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lidean spa
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onstraint reasonsthe 
odewords are assumed to have small Eu
lidean norm: usually they are sup-posed to have norm one at most. This way they are 
losely related to spheri
al 
odesand �kissing numbers�. In addition to this some other 
onstraints are assumed, usu-ally with respe
t to the Eu
lidean distan
e of 
odewords or groups of 
odewords.Here we shall dis
uss the best known bounds and 
onstru
tions for Multiple A

essEu
lidean Channels.Keywords. Eu
lidean 
hannel, random 
oding, se
ond moment method.1. Channel ModelThe Eu
lidean 
hannel is a spe
ial 
ase of the multiple-a

ess 
hannel. This 
hannel isan adder 
hannel for real numbers. The 
hannel input and output alphabets are the set Rof real numbers, and the output is simply the sum of the inputs:

Y =

t
∑

i=1

Xi.This 
hannel is mu
h like the binary adder 
hannel, the differen
e is the 
hannel inputand output alphabet, whi
h is the set R of real numbers in the 
ase of the Eu
lidean
hannel instead of the set {0, 1} and the set N whi
h is the input and the output alphabetof the binary adder 
hannel, respe
tively.We will dis
uss multiple-a

ess 
odes for this 
hannel. For simpli
ity, we use signa-ture 
odes, where as usual, ea
h user (ea
h 
omponent 
ode) has only two elements, andone of these is the all zero. The non-zero one is denoted by x(i) for the ith user. Let us
all users sending their all zero 
odeword ina
tive, and users sending their non-zero oneas a
tive.Sin
e the 
hannel is syn
hronized and deterministi
, the 
hannel output is simplythe sum of the 
odewords of the a
tive users. If we denote the set of a
tive users by U ,then the 
hannel output is
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yU =

∑

i∈U

x(i).Certainly, if we do not have any noise, then the 
hannel 
apa
ity is in�nite. To bet-ter model real transmissions, we introdu
e minimal distan
e and maximal energy 
on-straints. This yields the de�nition of Eu
lidean signature 
odes:De�nition 1. C =
{

x(1),x(2), . . . ,x(t)
} is an Eu
lidean signature 
ode of length n for

t total, and maximumm a
tive users if
x(i) ∈ R

n,
∥

∥

∥
x(i)
∥

∥

∥
≤ 1 ∀i ∈ [t],and

dmin(C) ≥ d,where
dmin(C) = min

U⊆[t],V ⊆[t] :
|U |≤m,|V |≤m,U 6=V

‖yU − yV ‖ ,and ‖.‖ denotes the Eu
lidean norm in R
n.The reason for these 
onstraints is straightforward. Consider some disturbing noisein the 
ommuni
ation. The minimum distan
e 
riteria makes it possible to re
over themessages of the users from the noisy output with a 
ertain �delity. Certainly, if the 
ode-words are fromR

n, the minimum-distan
e 
riteria makes no sense without a maximal en-ergy 
onstraint. Codes having properties above are also 
alled in the literature Eu
lideansuperimposed 
odes as sometimes we will refer to these 
odes.Furthermore, we assume, that only a small subset of the users are 
ommuni
atingsimultaneously. We will use the m-out-of-t model, where there are t total users out ofwhi
h at most m are a
tive at any given instant. In our model the minimum distan
e dis some absolute 
onstant whi
h is independent from the number of 
odewords t, 
odelength n and maximum a
tive usersm.We also mention here that su
h 
odes are often 
alled in the literature spheri
alsuperimposed 
odes and are frequently denoted by (n, d,m, t)-SSC, where n, d, m and
t are the above parameters of the 
ode.For given values of t,m and d, we de�ne the minimal Eu
lidean signature 
odelength NE(t,m, d) as the length of the shortest possible Eu
lidean signature 
ode withthis given parameters:

