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Abstract

A family of subsets of [n] is positive linear combination free if the characteristic vector of neither member is the positive linear
combination of the characteristic vectors of some other ones. We construct a positive linear combination free family which contains
(1 − o(1))2n subsets of [n] and we give tight bounds on the o(1)2n term. The problem was posed by Ahlswede and Khachatrian
[Cone dependence—a basic combinatorial concept, Preprint 00-117, Diskrete Strukturen in der Mathematik SFB 343, Universität
Bielefeld, 2000] and the result has geometric consequences.
© 2007 Elsevier B.V. All rights reserved.
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1. Positive linear combination free families

We address a question which was formulated in [1]. How many edges may a hypergraph on n vertices contain such
that the characteristic vector of neither edge is the positive linear combination of the characteristic vectors of some
other ones? In [1] a construction with ( 1

2 + c)2n sets was given and it was asked if such a family could contain almost
all edges or significantly less. Here we give an explicit construction of such a family which contains (1−o(1))2n edges
and tight bounds for the o(1)2n term.

Let [n] = {1, . . . , n}. The characteristic vector of A ⊆ [n] is the vector A in {0, 1}n which has 1 in the ith co-
ordinate iff i ∈ A. (We use the same notation for sets and characteristic vectors.) A is the positive linear combina-
tion of A1, . . . , Ak iff A = c1A1 + · · · + ckAk and ∀i : ci > 0. F ⊆ 2[n] is positive linear combination free iff
no set (vector) is the positive linear combination of some other sets from F, i.e., for arbitrary choice of positive
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coefficients and F′ ⊆ F

A �=
∑

A�=Ai∈F′⊆F
ci>0

ciAi .

Let f (n) be the maximum size of a positive linear combination free family. In the next section we construct a positive
linear combination free family of size

2n

(
1 − O

(
log log n

log n

))

which already shows that f (n) = (1 − o(1))2n. Then we give tight bounds on the o(1)2n term. (Here O and o—and
later �—are used in conventional sense, i.e., for sequences f (m) and g(m) f (m) = O(g(m)) if f (m)�cg(m) holds
for some constant c > 0 and every sufficiently large m, f (m) = �(g(m)) if g(m) = O(f (m)) and f (m) = o(g(m)) if
f (m)/g(m) → 0).

The result has the following straightforward geometric interpretation.

Corollary 1. It is possible to construct a convex cone with generating vectors F ⊆ {0, 1}n such that

• |F| = (1 − o(1))2n and
• every vector in F is a generator of the cone.

2. The construction

We shall give a construction similar to the ones given in [2,3,5]. Partition n evenly into parts P1, . . . , Pm of size, say,
t = log n − log log log n. (In order to make the calculations more transparent we omit the use of the upper and lower
integer parts, and we assume that n = tm.) Let F contain all the sets A which intersect all parts in at least one element
and one part in exactly one element, i.e.,

F = {A ⊆ [n] : ∀i, A ∩ Pi �= ∅ and ∃j, |A ∩ Pj | = 1}.
Observe that F is positive linear combination free. Indeed, assume on the contrary that A= c1A1 +· · ·+ ckAk , ci > 0.
Let x = A ∩ Pj a one element intersection. Clearly, Ai ∩ Pj ⊆ {x}, ∀1� i�k, else Ai�A. On the other hand, by
definition of F−, |Ai ∩Pj |�1, so Ai ∩Pj ={x}, ∀1� i�k. This means that every vector Ai has one in the coordinate
identified by x, so c1 + · · · + ck = 1. But, say, A1 �= A and, therefore, there is a coordinate � where A has 1 and A1 has
0. Thus in the weighted sum of the �th coordinates c2 + · · · + ck < c1 + c2 + · · · + ck = 1, a contradiction.

It remains to show that the defined family is as large as it is stated. Let F0 ⊆ 2[n] be the collection containing all
the sets which do not intersect at least one of the parts, i.e.,

F0 = {A ⊆ [n] : ∃i, A ∩ Pi = ∅},
and F2 ⊆ 2[n] is the collection containing all the sets which do intersect every part in at least two elements, i.e.,

F2 = {A ⊆ [n] : ∀i, |A ∩ Pi |�2}.
Clearly,

|F|�2n − |F0| − |F2|. (1)

By the choice of t

|F0|� n

t
2n−t = 2nO

(
log log n

log n

)
,

and the lower bound holds, since |F2| is the smaller term in (1):

|F2|�(2t − t − 1)n/t �2n(1/e)n/2t = 2n(1/e)log log n < 2n log log n

log n
.
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3. Tight bounds on the o(1)2n term

Theorem 1.

2n

(
1 − �

(
(log n)3/2

√
n

))
�f (n)�2n

(
1 − O

(
1√
n

))
.

