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Abstract. Let �0 be a triangle and letH = {�1, . . . , �n} be a set of homothetic copies
of �0, �i = xi�i , x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. We prove that

∑
x2

i ≥ 1 + x2 implies
that there are positive and negative signs ε1, . . . , εn = ±1 and there exist translates of
ε1�1, . . . , εn�n that cover �0.

This result is used to answer a problem of Xu et al. [16]. We show that if �0 is the
isosceles right triangle and if the total area of H is at least (1 +√2)/2 = 1.207 . . . times
the area of �0, then there exist rotations ρi , each of them multiples of 45◦, and translates
of ρ1�1, . . . , ρn�n that cover �0.

1. Translation Coverings

Let C be a disk, i.e., convex, compact set on the Euclidean plane with interior points.
Let H = {C1, . . . ,Ci , . . .} be a finite sequence of disks. We say that H permits a
translation covering of C if there exist translations τi such that C ⊆⋃i τi (Ci ). Moser
and Moon [12] showed that if Q is the unit square and H is a set of squares of sizes
x1, x2, . . . with total area

∑
i x2

i ≥ 3 and with sides parallel (or orthogonal) to Q, then
H permits a translation covering of Q. This is the best possible bound as one can see
from the example x1 = x2 = x3 = 1− ε, x4 = · · · = 0.

L. Fejes Tóth proposed the following more general question. Suppose that each Ci

is a (positive) homothetic copy of C . How large must the sum of areas of the Ci ’s be,
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so that C can be covered by translates of the Ci ’s? Denote the ratio of this minimum
(infimum) and the area of C by f (C). The above cited theorem of Moon and Moser
states f (Q) = 3. This easily implies f (C) ≤ 12 for every disk [3] and it was recently
improved to f (C) ≤ 6.5 by Januszewski [10]. One can observe that for any C one
has f (C) ≥ 2 (two copies of size 1 − ε cannot cover a diameter of C). Bezdek and
Bezdek [3] conjectured that this is achievable for any triangle�. This has been recently
established by the present author [7] as

f (�) = 2. (1)

Small Sets. In fact, in the case of the unit square, Q, Moon and Moser showed that for
x1 ≥ · · · ≥ xn the total area ∑

x2
i ≥ 1+ 2x1 (2)

ensures a translation covering. Analyzing their proof one can see that 1 + x1 + x2 is
sufficient. This was generalized in [7] as follows.

Denote a convex body by C ⊂ R2, the infimum of the densities of coverings R2 by
translates of C by ϑT (C), and the family of all copies of C whose positive homothety
ratios are at most δ by Fδ(C). For every ε > 0 there exists a positive δ = δ(ε,C) such
that if the total area of sets from any familyH(C) ⊂ Fδ(C) is at least

(ϑT (C)+ ε)Area(C), (3)

then there are translates of the sets fromH(C) which cover C .

Large Sets. It is known that ϑT (C) ≤ 3
2 for every planar disk (this upper bound is

due to Besicovitch [2] although usually attributed to Fáry [5]) and this density can be
obtained by a hexagonal lattice arrangement. See, e.g., the excellent monograph by Pach
and Agarwal [13]. It is also conjectured that ϑT (�) = 3

2 (see, e.g., [6]). Obviously,
ϑT (Q) = 1. The theorem mentioned in (3) says that if the copies of C in H are small,
then good coverings can be constructed, so, ironically, f (�) and f (Q) are large (2 and
3, resp.) becauseH can contain large copies. Apparently, large copies mean large waste.
This happens also in the coverings discussed below.

2. Translations and Rotations

Suppose that H consists of positive and negative homothetic copies of a triangle �0,
then a total area at least 4 Area(�0) ensures a translation covering, and here the constant
4 is the best possible. This was conjectured by Böröczky and proved by Januszewski [9].
The more special case ofH being a finite sequence purely of homothetic copies of−�0

was proved earlier by Vásárhelyi [14]. She also considered translation coverings of the
triangle �0 when H consists of homothetic copies, each of them rotated by a certain
angle ϕ, see [15]. Here we consider a more general problem.

Definition 1. Let C be a disk, letH = {C1, . . . ,Ci , . . .} be a finite sequence of disks,
and let � be a set of planar motions (usually a group of rotations). Let τi be a translation
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and let γi ∈ �, then the system {τ1(γ1C1), τ2(γ2C2), . . .} is called a �-translation of
H. We say that H permits a �-covering of C if there exist translations τi and motions
γi ∈ � such that C ⊆⋃i τi (γi Ci ).