NE(t,m, d) = min
{

n ∈ N : ∃C(n, t,m) Eu
lidean 
ode with dmin(C) ≥ d
}

. (1)Sin
e 
hoosing U = {1} and V = ∅ the distan
e ‖yU − yV ‖ =
∥

∥x(1)
∥

∥ ≤ 1,so there are no 
odes with minimum distan
e dmin > 1, therefore we only 
onsider
NE(t,m, d) for 0 < d ≤ 1.
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lidean Channel 32. Bounds for Eu
lidean Signature CodesIt was proved by Eri
son and Györ� [1988℄ using a simple sphere pa
king argument, thatfor the minimal Eu
lidean signature 
ode length de�ned by (1) theNE(t,m, d) & m log t
log masymptoti
 lower bound holds. Indeed, this follows from the fa
t that for arbitrary 
odewhere the norm of every 
odeword is at most one the points yU (U ⊆ [t], |U | = m) arewithin a ball of radius of 2

√
m.The main idea of the following improvement is to show that for arbitrary 
ode wherethe norm of every 
odeword is at most one, say, half of the ve
tors yU (U ⊆ [t], |U | =

m) are within a ball of radius of 2
√
m. From this, the stronger lower bound on the 
odelength immediately follows by the same sphere pa
king argument applied to the spherewith radius 2

√
m. This proof is an appli
ation of the well known �se
ond moment�method.Theorem 1. (Füredi�Ruszinkó, [1999℄)

lim inf
m→∞

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ 2,i.e.,

NE(t,m, d) &
2m log t

logm
.Noti
e that this is an exponential improvement for the maximum number of 
ode-words. To prove this theorem, we need the following lemma:Lemma 1. For arbitrary 
ode C ⊆ R

n (|C| = t) where the norm of every 
odeword is atmost one and arbitrary integerm << t the inequality
∑

U⊆[t] : |U |=m

‖yU −mc‖2 ≤
(

t

m

)

mholds, where c = 1
t

∑t
i=1 x(i) is the average ve
tor.Proof. We will denote the Eu
lidean inner produ
t with 〈., .〉.

∑

U⊆[t] : |U |=m

‖yU −mc‖2
=

∑

U⊆[t] : |U |=m

(

‖yU‖2 − 2m〈yU , c〉 +m2 ‖c‖2
) (2)We 
an do the summation by terms. For the se
ond term,

∑

U⊆[t] : |U |=m

−2m〈yU , c〉 = −2m

〈

∑

U⊆[t] : |U |=m

yU , c

〉

= −2m

(

t− 1

m− 1

)

t〈c, c〉

= −2

(

t

m

)

m2‖c‖2,
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e in the sum∑U⊆[t] : |U |=m yU every ve
tor of 
ode C is summed up with multipli
-ity ( t−1
m−1

). For the third term,
∑

U⊆[t] : |U |=m

m2‖c‖2 =

(

t

m

)

m2‖c‖2.For the �rst term,
∑

U⊆[t] : |U |=m

‖yU‖2 =
∑

U⊆[t] : |U |=m

∥

∥

∥

∥

∥

∑

i∈U

x(i)

∥

∥

∥

∥

∥

2

=
∑

U⊆[t] : |U |=m





∑

i∈U

∥

∥

∥
x(i)
∥

∥

∥

2

+
∑

i,j∈U : i6=j

〈

x(i),x(j)
〉



 ,and sin
e ||x(i)|| ≤ 1,
∑

U⊆[t] : |U |=m

‖yU‖2 ≤
∑

U⊆[t] : |U |=m



m+
∑

i,j∈U : i6=j

〈

x(i),x(j)
〉



 .From the fa
t that a pair of ve
tors is 
ontained in exa
tly ( t−2
m−2

)

m-tuples, it followsthat
∑

U⊆[t] : |U |=m

‖yU‖2
=

(

t

m

)

m+

(

t− 2

m− 2

)

