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Abstract

Rogers [A note on coverings, Matematika 4 (1957) 1-6] proved, for a given closed convex body C in n-dimensional Euclidean
space R", the existence of a covering for R" by translates of C with density cn Inn for an absolute constant c. A few years later,
Erdés and Rogers [Covering space with convex bodies, Acta Arith. 7 (1962) 281-285] obtained the existence of such a covering
having not only low-density ¢z Inn but also low multiplicity ¢’z Inn for an absolute constant ¢’. In this paper, we give a simple
proof of Erdés and Rogers’ theorem using the Lovasz Local Lemma. Furthermore, we apply the result to the chromatic number of
the unit-distance graph under € ,-norm.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For a bounded domain D C R" and for a collection 4 := {C, C3, ...} of convex bodies C; which covers D, i.e.,
\U;Ci D D, the density of the collection % with respect to D is defined as

> Vol(Cy)
Vol(D)
where Vol(-) is the Euclidean volume of a body and the sum is taken over all i for which C; N D # (. For the whole

space, we define

d(%, R") =lim sup d(%, B(r, 0)),

r—0o0

d(%, R") = lim inf d(%, B(r, 0)),
r—>00

d(%é,D) =

k]

where B(r, x) is a ball with radius r in R" with center x, and o is the origin in R”. If these two numbers are the same,
then their common value is called the density of the collection % in R", and is denoted by d(%, R"). As usual, body
means a bounded set with positive volume.
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In 1957, Rogers [14] proved that, for a given closed convex body C in n-dimensional Euclidean space R" and for
n >3, there is a covering for R” by translates of C with density at most c¢n In n for an absolute constant c. However, low
density does not imply low multiplicity, the number of copies of C € % containing each point, of the covering. Even
though the global density of the covering is low, there can exist local clusters of high multiplicity. Even a partition of
the space like the collection of unit cubes of R" has the optimal density of 1 but the multiplicity can go up to 2" at the
vertices of the cubes. In 1962, Erdds and Rogers [4] showed that, for sufficiently large n, there is a covering for R” by
translates of C having not only density at most cn In n but also multiplicity at most ¢’z In n for an absolute constant ¢’.
Their proof is clever but technical. In this paper, we give a combinatorial proof using Lovasz Local Lemma.

Theorem 1. For a given convex body C in the n-dimensional Euclidean space R", there is a covering for R" by
translates of C such that each point x € R" is covered at most 10n Inn times for sufficiently large n.

Along with our main result, we have included in this article an upper bound on the chromatic number of the unit-
distance graph under £ ,-norm as an application of Theorem 1.

2. Tools of proof
2.1. Large inscribed ball/ellipse

__It was proved by Ball [3] (and see [2] for the symmetric case) that every convex body C C R" has an affine image
C C R" satisfying the following two conditions (A1) and (A2):

(A1) Vol(C) =1,
(A2) C has an inscribed ball B of radius r at least as large as the inscribed radius of the regular simplex of volume 1.
Thus,

n! Yn
r> (nn/z(n + l)(n+1/2)> > z

Let us remark that instead of /tPe deep theorem of Ball, one can start with the classical result of John [9] that there
exists a ball B such that B C C C nB. Since Vol(nB) > 1, this implies a lower bound r > 1/0(4/n), which would be
sufficient for our arguments below.

2.2. Minkowski sum

Asusual C + D means the sum of the bodies C and D,C+ D :={x+y:x € C,y € D}, and hC means {hx : x €
C}. The e-neighborhood of C, C*¢,is C + B(g, 0). Here £ >0. We define the inner e-core, C~¢, as R™\(R™\C)™¢.
We have

CT®:=U{B(e,x):xeC} and C~°:={x:B(e, x) C C}.

Lemma 1. Suppose that the convex body C contains the ball B(r, 0). Then the expansion (1 4+ ¢/r)C contains the
epsilon neighborhood C¢. On the other hand, the contraction (1 — &/r)C is contained in C~¢. See Fig. 1.

Proof. We use the fact that (@ + b)C = aC + bC for any convex set and non-negative reals a and b. Then,
e € e
(1+-)czc+-c > C+ SB(r 0)=C*e.
r r r
Similarly,
e € €
(1-2)c+Beac(1-=)c+-c=c
r r r

hence (1 —¢/r)CCC™¢. O
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(1—¢/m)C

Fig. 1. (1 —¢/r)C C C™¢, (1 +¢/r)C C C**.