Suppose that each Ci is a (positive) homothetic copy of C . How large must the sum
of areas of the Ci ’s be, so that C can be covered by �-translates of the Ci ’s? Denote the
ratio of this minimum (infimum) and the area of C by f�(C). Denote the infimum of the
densities of coverings of the plane by �-translated congruent copies of C by ϑ�(C).

Theorem 1. For every ε > 0 there exists a δ = δ(ε,C, �) > 0 such that the following
holds. IfH is a set of (positive) homothetic copies of C and each member ofH is smaller
than δC and for the total area we have∑

H∈H
Area(H) ≥ (ϑ�(C)+ ε)Area(C),

then there exist �-translates of the members ofH that cover C .

The proof is a bit technical but straightforward, one can follow the argument in [7],
we omit it. Naturally, a similar statement holds for every (finite) dimension.

ε- and ρ-Coverings. The cases � = {rotations of integer multiples of π} and � =
{rotations of integer multiples of π/4} are called ε- and ρ-coverings, respectively.

Theorem 2. Let �0 be a triangle and let H = {�1, . . . , �n} be a set of homothetic
copies of �0, �i = xi�i , x1 ≥ x2 ≥ · · · ≥ xn > 0. Suppose that∑

x2
i ≥ 1+ x2. (4)

Then there are positive and negative signs ε1, . . . , εn ∈ {1,−1} and there exist translates
of ε1�1, . . . , εn�n that cover �0.

Unlike in the Moon–Moser theorem (2) here the second-order term depends on x2.
This theorem implies fε(�0) = 2, but we have already known this from (1), since
fε ≤ f . Using Theorem 2 we answer a problem of Xu et al. [16]. They investigated
fρ(R0) where R0 is a right isosceles triangle. Let H = {R1, . . . , Rn}, Ri = xi R0 and
x1 ≥ x2 ≥ · · · ≥ xn > 0. They showed that if

∑
i

x2
i ≥

8+√8

7
+
√

2x1 ∼ 1.56+ 1.41x1,

then H permits a ρ-cover. Theorem 2 clearly supersedes this. Here we also determine
fρ(R0), it is c := (1+√2)/2 = 1.2071 . . . .

Theorem 3. Let R0 be the triangle with vertices (0, 0), (a, 0) and (0, a) and let H =
{R1, . . . , Rn} be a set of homothetic copies of R0. Suppose that

∑
i≥1

Area(Ri ) ≥ 1+√2

2
Area(R0). (5)
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Then there are triangles R′i congruent to Ri and with sides parallel or orthogonal to
some sides of R0 such that R0 ⊆

⋃
i≥1 R′i .

On the other hand, to establish the lower bound for fρ(R) one needs, for every η > 0, a
sequence x1, . . . , xn with

∑
x2

i > (c−η)a2 such that {x1 R1, . . . , xn Rn} cannot ρ-cover
R0. It is not difficult to see that one can take

xk+1 := (1− η/2)(
√

2− 1)k, where k = 0, 1, 2, . . . .

In Sections 3–5 we show how to ε-cover�0, i.e., Theorem 2. In Sections 6–8 we prove
Theorem 3 showing fρ(R0) ≤ c. The uninteresting proof of fρ(R0) ≥ c is omitted.

3. Covering a Strip of �0

The aim of this and the following two sections is to prove Theorem 2. We will define
a translation and a rotation (of 0◦ or 180◦) of each member of H. The procedure also
supplies an algorithm with linear running time after ordering the triangles by their sizes.
As ε-translation coverings are affine invariant, we may suppose that�0 (and all members
ofH) are isosceles, right triangles. Suppose that the vertices of�0 are (0, 0), (a, 0), and
(0, a).

First, we prove the following lemma (in the second term there is an x1 not x2 as
in Theorem 2). Let H = {�1, . . . , �n} be a set of homothetic copies of �0 with side
lengths

a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. (6)

Suppose that

x1 + x2 + · · · + xn ≥ 2a. (7)

Lemma 4. There exists a trapezoid T of height h on the bottom of �0, its vertices are
(0, 0), (a, 0), (0, h), and (a − h, h), and there exists an s ≥ 1 such that the following
two properties hold:

— An ε-translation of the largest 2s + 1 triangles {�1, . . . , �2s+1} covers T .

— In case of h < a the covering of T is economical, that is

2 Area(T ) ≥
∑

1≤i≤2s+1

2 Area(�i )− ax1 + (a − h)x2s+1. (8)

Proof. If x1 = a or x1 = 0, then there is nothing to prove so we may suppose

a > x1 > 0.