The proof of the upper bound is—generally speaking—a typical example of the permutation method and it is quite
similar to the proof of Theorem 15 in [4].

Let F be a positive linear combination free family on [n] and denote by fk the size of Fk (i.e., the size of
{F ∈ F : |F | = k}). For positive integers p > q, p sets A1, A2, . . . , Ap of [n] form a (p, {0, q})-system if the number
of sets Ai containing x is either 0 or q for every x ∈ [n] (i.e., they cover every element of their union exactly q times).
Notice that a positive linear combination free family may not contain a (p, {0, q})-system A1, A2, . . . , Ap together
with A = ⋃p

i=1Ai , because A = 1/q
∑p

i=1Ai .
LetH be a (p, {0, q})-system A1, A2, . . . , Ap on [n], A=⋃p

i=1Ai , K ={|H | : H ∈ H}, �k =|{H ∈ H : |H |=k}|.
If |A| = m and fm �c

(
n
m

)
then

∑
k∈K

�kfk(
n

k

) �p − c. (2)

Indeed, consider a permutation � of [n] and apply it to H and consider �(H) ∩ F. It consists of at most p − 1
hyperedges for every �(A) ∈ Fm ⊆ F. Therefore,∑

�∈Sn

|�(H) ∩ F|�(p − 1)
∑
�∈Sn

�(A)∈F

1 + p
∑
�∈Sn

�(A)/∈F

1

= (p − 1)
|Fm|(

n

m

)n! + p

⎛
⎜⎜⎝1 − |Fm|(

n

m

)
⎞
⎟⎟⎠ n! =

⎛
⎜⎜⎝p − |Fm|(

n

m

)
⎞
⎟⎟⎠ n!

�(p − c)n!.
On the other hand, every edge E ∈ Hk appears exactly fk|E|!(n − |E|)! times on the left-hand side. We obtain∑

k∈K

�kfkk!(n − k)!�(p − c)n!.

Rearranging we get (2).

Now choose, say, c = 1
2 . If fn/2 < 1

2

(
n

n/2

)
then—by Stirling’s formula—we are ready. Else we explicitly construct

some (pi, {0, qi})-systems Hi with qi = pi − 1 on the vertex set [n] and then apply (2) to it. For
√

n/4� i�√
n/2 let

pi be the positive integer so that

pi

⌊n

2
− 2i

⌋
+ ri = (pi − 1)

n

2
,

for some 0�ri < pi . Clearly, in this range of i,
√

n

2
�pi �

√
n. (3)

The edges ofHi {A1, . . . , Api
} are defined as follows. Aj meets [pi] in qi vertices, Aj ∩[pi]={j, j +1, . . . , j +q−1}

(we have to take the elements here modulo pi), and for pi < x�n/2 the element x belongs to the edges Aqix+j for
1�j �qi (again indices are taken modulo pi). Then Hi consists of edges Aj of sizes �n/2 − 2i
 and �n/2 − 2i
 + 1
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only and |A| = |∪pi

j=1Aj | = n/2. Since fn/2 � 1
2

(
n

n/2

)
, it follows from (2) that for every

√
n/4� i�√

n/2

fn
2 −2i

/(
n

n

2
− 2i

)
� pi − 1/2

pi

�1 − 1

2
√

n

or

fn
2 −2i+1

/(
n

n

2
− 2i + 1

)
� pi − 1/2

pi

�1 − 1

2
√

n
.

Let

I =
{

n

2
− √

n� i� n

2
−

√
n

2
: fi �1 − 1

2
√

n

(
n

i

)}
,

we have that I has no large gap, I ∩ {k, k + 1} �= ∅ for every n/2 − √
n�k < n/2 − √

n/2. Therefore, |I |�√
n/4.

Then

|F| =
n∑

i=0

fi �
n∑

i=0

(
n

i

)
− 1

2
√

n

∑
i∈I

(
n

i

)

�2n − 1

2
√

n
|I |

(
n

n

2
− √

n

)
= 2n

(
1 − O

(
1√
n

))
,

which gives the upper bound.
We shall get the tight lower bound using a very similar random approach to the one given in the proof of Theorem

4.1 in [3]. First of all observe that in our construction we do not necessarily need a partition.

Claim 1. Let G ⊆ 2[n] and F contain all the sets A which intersect every B ∈ G and one part B ∈ G in exactly one
element, i.e.,

F = {A ⊆ [n] : ∀B ∈ G, A ∩ B �= ∅ and ∃B ′ ∈ G, |A ∩ B ′| = 1}.
Then F is positive linear combination free.

Proof. The proof is exactly the same as the one given in the construction: we did not utilize there that there was a
partition. �

For an arbitrary family F ⊆ 2[n] we associate an ideal I(F) induced by F as follows:

I(F) = {I ⊆ [n] : ∃A ∈ F such that I ∩ A = ∅}.
The neighborhood N(G) of a family G is defined as the family of those subsets in [n] whose Hamming distance from
G is exactly 1, i.e.,

N(G) = {N ⊆ [n] : N /∈G and ∃G ∈ G such that |N$G| = 1}.
Note that G ∩ N(G) = ∅.

