

Discrete Mathematics 308 (2008) 4495-4500

www.elsevier.com/locate/disc

Covering the *n*-space by convex bodies and its chromatic number

Z. Füredi^{a, b, 1}, J.-H. Kang^a

^aDepartment of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ^bRényi Institute of Mathematics of the Hungarian Academy of Sciences, P.O. Box 127, Budapest 1364, Hungary

> Received 29 April 2004; accepted 8 August 2007 Available online 20 December 2007

Dedicated to Miklós Simonovits on his 60th birthday

Abstract

Rogers [A note on coverings, Matematika 4 (1957) 1–6] proved, for a given closed convex body C in n-dimensional Euclidean space \mathbb{R}^n , the existence of a covering for \mathbb{R}^n by translates of C with density $cn \ln n$ for an absolute constant c. A few years later, Erdős and Rogers [Covering space with convex bodies, Acta Arith. 7 (1962) 281–285] obtained the existence of such a covering having not only low-density $cn \ln n$ but also low multiplicity $c'n \ln n$ for an absolute constant c'. In this paper, we give a simple proof of Erdős and Rogers' theorem using the Lovász Local Lemma. Furthermore, we apply the result to the chromatic number of the unit-distance graph under ℓ_p -norm.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Convex body; Rogers; Lovász Local Lemma; Covering; Chromatic number of the unit-distance graph

1. Introduction

For a bounded domain $D \subset \mathbb{R}^n$ and for a collection $\mathscr{C} := \{C_1, C_2, \ldots\}$ of convex bodies C_i which covers D, i.e., $\bigcup_i C_i \supset D$, the *density* of the collection \mathscr{C} with respect to D is defined as

$$d(\mathscr{C}, D) = \frac{\sum_{i} \operatorname{Vol}(C_i)}{\operatorname{Vol}(D)},$$

where $Vol(\cdot)$ is the Euclidean volume of a body and the sum is taken over all i for which $C_i \cap D \neq \emptyset$. For the whole space, we define

$$\overline{d}(\mathscr{C}, \mathbb{R}^n) = \limsup_{r \to \infty} d(\mathscr{C}, B(r, o)),$$

$$\underline{d}(\mathscr{C}, \mathbb{R}^n) = \liminf_{r \to \infty} d(\mathscr{C}, B(r, o)),$$

where B(r, x) is a *ball* with radius r in \mathbb{R}^n with center x, and o is the origin in \mathbb{R}^n . If these two numbers are the same, then their common value is called the *density* of the collection \mathscr{C} in \mathbb{R}^n , and is denoted by $d(\mathscr{C}, \mathbb{R}^n)$. As usual, *body* means a bounded set with positive volume.

E-mail addresses: z-furedi@math.uiuc.edu, furedi@renyi.hu (Z. Füredi), j-kang5@math.uiuc.edu (J.-H. Kang).

¹Research supported in part by a Hungarian National Science Foundation Grant OTKA T 032452, and by a National Science Foundation Grant DMS 0140692.

In 1957, Rogers [14] proved that, for a given closed convex body C in n-dimensional Euclidean space \mathbb{R}^n and for $n \ge 3$, there is a covering for \mathbb{R}^n by translates of C with density at most $cn \ln n$ for an absolute constant c. However, low density does not imply low *multiplicity*, the number of copies of $C \in \mathcal{C}$ containing each point, of the covering. Even though the global density of the covering is low, there can exist local clusters of high multiplicity. Even a partition of the space like the collection of unit cubes of \mathbb{R}^n has the optimal density of 1 but the multiplicity can go up to 2^n at the vertices of the cubes. In 1962, Erdős and Rogers [4] showed that, for sufficiently large n, there is a covering for \mathbb{R}^n by translates of C having not only density at most $cn \ln n$ but also multiplicity at most $c' \ln n$ for an absolute constant c'. Their proof is clever but technical. In this paper, we give a combinatorial proof using Lovász Local Lemma.