Define s as the smallest integer with

a ≤ x1 +
∑

1≤i≤s

(x2i + x2i+1 − x2s+1). (9)
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2s+1x

2x2sx

3x 1x

Fig. 1. �1,−�2, . . . ,−�2s ,�2s+1 cover a trapezoid of height x2s+1.

We claim that such an s exists and 1 < 2s + 1 ≤ n. Obviously, s must be at least 1. On
the other hand, the opposite of (9) and monotonicity (6) imply that

a − x1 > x2 + x4 + · · · + x2s ≥ x3 + x5 + · · · + x2s+1,

so 2a − x1 >
∑

i≤2s+1 xi . Thus 2a >
∑

i≤2s+2 xi and (7) implies 2s + 3 ≤ n. So
two more xi ’s can be joined to {x1, . . . , x2s+1} and in finitely many steps we reach an s
satisfying (9).

Let R denote the set of the largest 2s + 1 triangles from H. Geometrically, (9)
means that one can translate �1, −�2, . . . , (−1)i+1�i , . . . , �2s+1 such that they cover
a trapezoid of height x2s+1 and base exceeding a, see Fig. 1.

By definition

a ≥ x1 +
∑

1≤i≤s−1

(x2i + x2i+1 − x2s−1). (10)

We will use the following consequence of (6) and (10):

x1 + x2 + · · · + xs ≤ a. (11)

Now we are ready to define the trapezoid T and its ε-translation covering byR. The
only thing needed to define T is its height h. It is obtained from the following equation:

x1 +
∑

1≤i≤s

(x2i + x2i+1 − h) = a. (12)

Comparing (9) and (12) we obtain that

x2s+1 ≤ h. (13)

Inequalities (6) and (11) imply
∑

1≤i≤2s+1 xi ≤ (2s + 1)a/s. This and (12) give

h ≤ s + 1

s2
a. (14)

We claim thatR can ε-cover T . Place the apex vertex of�1 (the vertex with the right
angle) to the point (a − x1, 0), its other two vertices are (a − x1, x1) and (a, 0). For
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3x

2x2sx

2s+1x 1x

h

Fig. 2. The trapezoid T of height h is covered by �1, . . . , �2s+1.

1 ≤ i ≤ s the triangles−�2i and�2i+1 can form a rectangle of height h and base length
(x2i + x2i+1 − h). In the case i = s this base might be negative, but as the sum of the
base lengths is a − x1 by (12) the s rectangles can be put next to each other to cover a
rectangle of size (a − x1)× h, see Fig. 2.

Informally Fig. 2 is obtained from Fig. 1 by pushing the triangles horizontally closer
to each other so they can cover a strip wider than x2s+1. More precisely, for 0 ≤ i ≤ s
place �2i+1 such that its apex vertex lies on the line y = 0, it is at the point(∑

i< j≤s

(x2 j + x2 j+1 − h), 0

)
,

and the triangles −�2i are put below the line y = h, their apex vertices are at(∑
i≤ j≤s

(x2 j + x2 j+1 − h), h

)
.

We obtained that
⋃
�i∈R εi� ⊇ T , where εi = (−1)i+1.

In the case of h ≥ a (by (14) this could happen only if s = 1),R ε-covers the whole
�0, so our procedure stops. To finish the proof of the lemma in case of

h ≤ a (15)

we have to verify inequality (8). The proof of this inequality is purely algebraic, it does
not use any geometry, therefore it is postponed to the next section as Lemma 5.

4. Proof of an Inequality

The following lemma implies (8).

Lemma 5. Suppose that a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and a ≥ h ≥ x2s+1 are real
numbers and s ≥ 1 is an integer satisfying (10) and (12), i.e.,

x1 +
∑

1≤i≤s−1

(x2i + x2i+1 − x2s−1) ≤ a,

x1 +
∑

1≤i≤s

(x2i + x2i+1 − h) = a.
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Then

−
(

2s+1∑
i=1

x2
i

)
+ ax1 + 2ah − h2 − ax2s+1 + hx2s+1 ≥ 0.

Proof. It is high school algebra, but because the domain of F has many faces we have
to distinguish many cases. First, as we have seen above, elementary calculation shows
that the inequalities (6), (10), (12), (13) and (15) (appearing in the above lemma) imply
that (9), (11), and (14) must hold, too.