Claim 2. For arbitrary F ⊆ 2[n] N(I(F)) is positive linear combination free.

Proof. This is a direct consequence of Claim 1. Indeed, N(I(F)) ∩ I(F) = ∅, so edges of N(I(F)) intersect
every edge in F. Take an arbitrary set A ∈ N(I(F)). It is a neighbor of some set A′ ∈ I(F) and there is a set
A∗ ∈ F such that A′ ∩ A∗ = ∅. Observe that |A ∩ A∗| = 1. Indeed, A /∈I(F) so |A ∩ A∗|�1 and A′ ∩ A∗ = ∅. But A
differs from A′ only in one element, i.e., |A ∩ A∗|�1. By Claim 1 N(I(F)) is positive linear combination free. �
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In view of Claim 2, all that we need is to construct a suitable family F that has an ideal I(F) with a neighborhood
of size

|N(I(F))| > 2n

(
1 − c

(
(log n)3/2

√
n

))

for some positive constant c.
Suppose that n is divisible by 8, and let B1 ∪ · · · ∪ Bn/2 be a partition of the underlying set into pairs. (One can

give a similar argument without the partitioning although in our view this simplifies the proof.) Let k be an integer

k ∼ √
n/ log n. For every K ∈

( [n/2]
k

)
let �K be a random variable with

Pr(�K = 1) = (1000 log n)3/2

√
n

(
n/8
k

)−1

= p,

Pr(�K = 0) = 1 − p.

These random variables are to be chosen totally independently. Let F be the random family defined by

F =
{⋃

i∈K

Bi : �K = 1

}
.

We next show that the expected size of N(I(F)) is as large as it was given in Theorem 1.
Let N be an arbitrary but fixed member of 2[n]. Denote the number of blocks Bi which are contained in N by n2,

and let N2 = {i : Bi ⊆ N}. Similarly, let N1 = {i : |Bi ∩ N | = 1}, and |N1| = n1. We give an exact formula for the
probability that N belongs to N(I(F)). It is easy to check that N is in N(I(F)) if and only if

• ∃K : K ∩ N2 = ∅, |K ∩ N1| = 1 and �K = 1 (to make sure the one element intersection).
• ∀K: K ∩ (N2 ∪ N1) = ∅ ⇒ �K = 0 (to make sure that N is not in the ideal, i.e., it intersects every set in F).

Since the variables �K are independent, we obtain that

Pr(N ∈ N(I(F))) = (1 − p)

(
n/2−n1−n2

k

) (
1 − (1 − p)

n1

(
n/2−n1−n2

k−1

))
(4)

�
(

1 − p

(
n/2 − n1 − n2

k

))
(5)

×
(

1 − exp

[
−pn1

(
n/2 − n1 − n2

k − 1

)])
. (6)

Here we used the inequalities 1 − xy�(1 − x)y which holds for 0�x�1 and y�1 and (1 − x)y � exp[−xy] which
holds for −∞�x�1 and y�0. Now suppose that N is a typical subset of [n]. More exactly, define the collection T
of typical sets N by

T =
{
N ∈ 2[n] :

∣∣∣n2(N) − n

8

∣∣∣<√
n log n and

∣∣∣n1(N) − n

4

∣∣∣<√
n log n

}
. (7)

The well-known de Moivre–Laplace formula (see, e.g. in [6, p. 151]) gives that if A=np + a
√

npq + 1
2 and B =np +

b
√

npq − 1
2 then

∑
A�k �B

(
n

k

)
pkqn−k = (1 + o(1)) (�(b) − �(a)) ,

where

�(x) = 1√
2�

∫ x

−∞
e−u/2 du,
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i.e.,

|T| > 2n

(
1 − 1

n

)
. (8)

There exists some positive constant c such that for every typical set N,

p

(
n/2 − n1 − n2

k

)
= (1000 log n)3/2

√
n

(
n/2 − n1 − n2

k

)
(

n/8
k

) < c
(log n)3/2

√
n

(9)

and

pn1

(
n/2 − n1 − n2

k − 1

)
= (1000 log n)3/2

√
n

× kn1

n/2 − n1 − n2 − k + 1
(10)

×

(
n/2 − n1 − n2

k

)
(

n/8
k

) > 2 log n. (11)

Then (9) and (11) imply the following lower bound in (6). If N ∈ T then

Pr(N ∈ N(I(F))) > 1 − c
(log n)3/2

√
n

. (12)

Then (8) and (12) give that the expected size E|N(I(F))| fulfils the lower bound in Theorem 1, and hence there
exists such a family.
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