Theorem 1. For a given convex body C in the n-dimensional Euclidean space \mathbb{R}^n , there is a covering for \mathbb{R}^n by translates of C such that each point $x \in \mathbb{R}^n$ is covered at most $10n \ln n$ times for sufficiently large n.

Along with our main result, we have included in this article an upper bound on the chromatic number of the unit-distance graph under ℓ_p -norm as an application of Theorem 1.

2. Tools of proof

2.1. Large inscribed ball/ellipse

It was proved by Ball [3] (and see [2] for the symmetric case) that every convex body $C \subset \mathbb{R}^n$ has an affine image $\widehat{C} \subset \mathbb{R}^n$ satisfying the following two conditions (A1) and (A2):

- (A1) $Vol(\widehat{C}) = 1$,
- (A2) \widehat{C} has an inscribed ball B of radius r at least as large as the inscribed radius of the regular simplex of volume 1. Thus,

$$r \geqslant \left(\frac{n!}{n^{n/2}(n+1)^{(n+1/2)}}\right)^{1/n} > \frac{1}{e}.$$

Let us remark that instead of the deep theorem of Ball, one can start with the classical result of John [9] that there exists a ball B such that $B \subset \widehat{C} \subset nB$. Since $Vol(nB) \geqslant 1$, this implies a lower bound $r > 1/O(\sqrt{n})$, which would be sufficient for our arguments below.

2.2. Minkowski sum

As usual C+D means the sum of the bodies C and D, $C+D := \{x+y : x \in C, y \in D\}$, and hC means $\{hx : x \in C\}$. The ε -neighborhood of C, $C^{+\varepsilon}$, is $C+B(\varepsilon,o)$. Here $\varepsilon \geqslant 0$. We define the *inner* ε -core, $C^{-\varepsilon}$, as $R^n \setminus (R^n \setminus C)^{+\varepsilon}$. We have

$$C^{+\varepsilon} := \bigcup \{B(\varepsilon, x) : x \in C\} \text{ and } C^{-\varepsilon} := \{x : B(\varepsilon, x) \subset C\}.$$

Lemma 1. Suppose that the convex body C contains the ball B(r, o). Then the expansion $(1 + \varepsilon/r)C$ contains the epsilon neighborhood $C^{+\varepsilon}$. On the other hand, the contraction $(1 - \varepsilon/r)C$ is contained in $C^{-\varepsilon}$. See Fig. 1.

Proof. We use the fact that (a + b)C = aC + bC for any convex set and non-negative reals a and b. Then,

$$\left(1 + \frac{\varepsilon}{r}\right)C = C + \frac{\varepsilon}{r}C \supseteq C + \frac{\varepsilon}{r}B(r, o) = C^{+\varepsilon}.$$

Similarly,

$$\left(1 - \frac{\varepsilon}{r}\right)C + B(\varepsilon, o) \subseteq \left(1 - \frac{\varepsilon}{r}\right)C + \frac{\varepsilon}{r}C = C,$$

hence
$$(1 - \varepsilon/r)C \subseteq C^{-\varepsilon}$$
. \square

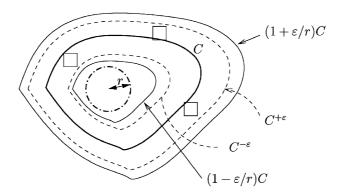


Fig. 1. $(1 - \varepsilon/r)C \subset C^{-\varepsilon}$, $(1 + \varepsilon/r)C \subset C^{+\varepsilon}$.

2.3. The Lovász Local Lemma

We follow the description from the monograph of Alon and Spencer [1].