Apply (6), (15), and (13), and then (12). We obtain

F(a, x1, . . . , x2s+1, h) := −
(∑

x2
i

)
+ ax1 + ah + (a − h)(h − x2s+1)

≥ −x1

(∑
xi

)
+ ax1 + ah

= −x1(a + sh)+ ax1 + ah = h(a − sx1). (16)

This implies that F ≥ 0 for sx1 ≤ a, which is always true if s = 1.
Suppose that F can take negative values. Since it is homogeneous of degree 2, it takes

a negative value with all variables at most 1. Since F is continuous on a compact part
of the (2s + 3)-dimensional hypercube [0, 1]2s+3, it takes its minimum, say at the point
(a, x1, . . . , x2s+1, h). We claim that, for these values,

a > x1 > 0, a > h > 0, sx1 > a, s ≥ 2. (17)

We only have to show that these inequalities are strict. Indeed, F < 0 and (16) imply
h > 0 and sx1 > a, then (6) gives s ≥ 2. In the case of a = x1, (11) gives x2 =
· · · = x2s+1 = 0, so F = 2ah − h2 ≥ 0. For x1 = 0, inequality (6) again gives
x2 = · · · = x2s+1 = 0 and F = 2ah − h2. Finally, a = h contradicts (14).

Define k as the largest integer with x1 = x2 = · · · = xk . Then (11) and sx1 > a from
(17) give k < s. We claim that

a − kx1 + kh > 0. (18)

Using the monotonicity and that k < s, then (11), and finally the positivity of h, one gets
the equivalent form

kx1 = x1 + · · · + xk ≤ x1 + · · · + xs ≤ a < a + kh.

Now let η > 0 be sufficiently small and define

a′ = a − kη,

x ′i =
{

xi − η for 1 ≤ i ≤ k,

xi for k < i ≤ 2s + 1,

h′ = h unchanged.

One can see that k < 2s − 1 and (17) imply that the inequalities in Lemma 5 (i.e., (6),
(10), (12), (13), and (15)) still hold for (a′, x ′1, . . . , x ′2s+1, h′), and it is a feasible solution.
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However,

F(a, x1, . . . , x2s+1, h)− F(a′, x ′1, . . . , x ′2s+1, h′)

= ηk(h − x2s+1)+ η (a − kx1 + kh − 2kη) > 0.

Here the first term is nonnegative by (13), and the second term is strictly positive by
(18) if η is sufficiently small and positive. This final contradiction completes the proof
of Lemma 5 (and thus the proof of Lemma 4, too).

5. Area Estimates

Here we finish the proof of Theorem 2. We may suppose that the vertices of�0 are (0, 0),
(0, 1), and (1, 0) andH consists of isosceles right triangles of sizes x1 ≥ · · · ≥ xn > 0.
Suppose that the integer N is large enough, namely

xn > x1/N ,

and replace�1 by N 2 small triangles of sizes x1/N . The system of n− 1+ N 2 triangles
obtained is denoted by HN . First, we define an ε-covering of �0 by HN , and then we
return to the case ofH itself.

We form disjoint subgroupsH1,H2, . . . ,Hm ofHN , and at the same time we define
right-angled trapezoids T1, T2, . . . , Tm such that some ε-translations of the members of
Hk cover Tk for k = 1, 2, . . . ,m. (Tm is a degenerate trapezoid, i.e., a triangle.) These
trapezoids are obtained by cutting�0 by horizontal lines, they are packed on each other,
and T1 lies on the bottom (i.e., adjacent to the x-axis). The base lengths of Tk are denoted
by ak and ak+1, a1 = 1 > a2 > . . . > am > am+1 = 0, its height is hk , hk = ak − ak+1

and side lengths are hk and
√

2hk , with vertices (0, 1− ak), (0, 1− ak+1), (ak, 1− ak),
and (ak+1, 1−ak+1). Finally, the groupsHk consist of smaller and smaller triangles, i.e.,

min
�∈Hk

x(�) ≥ max
�∈Hk+1

x(�), (19)

where x(�) stands for the side length of �. However, the heights of trapezoids do not
necessarily form a monotone sequence. We also maintain∑

�∈HN \(H1∪···∪Hk−1)

2 Area(�) ≥ a2
k + ak max

�∈HN \(H1∪···∪Hk−1)
x(�). (20)

This condition is very similar to (4); x1 stands for x2.
Our starting case is k = 1. Then max x(�i ) = x2 and