2.3. The Lovdsz Local Lemma
We follow the description from the monograph of Alon and Spencer [1].

Lemma 2. Ler Ay, Ay, ..., Ay be events in an arbitrary probability space. A directed graph D = (V, E) on the set
of vertices V. ={1,2, ..., N} is called a dependency digraph for the events Ay, ..., Ay if for each i, 1 <i <N, the
event A; is mutually independent of all the events {A; : (i, j) ¢ E}. Suppose that the maximum degree of D is at most
d, and that Prob(A;) < p forall 1 <i < N.Ifep(d + 1)<, then Prob(ﬂf-V:lA_,-) > 0, i.e., with positive probability no
event A; holds.

2.4. The volume of the difference body

For any convex set containing the center o the difference body C — C is a centrally symmetric convex set
containing it.

Lemma 3 (Rogers and Shephard [15]). Let C C R" be a closed convex body. Then Vol(C — C) < (2") Vol(C), with

n

equality, if and only if C is a simplex.
3. Proof

As a covering and an affine image of it have the same multiplicities, we can construct an appropriate covering by
using any affine image of C. So, we may assume that C itself possesses the properties (A1) and (A2). For simplicity,
we also assume that the ball B of (A2) is B(r, 0).

Let / be a small positive real number, we will use & := 1/(4en+/n). Consider the lattice hZ" := {(hmy, ..., hmy) :
my, ..., m, are integers}. We are going to construct a cover using only translates of C of the form C + z, 7z € hZ".
Define Qg as the half closed, half open basis cube of this lattice:

Qo :={(x1,...,x,) : 0<x; <h for all i}.

Then the translations of the form Q¢ + z with z € hZ" define a partition A of R". For Q € A with Q = Q + z, denote
the translate C + z by C(Q).

We define a hypergraph ## whose vertex set consists of all the cubes of A and whose edge set has two kinds of
hyperedges induced by each C(Q) as follows: Q1, Q2, O3, ... € A form a “small edge” of C(Q), denoted by e(C(Q))
or e(Q), if Q1, 02, 03, ... liein C(Q); O1, Q2, O3, ... € A form a “big edge” of C(Q), denoted by E(C(Q)) or
E(Q), if Q1, Q2, O3, ... intersect C(Q). Clearly, all the “small edges” have the same size, and so do all the “big
edges”; their sizes are denoted by k and K, respectively.
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Since Vol(C)/Vol(Q)=1/h",wehave K >1/h" > k. The diameter of Q is h\/n, so chn ¢ e(Qop), and E(Qp) C
Ct"" Apply Lemma 1 to C with & := h/n:

—hyn o
k>Vol(C ) Yol((1 —r hy/n)C)

=

Vol(Q) Vol(Q)
_ n n
VD S PR I S
h" 4n ) hn h"
Vol(Cthvm) _ Vol((1 + r~hyn)C)
Vol(Q) Vol(Q)
(14 eh/n)" 1\" 1 "
In particular, we have
1

Let ¢ be a positive integer and let N := (2¢)" and consider theset Ay :={Q : 0= Q +hz withz € 7", —€<z; <!
for all coordinates of z}. Let # 'y be the set of hyperedges of ## containing any member of Ay, and let € be the
translates of C (of the forms C + hz, z € Z") generating # y. Note that |% | (in general) is larger than N, but,
obviously, it is finite. Any subcollection % C %y generates a subhypergraph of # y, denoted by ¢, in a natural way,
namely the small and big edges of # ' generated by the members of 4.

To prove Theorem 1, we show that, for every N, there is a collection 4 C % and hence a hypergraph # ¢ such
that each cube Q € Ay is covered by a “small edge” of ¢ but not covered by too many “big edges” of # ¢, say not
covered more than ¢ times where t = 10n In n. Having such a cover of Ay for every N = (2€)", one can easily construct
an appropriate infinite cover of R" by letting £ — oo and using a standard compactness argument.

To construct such a cover of Ay, we consider a random subcollection 4 of @y choosing its members randomly,
independently with probability p. The value of p we use is e %/3¢/K . To apply Lovasz Local Lemma, for each cube
QO € Ay, let Ag be the (first kind of bad) event that Q is not covered by any “small edge” of #'«, and let By be the
(second kind of bad) event that Q is covered by “big edges” more than ¢ times. Since every Q € Ay is covered by
exactly k small edges and K big edges of 5y, it is immediate that

Prob(Ag) < (1 — p)f<e™?*

and
K Kp\'
Prob(Bg) < (T> pk(#) ,

where T := |¢] + 1. Furthermore, let d be the maximum degree in the dependency graph of the bad events. If we have
K t
e<e—1”<+<¥> )(d+1)<1, 3)

then, by the Local Lemma, there is a covering for /A by members of of %5 having multiplicity less than 7.