Lemma 2. Let $A_1, A_2, ..., A_N$ be events in an arbitrary probability space. A directed graph D = (V, E) on the set of vertices $V = \{1, 2, ..., N\}$ is called a dependency digraph for the events $A_1, ..., A_N$ if for each $i, 1 \le i \le N$, the event A_i is mutually independent of all the events $\{A_j : (i, j) \notin E\}$. Suppose that the maximum degree of D is at most d, and that $Prob(A_i) \le p$ for all $1 \le i \le N$. If $ep(d+1) \le 1$, then $Prob(\bigcap_{i=1}^N \overline{A_i}) > 0$, i.e., with positive probability no event A_i holds.

2.4. The volume of the difference body

For any convex set containing the center o the difference body C-C is a centrally symmetric convex set containing it.

Lemma 3 (Rogers and Shephard [15]). Let $C \subset \mathbb{R}^n$ be a closed convex body. Then $\operatorname{Vol}(C-C) \leqslant \binom{2n}{n} \operatorname{Vol}(C)$, with equality, if and only if C is a simplex.

3. Proof

As a covering and an affine image of it have the same multiplicities, we can construct an appropriate covering by using any affine image of C. So, we may assume that C itself possesses the properties (A1) and (A2). For simplicity, we also assume that the ball B of (A2) is B(r, o).

Let h be a small positive real number, we will use $h := 1/(4en\sqrt{n})$. Consider the lattice $h\mathbb{Z}^n := \{(hm_1, \ldots, hm_n) : m_1, \ldots, m_n \text{ are integers}\}$. We are going to construct a cover using only translates of C of the form C + z, $z \in h\mathbb{Z}^n$. Define Q_0 as the half closed, half open basis cube of this lattice:

$$Q_0 := \{(x_1, \dots, x_n) : 0 \le x_i < h \text{ for all } i\}.$$

Then the translations of the form $Q_0 + z$ with $z \in h\mathbb{Z}^n$ define a partition Λ of \mathbb{R}^n . For $Q \in \Lambda$ with Q = Q + z, denote the translate C + z by C(Q).

We define a hypergraph \mathcal{H} whose vertex set consists of all the cubes of Λ and whose edge set has two kinds of hyperedges induced by each C(Q) as follows: $Q_1, Q_2, Q_3, \ldots \in \Lambda$ form a "small edge" of C(Q), denoted by e(C(Q)) or e(Q), if Q_1, Q_2, Q_3, \ldots lie in C(Q); $Q_1, Q_2, Q_3, \ldots \in \Lambda$ form a "big edge" of C(Q), denoted by E(C(Q)) or E(Q), if Q_1, Q_2, Q_3, \ldots intersect C(Q). Clearly, all the "small edges" have the same size, and so do all the "big edges"; their sizes are denoted by k and K, respectively.

Since Vol(C)/Vol(Q)=1/ h^n , we have $K \ge 1/h^n \ge k$. The diameter of Q is $h\sqrt{n}$, so $C^{-h\sqrt{n}} \subset e(Q_0)$, and $E(Q_0) \subset C^{+h\sqrt{n}}$. Apply Lemma 1 to C with $\varepsilon := h\sqrt{n}$:

$$k \geqslant \frac{\text{Vol}(C^{-h\sqrt{n}})}{\text{Vol}(Q)} \geqslant \frac{\text{Vol}((1 - r^{-1}h\sqrt{n})C)}{\text{Vol}(Q)}$$

$$> \frac{(1 - eh\sqrt{n})^n}{h^n} = \left(1 - \frac{1}{4n}\right)^n \frac{1}{h^n} > .75 \frac{1}{h^n},$$

$$K \leqslant \frac{\text{Vol}(C^{+h\sqrt{n}})}{\text{Vol}(Q)} \leqslant \frac{\text{Vol}((1 + r^{-1}h\sqrt{n})C)}{\text{Vol}(Q)}$$

$$< \frac{(1 + eh\sqrt{n})^n}{h^n} = \left(1 + \frac{1}{4n}\right)^n \frac{1}{h^n} < e^{1/4} \frac{1}{h^n}.$$
(1)