∑
x2

i =
∑

�∈H 2 Area(�) ≥
a2

1 + a1x2. This last inequality implies that
∑

xi ≥ (a2
1 + a1x2)/x2 ≥ 2a1 so conditions

(6) and (7) hold, and Lemma 4 can be applied to HN and �0. Then either the lemma
supplies an ε-cover of �0 (in the case of h ≥ a1), or one obtains a set of triangles
H1 ⊂ HN and a trapezoid T1 with horizontal sides a1 (= 1) and a2, and height h1 := h
such thatH1 ε-cover T1 and the induction hypotheses (19) and (20),∑

i>2s+1

2 Area(�i ) ≥ (a1 − h)2 + (a1 − h)x2s+2,
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are preserved for the rest of �0 with the rest of HN . In general, if H1, . . . ,Hk−1 are
already defined, then Lemma 4 either finishes the procedure by completing an ε-cover
of �0, and then m = k, or supplies Hk and Tk satisfying the induction hypotheses for
HN\(H1 ∪ · · · ∪Hk) and�0\(T1 ∪ · · · ∪ Tk). SinceHN has finitely many members, our
induction procedure results in a full ε-translation covering of �0.

Since the smallest N 2 triangles are used at last (if they are used at all, in the
above ε-cover), they are contained in the subfamiliesH�,H�+1, . . . ,Hm . Among these,
H�+1, . . . ,Hm consist purely of triangles of sizes x1/N . Hence T�+1 ∪ · · · ∪ Tm is con-
tained in a triangle�′1 of size x1, defined by the vertices (0, 1), (0, 1−x1), and (x1, 1−x1).
It is easy to see that the x1/N -sized members of H�, apart from one or two exceptions,
are all in the 2x1/N neighborhood of �′1.

Consider the coverings by HN , HN+1, etc. It is not difficult to see that the positions
of �2, . . . , �n converge to a limit. The above considerations show that in that limit
position they ε-cover�0\�′1. Place�1 onto�′1 to obtain an ε-translation covering of�0

byH.

6. ρ-Covering of the Isosceles Right Triangle, Starting the Induction

We prove Theorem 3 by induction on n. Suppose that Ri = xi R0, x1 ≥ · · · ≥ xn > 0.
In the case of n = 1, (5) implies that x1 ≥

√
c > 1 so it certainly can ρ-cover R0. If

x2 ≤ (c − 1) = 0.2071 . . . then Theorem 2 gives an ε-cover and we are done. To avoid
using many subscripts, we sometimes use x , y, and z for x1, x2 and x3, respectively. From
now on, we suppose that y := x2 ≥ (c− 1) = 0.2071 . . ., and we may also suppose that
the size of R0 is 1, that is a = 1.

In this section we deal with two cases, using induction if x > 0.547 (Step 1), and if
0.6 > x > 0.378 (Step 2). In the next section we eliminate the cases 0.38 ≥ x > 0.336
(Step 3) and x > 0.234 (Step 5). Here we used computers. Finally, in Section 8, with a
different method we finish the induction by investigating the case x1 ≤ 1

4 .

Step 1. x ≥ 0.547
Put R1 into R0 such that a leg of R1 lies on the hypotenuse of R0 and splits it into two
segments of lengths x and

√
2 − x (see Fig. 3). The set R0\R1 can be covered by an

isosceles right triangle R′ of size
√

2 − x . Hence one can use the induction hypothesis

R’’R’

1R1R

u

x

1/222−x−u

1/2−x2

1x=x

Fig. 3. The cases x > 0.547 and 0.6 > x > 0.378.
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for R′ and for the remaining (n − 1) triangles {R2, . . . , Rn} if∑
i≥2

x2
i ≥ c

(√
2− x

)2
. (21)

Here the left-hand side is at least c − x2, so (21) holds if c − x2 ≥ c(
√

2− x)2. Thus it
holds for 1 ≥ x ≥ (1+√8)/7 = 0.5469 . . . .

Step 2. 0.6 > x ≥ 0.378
Put R1 into R0 in homothetic position sharing a vertex other than the apex (see again
Fig. 3). Then R0\R1 can be covered by two triangles R′ and R′′ of sizes u and 2−x−u

√
2,

respectively, for any choice of u.
Select a subset of trianglesH′ ⊂ {R2, . . . , Rn} and letH′′ be the rest of the triangles.

Define u such that
∑

R∈H′ 2 Area(R) =: cu2. Then the induction hypothesis implies that
H′ can ρ-cover R′. If the rest of the triangles have sufficiently large total areas (at least
c Area(R′′)), then induction can be applied to H′′ and R′′ and we are done. A sufficient
condition for this is that

c − x2 − cu2 ≥ c
(

2− x − u
√

2
)2
. (22)

This holds for u1 ≤ u ≤ u2, where

u1,2 = 1
3

(√
2(2− x)∓

√
−(2− x)2 + 3(1− x2/c)

)
.