∑

i,j∈[t] : i6=j

〈

x(i),x(j)
〉

.By adding the positive term ( t−2
m−2

)
∑

i∈[t], we get
∑

U⊆[t] : |U |=m

‖yU‖2

≤
(

t

m

)

m+

(

t− 2

m− 2

)

∑

i,j∈[t] : i6=j

〈

x(i),x(j)
〉

+

(

t− 2

m− 2

)

∑

i∈[t]

∥

∥

∥x
(i)
∥

∥

∥

2

=

(

t

m

)

m+

(

t− 2

m− 2

)

∥

∥

∥

∥

∥

∥

∑

i∈[t]

x(i)

∥

∥

∥

∥

∥

∥

2

=

(

t

m

)

m+

(

t− 2

m− 2

)

t2 ‖c‖2

≤
(

t

m

)

m+

(

t

m

)

m2 ‖c‖2
.



Danev, Füredi and Ruszinkó / Eu
lidean Channel 5And putting the three terms in (2) together we get
∑

U⊆[t] : |U |=m

‖yU −mc‖2 ≤
(

t

m

)

m.

Now we are ready to prove the new upper bound on the rate of Eu
lidean superim-posed 
odes.Proof of Theorem 1. Take an arbitrary Eu
lidean superimposed 
ode C for t total usersout of whi
h at most m are a
tive. Let n denote the length of the 
ode, and � similarlyto the above lemma � let c = 1
t

∑

i∈[t] x
(i). Let U be a random variable with uniformdistribution over them sized subsets of [t].

P(U = V ) =
1

(

t

m

) ∀V ⊆ [t] : |V | = m.By the de�nition of expe
ted value,
E||yU −mc||2 =

1
(

t

m

)

∑

V ⊆[t] : |V |=m

‖yV −mc‖2
,and using Lemma 1:

E||yU −mc||2 ≤ m.Jensen's inequality [1966℄, for the random variable ||yU −mc|| says
(E (‖yU −mc‖))2 ≤ E

(

‖yU −mc‖2
)

,so
E‖yU −mc‖ ≤ √

m.Thus by Markov's inequality [1966℄,
P
(

‖yU −mc‖ > 2
√
m
)

≤ E (‖yU −mc‖)
2
√
m

=
1

2
.This means that at least half of the m a
tive user's sum ve
tors lies within an n-dimensional sphere of radius 2

√
m.
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lidean ChannelBut C is a Eu
lidean 
ode, whi
h means that even those re
eived ve
tors within thesphere of radius 2
√
mmust have distan
e at least d from ea
h other. Applying the spherepa
king argument to these ve
tors we get that

1

2

(

t

m

)

≤
(

2
√
m+ d

2
d
2

)n

,thus
1

2

(

t

m

)m

≤
(

1 +
4
√
m

d

)n

,and by taking the logarithm,
n ≥ log 1

2 +m(log t− logm)

log
(

1 + 4
√

m

d

) ,and this also holds for the shortest possible Eu
lidean 
ode with given parameters:
NE(t,m, d) ≥ log 1

2 +m(log t− logm)

log
(

1 + 4
√

m

d

) ,thus
lim inf
m→∞

lim inf
t→∞

NE(t,m, d) logm

m log t
≥ 2.Theorem 2. (Eri
son�Györ�, [1988℄)

lim sup
m→∞

lim sup
t→∞

NE(t,m, d) logm

m log t
≤ 4,i.e.,

NE(t,m, d) .
4m log t

logm
.Noti
e that there is still an exponential gap between the bounds given in Theorems1 and 2 in terms of the maximum number of possible 
odewords. The lower bound givesonly the square root of the upper bound.Proof. The proof is based on random 
oding. Choose a random 
ode for t total and ma
tive users with length n with the following distribution:

P

({

X
(i)
j =

1√
n

})

= P

({

X
(i)
j = − 1√

n

})

=
1

2
∀i ∈ [t] ∀j ∈ [n].
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lidean Channel 7For the probability of that this 
ode does not have minimal distan
e d, we have
P
(

dmin(C) < d
)