In particular, we have

$$k > \frac{1}{2}K. \tag{2}$$

Let ℓ be a positive integer and let $N:=(2\ell)^n$ and consider the set $\Lambda_N:=\{Q:Q=Q+hz \text{ with } z\in\mathbb{Z}^n, -\ell\leqslant z_i<\ell\}$ for all coordinates of $z\}$. Let \mathscr{H}_N be the set of hyperedges of \mathscr{H} containing any member of Λ_N , and let \mathscr{C}_N be the translates of C (of the forms C+hz, $z\in\mathbb{Z}^n$) generating \mathscr{H}_N . Note that $|\mathscr{C}_N|$ (in general) is larger than N, but, obviously, it is finite. Any subcollection $\mathscr{C}\subset\mathscr{C}_N$ generates a subhypergraph of \mathscr{H}_N , denoted by $\mathscr{H}_{\mathscr{C}}$, in a natural way, namely the small and big edges of \mathscr{H}_N generated by the members of \mathscr{C} .

To prove Theorem 1, we show that, for every N, there is a collection $\mathscr{C} \subset \mathscr{C}_N$ and hence a hypergraph $\mathscr{H}_\mathscr{C}$ such that each cube $Q \in \Lambda_N$ is covered by a "small edge" of $\mathscr{H}_\mathscr{C}$ but *not* covered by too many "big edges" of $\mathscr{H}_\mathscr{C}$, say not covered more than t times where $t = 10n \ln n$. Having such a cover of Λ_N for every $N = (2\ell)^n$, one can easily construct an appropriate infinite cover of \mathbb{R}^n by letting $\ell \to \infty$ and using a standard compactness argument.

To construct such a cover of Λ_N , we consider a random subcollection $\mathscr C$ of $\mathscr C_N$ choosing its members randomly, independently with probability p. The value of p we use is $e^{-6/5}t/K$. To apply Lovász Local Lemma, for each cube $Q \in \Lambda_N$, let A_Q be the (first kind of bad) event that Q is not covered by any "small edge" of $\mathscr H_{\mathscr C}$, and let B_Q be the (second kind of bad) event that Q is covered by "big edges" more than t times. Since every $Q \in \Lambda_N$ is covered by exactly k small edges and K big edges of $\mathscr H_N$, it is immediate that

$$\operatorname{Prob}(A_Q) \leqslant (1-p)^k \leqslant e^{-pk}$$

and

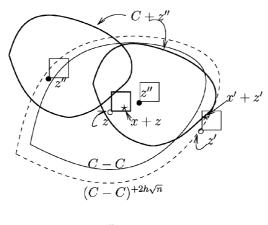
$$\operatorname{Prob}(B_Q) \leqslant {K \choose T} p^T \leqslant {\left(\frac{eKp}{t}\right)}^t,$$

where $T := \lfloor t \rfloor + 1$. Furthermore, let d be the maximum degree in the dependency graph of the bad events. If we have

$$e\left(e^{-pk} + \left(\frac{eKp}{t}\right)^t\right)(d+1) < 1,\tag{3}$$

then, by the Local Lemma, there is a covering for Λ_N by members of of \mathcal{C}_N having multiplicity less than t.

To bound d, for a given $Q \in A_N$, observe that the event $A_Q \cup B_Q$ is dependent on the other event $A_{Q'} \cup B_{Q'}$ only if there is a translate $C'' \in \mathscr{C}_N$ meeting both cubes Q and Q'. That is, there are $x, x' \in Q_0$ and $z, z', z'' \in h\mathbb{Z}^n$ such that $Q = Q_0 + z$, $Q' = Q_0 + z'$, C'' = C + z'', $z + x \in C + z''$ and $z' + x' \in C + z''$. Thus $(z + x - z'') - (z' + x' - z'') \in C - C$, $(z - z') \in (C - C) + (x' - x)$. Since |x' - x| is at most $h\sqrt{n}$, the degree d + 1 is bounded by the number of lattice points z - z' contained in $(C - C)^{+h\sqrt{n}}$. If we put a translation of Q_0 with these $z \in h\mathbb{Z}^n \cap (C - C)^{+h\sqrt{n}}$, then these cubes have disjoint interiors and are contained in the $2h\sqrt{n}$ neighborhood of C - C. See Fig. 2. (Actually, one can consider cubes with these *centers* and get a slightly better bound, but we do not need that.) Thus we get an upper bound