Suppose now that u1 and u2 exists. We would like to select H′ such that u gets into
the above range, i.e.,

cu2
1 ≤

∑
Ri∈H′

x2
i ≤ cu2

2. (23)

Select the triangles intoH′ one by one but in a fixed order, say, x2, x3, . . .. If the difference
of the left-hand side and the right-hand side of (23) is at least x2, then the sequence

0, x2
2 , x2

2 + x2
3 , x2

2 + x2
3 + x2

4 , . . . ,
∑

2≤i≤n

x2
i (≥ c − x2 ≥ cu2

1)

cannot jump the gap [cu2
1, cu2

2], consequently, a partitionH′,H′′ satisfying (22) exists.
Thus, we can use induction if cu2

2 − cu2
1 ≥ x2. Rearranging, this is equivalent to

c2 32
81 (2− x)2

(
−(2− x)2 + 3

(
1− x2

c

))
− x4 ≥ 0.

One can easily see (e.g., by using Maple V as the author did) that this fourth-degree
polynomial is indeed positive for 0.378 ≤ x < 0.6.

7. Gluing R1, R2, and R3

In this section we continue the proof of Theorem 3. The method of Step 2 can be
summarized in the following lemma. Note that (like in Fig. 3) R0 can always be ρ-
covered by three triangles R′, R′′, and R′′′ of sizes u, 2− v − u

√
2, and v, respectively.
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Lemma 6. Let H′′′ ⊂ H be a set of triangles with total area A/2, and suppose that
H′′′ can ρ-cover a triangle R′′′ of size v. Let max{x(R) : R ∈ H\H′′′} ≤ w. Suppose
that

c2 32
81 (2− v)2

(
−(2− v)2 + 3

(
1− A

c

))
− w4 ≥ 0. (24)

Then there exists a partition H′ ∪ H′′ of H\H′′′ and a real number u, such that∑
R∈H′ 2 Area(R) = cu2 and

∑
R∈H′′ 2 Area(R) ≥ c(2− v − u

√
2)2.

Therefore, the induction hypothesis can be applied toH′ and R′ and toH′′ and R′′. These
together withH′′′ yield a ρ-cover of R0.

Step 3. 0.38 > x ≥ 0.336
In Step 2 we used Lemma 6 for H′′′ = {R1}, v = x and A = x2. This time H′′′ =
{R1, R2}, i.e., we glue R1 and R2 together so that they can cover an isosceles right
triangle R′′′ of size v := (x + y)/

√
2. Then put R′′′ into R0 in homothetic position

sharing a vertex other than the apex. We can use induction applying Lemma 6 with
A := x2 + y2 and w := y2. Substituting to the condition (24) we get

c2 32

81

(
2− x+y√

2

)2
(
−
(

2− x+y√
2

)2

+3

(
1− x2+y2

c

))
−y4≥0.

One can easily see (e.g., by using Maple V), that this fourth-degree polynomial is
indeed positive for (x, y) ∈ D, where D is a quadrilateral defined by the vertices
(0.262, 0.262), (0.5, 0.5), (0.5, c− 1), and (0.336, c− 1). Especially, from now on, we
may suppose that

(c − 1) ≤ y ≤ x ≤ 0.336, y ≤ 0.262. (25)

Step 4. The case of small z
Replace R2 by another copy of R3. Then the system obtained ε-covers R0 if Theorem 2
can be applied. This Theorem applies if the new system still has a total area at least
(1+ z)Area(R0), i.e., if 1+ z ≤ c− y2+ z2. So from now on, we may suppose that the
opposite holds:

(1− c)+ z − z2 + y2 ≥ 0. (26)

Step 5. 0.234 < x ≤ 0.336
Let C ⊂ R3 be the set of those (x, y, z) points in 3-space which satisfy (25), (26) and
0.234 ≤ x . In this section we apply induction if (x1, x2, x3) ∈ C .

Since y ≤ 0.262 we get from (26) that z > 0.167, so the sizes of R1, R2 and R3 are
relatively close to each other. As before, attach the apex vertices of R2 and R3 so that
a leg of R3 is part of a leg of R2. Then they can cover an isosceles right triangle R∗ of
size (y+ z)/

√
2. Then again glue R∗ and R1 together so that they can cover an isosceles

right triangle R′′′ of size x/
√

2+ (y + z)/2 (see Fig. 4).
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+1/22
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1/2

y x

Fig. 4. Gluing R1 and R2, and gluing R1, R2, and R3.