= P
(

d2min(C) < d2
)

= P

(

min
(U,V )∈At,m

‖yU − yV ‖2
< d2

)

,where
At,m =

{

(U, V ) : U ⊆ [t], V ⊆ [t], |U | ≤ m, |V | ≤ m,U 6= V
}

.Sin
e for ea
h pair (U, V ) setting the minimum, the disjoint pair (U \U ∩V, V \U ∩V )also sets the minimum, it is enough to take into a

ount the disjoint sets only:
P
(

dmin(C) < d
)

= P



 min
(U,V )∈At,m

U∩V =∅

‖yU − yV ‖2
< d2



 ,and applying the union bound, we get
P
(

dmin(C) < d
)

≤
∑

(U,V )∈At,m

U∩V =∅

P
(

‖yU − yV ‖2
< d2

)

.Sin
e the 
odewords are 
omposed of 
omponents ± 1√
n
, if |U | + |V | is odd, then

∣

∣[yU − yV ]j
∣

∣ ≥ 1√
n

∀j ∈ [n],so ‖yU − yV ‖ ≥ 1. Thus for |U | + |V | odd for d ≤ 1, the probability
P
(

‖yU − yV ‖2
< d2

)

= 0,so we do not have to sum these 
ases. For |U | + |V | even
P
(

dmin(C) < d
)

≤
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenP(‖yU − yV ‖2

< d2
)

.Moreover, for U ∩ V = ∅ the distributions of yU − yV and yU + yV are the same, i.e.:
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P
(

dmin(C) < d
)

≤
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenP(‖yU + yV ‖2

< d2
)

=
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenP





∥

∥

∥

∥

∥

∑

i∈U∪V

X(i)

∥

∥

∥

∥

∥

2

< d2





=
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenP



n

n
∑

j=1

(

∑

i∈U∪V

X
(i)
j

)2

< nd2



 ,and by the Chernoff bounding te
hnique,
P
(

dmin(C) < d
)

=
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenP



exp



−n
2

n
∑

j=1

(

∑

i∈U∪V

X
(i)
j

)2


 > e−
nd2

2





≤
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenend2

2 E



exp



−n
2

n
∑

j=1

(

∑

i∈U∪V

X
(i)
j

)2








=
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenend2

2

n
∏

j=1

E



exp



−1

2

(

√
n
∑

i∈U∪V

X
(i)
j

)2








=
∑

(U,V )∈At,m

U∩V =∅
|U |+|V | is evenend2

2



E



exp



−1

2

(

√
n
∑

i∈U∪V

X
(i)
1

)2












n

.If |U | + |V | is even, then√n∑i∈U∪V X
(i)
j is also even, with distribution

P

(

√
n
∑

i∈U∪V

X
(i)
j = 2z

)

=

(

2k

k + z

)

1

22kover z ∈ {−k, . . . , k}, where 2k = |U | + |V |. Thus
E



exp



−1

2

(

√
n
∑

i∈U∪V

X
(i)
j

)2






 =

k
∑

z=−k

e−2z2

(

2k

k + z

)

1

22k
.
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lidean Channel 9So the Chernoff-bound is
P(dmin(C) < d) ≤

∑

(U,V )∈At,m

U∩V =∅
|U |+|V |=2k

e
nd2

2

(

k
∑

z=−k

e−2z2

(

2k

k + z

)

1

22k

)n

,where we enumerate the appropriate pairs (U, V ) with respe
t to 2k = |U | + |V |:
P(dmin(C) < d) ≤

m
∑

k=1

(

t

2k

)

22ke
nd2

2

(

k
∑

z=−k

e−2z2

(

2k

k + z

)

2−2k

)n

,and sin
e ( t
2k

)

22k ≤ 2t2k and d ≤ 1,
P(dmin(C) < d) ≤ 2

m
∑

k=1

t2ke
n
2

(

k
∑

z=−k

e−2z2

(

2k

k + z

)