• are z''

Fig. 2. Translates of C intersecting with Q + z.

for d+1 as the ratio of volumes. The difference body C-C contains the ball B(2r, o), so Lemma 1 gives that

$$d+1 \leqslant \frac{\operatorname{Vol}((C-C)^{+2h\sqrt{n}})}{\operatorname{Vol}(O_0)} \leqslant (1+eh\sqrt{n})^n \operatorname{Vol}(C-C) \frac{1}{h^n}.$$

Lemma 3 gives that $Vol(C-C) \le \binom{2n}{n}$ which is at most $4^n/2$ (for every $n \ge 1$). We obtain

$$d+1 < \left(1 + \frac{1}{4n}\right)^n \binom{2n}{n} \frac{1}{h^n} < e^{1/4} \frac{1}{2} 4^n \frac{1}{h}^n < \left(\frac{4}{h}\right)^n. \tag{4}$$

Substituting the appropriate choices of h, t and p (i.e., $1/h = 4en^{3/2}$, $t = 10n \ln n$, $p = e^{-1.2}t/K$) and using (2), (1) and (4) one can obtain that the left-hand side of (3) is at most

$$\leq e \left(e^{-pK/2} + \left(\frac{eKp}{t} \right)^t \right) \left(\frac{4}{h} \right)^n$$

$$= e \left(\exp \left[-\frac{5}{e^{1.2}} n \ln n \right] + \exp[-2n \ln n] \right) \left((16e)^n \exp \left[\frac{3}{2} n \ln n \right] \right).$$

This is less than 1 for sufficiently large n. \square

Remark. In the proof, we can also perform the computation with $t = (c + o(1))n \ln n$, where c is the only root of the equation $(3/2)^{(c+1)/c} = c/e$ (with better choices of h and p) which will give a better bound for the multiplicity.

4. Unit-distance graph

A long-standing open problem in combinatorial geometry is the chromatic number of the unit-distance graph in \mathbb{R}^n ; here points are adjacent if their distance in the ℓ_2 -norm is 1. For n=2, we know the answer is between 4 and 7. Little is known about other dimensions.

More generally, for given integers n, p with $n \ge 2$ and $1 \le p \le \infty$, we can consider graphs on n-dimensional real space under the ℓ_p -norm. Specifically, we can define the graph $G(\mathbb{R}_p^n)$ with vertex set V and edge set E by

$$V = \mathbb{R}^n$$
,

$$\vec{x} \vec{y} \in E$$
 if and only if $\|\vec{x} - \vec{y}\|_p = 1$,

and consider $\chi(G(\mathbb{R}^n))$.

The present authors [10,6] examined the chromatic number of G, and proved a lower bound of $(1.067)^n$ and two upper bounds $\sqrt{p/(2\pi n)}(5(ep)^{1/p})^n$ and 9^n . We apply Theorem 1 above to obtain an improved upper bound in a more general form.

Theorem 2. Let $\mathcal{N} = (\mathbb{R}^n, \|\cdot\|)$ be a normed vector space, $n \ge 2$. Let $G(\mathcal{N})$ denote the unit-distance graph in this normed space. Then for the chromatic number we have $\chi(G(\mathcal{N})) \le c(n \ln n)5^n$ for large n.

Proof. Let \mathscr{C} be a covering for \mathbb{R}^n by translates of $C := B_{\mathscr{N}}(\frac{1}{2} - \varepsilon)$ with multiplicity $c(n \ln n)$ where ε is a very small positive real number, and B(r) is the ball with radius r centered at o in \mathbb{R}^n with norm \mathscr{N} .