Apply Lemma 6 with H′′′ := {R1, R2, R3}, v := 2 − x/
√

2 − (y + z)/2, A :=
x2 + y2 + z2, and w := z4. Substitute these values to (24):

c2 32

81

(
2− x√

2
− y + z

2

)2
(
−
(

2− x√
2
− y + z

2

)2

+ 3

(
1− x2 + y2 + z2

c

))
−z4.

(27)
One can easily see (e.g., by using Maple V) that this fourth-degree polynomial is indeed
positive for (x, y, z) ∈ C . The calculations can be reduced to two variables, because if
we start in any feasible point (x, y, z) ∈ C and move in direction (1,−√2, 0) (or its
opposite direction) then (27) decreases. Hence the minimum is taken on the boundary
of C .

Especially, from now on, we may suppose that x ≤ 0.234.

8. ρ-Covering a Strip, the End of the Induction

In this section we finish the induction proof of Theorem 3. We need a lemma.

Lemma 7. Suppose that P is a (finite) set of positive reals, c, q > 0, such that∑
p∈P

p2 ≥ c, max P = p1, 2p1 ≤ c(1− q).

Then there exists a subset S ⊂ P with

∑
p∈S

p ≥ 2 and
minp∈S p

maxp∈S p
≥ q.

Proof. Here p1, c, and q can be any reals, but we will use it for p1 = 0.234, c =
(
√

2+ 1)/2 = 1.207 . . . , and q = 0.61.
Consider the infinite region C on the positive quadrant of the plane defined as the

union of rectangles of dimensions 2× p1qi , i = 0, 1, 2, . . . , and placed on the segment
(2i, 0), (2i + 2, 0). The area of C is 2p1/(1− q).

Next, order the members of P , p1 ≥ p2 ≥ · · · and place squares of these sizes next to
each other on the x-axis in the positive quadrant, i.e., let D be the union of squares with
base segments defined by the vertices (p1+· · ·+ pi−1, 0) and (p1+· · ·+ pi−1+ pi , 0).

Since Area(C) ≤ Area(D), there is a segment (2i, 0), (2i + 2, 0) which meets a
square of size exceeding p1qi . Suppose i is the smallest with this property. Here i ≥ 1.
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Then S can consists of the sizes of those squares in D having a common point with the
segment (2i − 2, 0), (2i, 0).

Step 6. x ≤ 0.234
Now we return to the proof of Theorem 3. Apply Lemma 7 for the set P={x1, x2, . . . , xn}
with q = 0.61. We obtain a subset S = {y1, y2, . . . , ym} ⊂ P such that

0.234 > y := y1 ≥ y2 ≥ · · · ≥ ym > 0.61y (28)

and

y1 + · · · + ym ≥ 2. (29)

The rest of the procedure is similar to the one in Section 3. Our aim is, like in Lemma 4,
to define a trapezoid T with vertices (0, 0), (0, h), (1, 0), and (1− h, h) and to find an
s ≥ 1 such that

(P1) the triangles of sizes y1, . . . , y2s+1 can ε-cover T (here 2s + 1 ≤ m), and
(P2) c Area(T ) ≥ 1

2

∑
1≤i≤2s+1 y2

i .

Then one can apply induction, the rest of the triangles can ρ-cover R0\T .
Let g := 0.61y. Consider the triangles of sizes y2i and y2i+1, turn them so that they

touch each other at their hypotenuse and together they cover a rectangle Qi of height
g and base y2i + y2i+1 − g. Note that the base of Qi is at least y2i ≥ g and at most
2y − g = 1.39y.

Define s as the smallest integer satisfying

1 ≤ y1 +
∑

1≤i≤s

(y2i + y2i+1 − g). (30)

We claim that such an s exists, 7 ≤ 2s + 1 ≤ m. Indeed, we get 1 ≤ (1 + 1.39s)y ≤
(1+ 1.39s)0.234, this implies s ≥ 3. On the other hand, by definition

1 > y1 +
∑

1≤i≤s−1

(y2i + y2i+1 − g). (31)

This implies that

1− y1 > y2 + y4 + · · · + y2s−2 ≥ y3 + y5 + · · · + y2s−1,

so 2− y1 >
∑

i≤2s−1 yi . Thus at least two more yi ’s are needed to increase this sum to
at least 2. Then (29) guarantees that these two positive yi ’s exist, and thus the sum in
(30) will reach 1 after finitely many steps.