2−2k

)n

= 2(A+B),where
A = t2e

n
2

(

1
∑

z=−1

e−2z2

(

2

1 + z

)

2−2

)n

,and
B =

m
∑

k=2

t2ke
n
2

(

k
∑

z=−k

e−2z2

(

2k

k + z

)

2−2k

)n

.We will derive upper bounds on A and B:
A = exp

(

2 log t+ n

(

1

2
+ log(1 + e−2) − log 2

))

≤ exp (2 log t− 0.066n) .For B, we will use ( 2k
k+z

)

≤
(

2k
k

) and (2k
k

)

2−2k ≤ 1√
πk

(e.g. [1968℄):
k
∑

z=−k

e−2z2

(

2k

k + z

)

2−2k ≤ 1√
πk

k
∑

z=−k

e−2z2

,and using exp(−2z2) ≤ exp(−2|z|), we get
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k
∑

z=−k

e−2z2

(

2k

k + z

)

2−2k ≤ 1√
πk

k
∑

z=−k

e−2|z|

=
1√
πk

(

1 + 2

k
∑

z=1

e−2z

)

≤ 1√
πk

(

1 + 2
e−2

1 − e−2

)

≤ 0.741√
k
.So for B, we have

B ≤
m
∑

k=2

t2ke
n
2

(

0.741√
k

)n

≤ m max
k=2...m

exp

(

2k log t+ n

(

0.201 − log k

2

))

.It 
an be easily seen, that the exponent is 
onvex in k. So the maximum is either at k = 2or at k = m:
B ≤ mmax{C,D},where

C = exp

(

4 log t+ n

(

0.201 − log 2

2

))

≤ exp (4 log t− 0.145n) ,and
D = exp

(

2m log t+ n

(

0.201 − logm

2

))

.We want to show that for large values of t, the probability of that this random 
odedoes not have a 
ertain minimal distan
e is less than one. We have P (dmin(C) < d) ≤
2(A+mmin{B,C}), so it is enough to show that

lim
t→∞

A = 0, lim
t→∞

C = 0 and lim
t→∞

D = 0.Set n = ⌈c(m) log t⌉, then
A ≤ exp

((

2 − 0.066c(m)
)

log t
)

,

C ≤ exp
((

4 − 0.145c(m)
)

log t
)

,
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D ≤ exp

((

2m−
(

logm

2
− 0.201

)

c(m)

)

log t

)

.All these quantities A, B and C tend to 0 as t → ∞ if in the exponents log t has anegative fa
tor. We have this for A if c(m) > 30.304, for C if c(m) > 27.587, and for
D if

2m−
(

logm

2
− 0.201

)

c(m) < 0.All of these 
onditions are satis�ed by
c(m) =

4(1 + ε)m

logmform ≥ 25 andm ≥ exp
(

0.402(1+ε)
ε

), where ε > 0 arbitrary.Summarizing, we have shown that for any ε > 0, if
m > max

{

25, exp

(

0.4005(1 + ε)

ε

)}

,the probability of a randomly sele
ted 
ode with length
n =

⌈

4(1 + ε)m

logm
log t

⌉not having minimal distan
e d tends to 0:
lim

t→∞
P(dmin(C) < d) = 0.This means that for t large enough, a good 
ode with 
ertain parameters exists, so forany ε > 0,m large enough and t large enough

NE(t,m, d) <
4(1 + ε)m

logm
log t+ 1,whi
h implies that

lim sup
m→∞

lim sup
t→∞

NE(t,m, d) logm

m log t
≤ 4.
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lidean Channel3. Signature Coding and Information Transfer for the Eu
lidean ChannelThere are t users of the 
hannel: U = {1, 2, . . . , t}. Ea
h user u has a 
omponent 
ode,whi
h is formed by s real valued 
odewords of length n:
Cu = {x(u,1),x(u,2), . . . ,x(u,s)},ea
h 
odeword is asso
iated with a spe
i�
 message of the user. We have an energy
onstraint: ∥∥x(u,j)