Define an auxiliary graph H such that

$$V(H) = \mathcal{C}$$
 and for $C + \vec{a}$, $C + \vec{b} \in \mathcal{C}$,
 $(C + \vec{a}, C + \vec{b}) \in E(H)$ if and only if there are $\vec{x} \in C + \vec{a}$, $\vec{y} \in C + \vec{b}$ such that $||\vec{x} - \vec{y}||_{\mathcal{N}} = 1$. (5)

It is easy to see that a proper coloring of H gives a proper coloring of $G(\mathcal{N})$; hence $\chi(G(\mathcal{N})) \leq \chi(H)$. We will bound $\chi(H)$ from above by its maximum degree.

Observe that $(C + \vec{a}, C + \vec{b}) \in E(H)$ implies that $\|\vec{a} - \vec{b}\|_{\mathcal{N}} \leq \|\vec{a} - \vec{x}\|_{\mathcal{N}} + \|\vec{x} - \vec{y}\|_{\mathcal{N}} + \|\vec{b} - \vec{y}\|_{\mathcal{N}} < 2$. So it is enough to count the number, say m, of the copies of $C \in \mathcal{C}$ with $B(\frac{5}{2} - \varepsilon) \cap C \neq \emptyset$. By Theorem 1, it is immediate that

$$m \le c(n \ln n) \frac{\operatorname{Vol}(B(5/2 - \varepsilon))}{\operatorname{Vol}(B(1/2 - \varepsilon))}$$

 $\le c(n \ln n)5^n$. \square

For more results on different kinds of proximity graphs of higher dimensions see Füredi and Loeb [7,5] or Guibas et al. [8] which are good sources of additional references.

Acknowledgments

The research of J.-H. Kang was done while visiting Rényi Institute, Budapest, and as a part of her thesis under the guidance of Prof. Z. Füredi at the University of Illinois. She thanks the people of Rényi Institute for their hospitality.

References

- [1] N. Alon, J.H. Spencer, The Probabilistic Method, second ed., Wiley-Interscience, New York, 2000.
- [2] K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis, 1987–1988, pp. 251–260, Lecture Notes in Mathematics, vol. 1376, Springer, Berlin, 1989.
- [3] K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991) 351–359.
- [4] P. Erdős, C. Rogers, Covering space with convex bodies, Acta Arith. 7 (1962) 281–285.
- [5] Z. Füredi, The expected size of a random sphere-of-influence graph, in: I. Bárány et al. (Ed.), Intuitive Geometry Proceedings Colloquium, Budapest, Hungary, 1995, Bolyai Society Mathematical Studies, vol. 6, Budapest, Hungary, 1997, pp. 319–326.
- [6] Z. Füredi, J.-H. Kang, Distance graph on \mathbb{Z}^n with ℓ_1 -norm, Theoret. Comput. Sci. (special issue on combinatorics of the discrete plane and tilings) (2004), to appear.
- [7] Z. Füredi, P.A. Loeb, On the best constant for the Besicovitch covering theorem, Proc. Amer. Math. Soc. 121 (1994) 1063–1073.
- [8] L. Guibas, J. Pach, M. Sharir, Sphere-of-influence graphs in higher dimensions, in: K. Böröczky, G. Fejes Tóth (Eds.), Intuitive Geometry, Proc. Colloquia Mathematica Societatis Janos Bolyai, vol. 63, North-Holland, Amsterdam, 1994, pp. 131–137.
- [9] F. John, Extremum problems with inequalities as subsidiary conditions, in: Courant Anniversary Volume, New York, 1948, pp. 187–204.
- [10] J.-H. Kang, Coloring of metric spaces and L(2, 1)-labeling of graphs, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2004.
- [14] C. Rogers, A note on coverings, Matematika 4 (1957) 1-6.
- [15] C. Rogers, G. Shephard, The difference body of convex body, Arch. Math. 8 (1957) 220–233.