To bound d, for a given Q € Ay, observe that the event Ap U By is dependent on the other event A o U B only if
there is a translate C” € %y meeting both cubes Q and Q’. That is, there are x, x’ € Qg and z, 7, 7/ € hZ" such that
0=00+72,0=00+7,C"=C+7",z4+x e C+z7"and 7/ +x' € C+7".Thus z+x—7")—(Z+x'—7") e C—C,
(z—27) € (C—C)+ (x' —x). Since |x’ — x| is at most h+/n, the degree d + 1 is bounded by the number of lattice
points z — z’ contained in (C — C )+hﬁ . If we put a translation of Q¢ with these z € hZ" N (C — C )+hﬁ , then these
cubes have disjoint interiors and are contained in the 2/4/n neighborhood of C — C. See Fig. 2. (Actually, one can
consider cubes with these centers and get a slightly better bound, but we do not need that.) Thus we get an upper bound



Z. Fiiredi, J.-H. Kang/ Discrete Mathematics 308 (2008) 4495—4500 4499

® are 2"

Fig. 2. Translates of C intersecting with Q + z.

for d + 1 as the ratio of volumes. The difference body C — C contains the ball B(2r, 0), so Lemma 1 gives that

Vol((C — C) 2y . 1
< < —C)—.
d+1< Vol 00 < (1 + eh/n)" Vol(C O

n

1\"/2n\ 1 1" 4\"
d+1<(1+— — <elAogn= -). 4
+<(+4n> <n>h”<e 27 n ~\n @
Substituting the appropriate choices of /, ¢ and p (i.e., 1/h =4en’/?,t = 10nInn, p = e~'?t/K) and using (2), (1)
and (4) one can obtain that the left-hand side of (3) is at most

(e (59) G)
t h
5 " 3
—e <exp [—ﬁn In n] +exp[—2n1In n]> ((166) exp |:—n In ni|> .
e 2

This is less than 1 for sufficiently large n. [

Lemma 3 gives that Vol(C — C) < (2'1) which is at most 4" /2 (for every n > 1). We obtain

Remark. In the proof, we can also perform the computation with # = (¢ 4+ o(1))n In n, where c is the only root of the
equation (3/2)¢*tD/¢ = ¢ /e (with better choices of & and p) which will give a better bound for the multiplicity.

4. Unit-distance graph

A long-standing open problem in combinatorial geometry is the chromatic number of the unit-distance graph in R";
here points are adjacent if their distance in the £5-norm is 1. For n =2, we know the answer is between 4 and 7. Little
is known about other dimensions.

More generally, for given integers n, p with n>2 and 1< p<<oo, we can consider graphs on n-dimensional real
space under the £,-norm. Specifically, we can define the graph G(IR’;,) with vertex set V and edge set E by

vV =R",
Xy € E if and only if ||X — y|l, =1,
and consider x(G(IR'I',)).
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The present authors [10,6] examined the chromatic number of G, and proved a lower bound of (1.067)" and two
upper bounds «/p/(2nn)(5(ep)'/P)" and 9”. We apply Theorem 1 above to obtain an improved upper bound in a more
general form.

Theorem 2. Let /" = (R", || - ||) be a normed vector space, n >2. Let G(N") denote the unit-distance graph in this
normed space. Then for the chromatic number we have y(G(AN")) <c(nlnn)5" for large n.

Proof. Let % be a covering for R” by translates of C := Bm(% — ¢) with multiplicity c(n Inn) where ¢ is a very small
positive real number, and B(r) is the ball with radius r centered at 0 in R” with norm .4/".
Define an auxiliary graph H such that

V(H) =% and for C +d, C+b € @,
(C+d,C +b) € E(H) if and only if there are ¥ € C +d, y € C + b such that [|¥ — |4 = L. 5)

It is easy to see that a proper coloring of H gives a proper coloring of G (./"); hence y(G (")) < y(H). We will bound

x(H) from above by its maximum degree. _
Observe that (C + a, C + b) € E(H) implies that ||@ — b|| 4 <|

enough to count the number, say m, of the copies of C € ¥ with B(

a—x|ly+I1Xx =Vl + 1o — VIl <2.Soitis
—&)NC # (. By Theorem 1, it is immediate that

[\S][%}

Vol(B(5/2 — ¢))
Vol(B(1/2 — ¢))
<c(nlnn)s™. |

m<c(nlnn)

For more results on different kinds of proximity graphs of higher dimensions see Fiiredi and Loeb [7,5] or Guibas
et al. [8] which are good sources of additional references.
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