Similarly as in Section 3, we define the height h of the trapezoid T by the equation

1 = y1 +
∑

1≤i≤s

(y2i + y2i+1 − h). (32)

Then the triangles of sizes y1, . . . , y2s+1 ε-cover T . Comparing (30) and (32) we obtain
that

y2s+1 ≤ h. (33)
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We have to show that these inequalities imply (P2), i.e.,

ch(2− h) ≥
∑

1≤i≤2s+1

y2
i . (34)

Divide by c, add ((c − 1)/c)
∑

y2
i , rearrange, and apply (32). We get that the above

inequality is equivalent to

L := c − 1

c

∑
1≤i≤2s+1

y2
i ≥ −h(2− h)+

∑
y2

i

= −h
(

2
∑

yi − 2sh − h
)
+
∑

y2
i =

∑
1≤i≤2s+1

(yi − h)2.

Define the function p(t) as
∑

1≤i≤2s+1(yi − t)2. Then

L ≥ p(t) for (2−
√

2)y1 ≤ t ≤
√

2y2s+1. (35)

Indeed, L ≥ p(t) if ((c− 1)/c)y2
i ≥ (yi − t)2 for each i . Since (c− 1)/c = (√2− 1)2,

this holds for (
√

2− 1)yi ≥ |t − yi |, i.e., if (2−√2)yi ≤ t ≤ √2yi .
We have the lower bound (2 − √2)y1 < g ≤ h by (33). Then (35) implies that

L ≥ p(h) certainly holds for

h ≤ y2s+1

√
2. (36)

Subtract (31) from (32), and again use the monotonicity. We obtain

0 < y2s + y2s+1 − sh + (s − 1)g ≤ y − sh + sy2s+1,

yielding h < y2s+1 + (y/s). Since y ≤ y2s+1/0.61 we get h ≤ √2y2s+1 for s ≥ 4.
Therefore (36) holds for s ≥ 4 and we are done.

The last remaining case is s = 3. We have L ≥ p(g) by (35), so our proof is complete
if we show that p(g) ≥ p(h).

It is easy to see that the second-degree polynomial p(t) takes its minimum at ȳ :=
(
∑

i yi )/(2s + 1). We have g ≤ ȳ, so p(t) ≤ p(g) for all t ∈ [g, 2ȳ − g]. So we are
done if h ≤ 2ȳ − g. Using (32) this is equivalent to

h + (2s + 1)g ≤ 2.

Our last task is to prove that this always holds for the case s = 3, y < 1
4 . Then (32) gives

h ≤ (7y − 1) < 1
4 , so h + 7g < 2 follows from g < y < 1

4 .

9. Conclusion, Remarks

Note that our theorem holds for infinite sets of triangles satisfying (5).
Moon and Moser’s result was extended by Groemer [8] and Bezdek and Bezdek [3] to

higher dimensions proving that f (Q(d)) = 2d−1, where now Q(d) is the d-dimensional
cube.
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An algorithm for packing or covering a given set K with a sequence of sets {Ci }
is an on-line method if the sets Ci are given in sequence, and Ci+1 is presented only
after Ci has been put in place, without the option of changing the placement afterward.
Januszewski et al. [11] proved that in Euclidean d-space, every sequence of cubes of
total volume greater than or equal to 2d+3 can cover the unit cube in the on-line manner.
This volume bound is astoundingly good, considering the best possible bound of 2d − 1
for the analogous off-line problem.

A recent study on square coverings is by Abbott and Kathchalski [1].
L. Fejes Tóth conjectured that 2 ≤ f (C) ≤ 3 for every planar disk, and f (D) = 9

4
for the circular disks (and for ellipses).

Concerning our computer-aided proof of Theorem 3, with a little work Step 6 can be
extended to cover all cases x1 ≤ 0.25, but this does not simplify the previous steps.

In [16] it was claimed that fρ(R) ≥ c = (1 +√2)/2 where R is the right isosceles
triangle, but their argument seems to be rather incomplete. We conjecture more, that
any placement with any rotations of the triangles of sizes

(1− η)(
√

2− 1)k, where k = 0, 1, 2, . . . ,

cannot cover R.
There are many covering results where only a few number of smaller pieces can be

used, see, e.g., some recent works of M. Lassak et al. These are obviously related to
Hadwiger’s conjecture and Borsuk’s problem, see the recent problem book by Brass
et al. [4].
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