to obtain an improved upper bound in a more

general form.

Theorem 2. Let N = (Rn, ‖ · ‖) be a normed vector space, n�2. Let G(N) denote the unit-distance graph in this
normed space. Then for the chromatic number we have �(G(N))�c(n ln n)5n for large n.

Proof. Let C be a covering for Rn by translates of C := BN( 1
2 − �) with multiplicity c(n ln n) where � is a very small

positive real number, and B(r) is the ball with radius r centered at o in Rn with norm N.
Define an auxiliary graph H such that

V (H) = C and for C + �a, C + �b ∈ C,

(C + �a, C + �b) ∈ E(H) if and only if there are �x ∈ C + �a, �y ∈ C + �b such that ‖�x − �y‖N = 1. (5)

It is easy to see that a proper coloring of H gives a proper coloring of G(N); hence �(G(N))��(H). We will bound
�(H) from above by its maximum degree.

Observe that (C + �a, C + �b) ∈ E(H) implies that ‖�a − �b‖N�‖�a − �x‖N + ‖�x − �y‖N + ‖�b − �y‖N < 2. So it is
enough to count the number, say m, of the copies of C ∈ C with B( 5

2 − �)∩C �= ∅. By Theorem 1, it is immediate that

m�c(n ln n)
Vol(B(5/2 − �))

Vol(B(1/2 − �))
�c(n ln n)5n. �

For more results on different kinds of proximity graphs of higher dimensions see Füredi and Loeb [7,5] or Guibas
et al. [8] which are good sources of additional references.
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