∥

∥ ≤ 1, where ‖.‖ denotes the Eu
lidean norm. At a given instant,there are some (say r) a
tive users. They are denoted by the set U . Enumerate them as
U = {u1, u2, . . . , ur}, where u1 < u2 < . . . < ur. We 
onsider, that at any time atmost m users are a
tive, so r ≤ m. For ea
h a
tive user ui ∈ U , let mi ∈ {1, 2, . . . , s}denote the message this user wants to send. Form a ve
tor of length r from the messagesas m =

(

m1,m2, . . . ,mr

). The pair (U,m), whi
h is the set of a
tive users and theve
tor of their messages together, is 
alled a message 
onstellation.The a
tive users send their 
orresponding 
odewords to the 
hannel: user ui withmessage mi sends x(ui,mi). The re
eiver gets the sum of the 
odewords sent, whi
h isdenoted by S(U,m):
S(U,m) =

r
∑

i=1

x(ui,mi).If the 
ode C is su
h that for ea
h different pair (U,m), the 
hannel output is differentat least by d in Eu
lidean norm, then this 
ode has distan
e d. Formally,
‖S(U,m) − S(V,n)‖ < d ⇐⇒ (U = V and m = n)

∀U, V,m,n : |U | ≤ m, |V | ≤ m.Given t,m, s and d, the smallest 
odeword length for whi
h a d-distan
e s-messageEu
lidean 
ode C for t total users out of whi
h at most m are a
tive exists is noted by
N(t,m, s, d).An analogue of Theorem 1 of Füredi and Ruszinkó for this 
ase 
an be stated asfollowsTheorem 3. (La
zay, [2005℄)

lim inf
m→∞

lim inf
ts→∞

N(t,m, s, d) logm

m log ts
≥ 2,i.e.,

N(t,m, s, d) &
2m log ts

logm
.To prove this theorem, we taylor Lemma 1 to our needs:
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zay, [2005℄) For arbitrary 
ode C de�ned above, the inequality
∑

U⊆[t] : |U |=m
m∈{1,2,...,s}m

‖S(U,m) −mc‖2 ≤
(

t

m

)

smmholds, where
c =

1

ts

∑

i∈{1,2,...,t}
k∈{1,2,...,s}

x(i,k)is the average ve
tor.Proof. The proof is similar to the proof of Lemma 1.Proof of Theorem 3. Similarly to the proof of Theorem 1, 
ombine Lemma 2 with thesphere pa
king argument by using Markov's and Jensen's inequalities.For the upper bound, 
onsider that an Eu
lidean signature 
ode with t′ = ts users(and so with t′ = ts 
odewords) is also an s-message Eu
lidean 
ode for t users. Thisis be
ause for a signature 
ode with t′ = ts users we required that all sum of at most m
odewords should be distin
t by distan
e d. For an smessage 
ode for t users we requirethat only those at most m sums must be distin
t, whi
h has at most one 
odeword fromall 
omponent 
ode. Thus Theorem 2 of Eri
son and Györ� provides an upper boundalso for the minimal 
odeword length of s-message Eu
lidean 
odes, that isCorollary 1. (La
zay, [2005℄)
2 ≤ lim sup

m→∞
lim sup
ts→∞

N(t,m, s, d) logm

m log ts
≤ 4.i.e.,

2m log ts

logm
. N(t,m, s, d) .

4m log ts

logm
.4. Constru
tions of superimposed 
odes for the Eu
lidean 
hannelUntil now we 
onsidered only the asymptoti
 behavior of the fun
tion NE(t,m, d) forlarge t and m. In this se
tion we present several 
onstru
tions of Eu
lidean signature
odes. These are ex
lusively representing sets of points on the unit sphere Ωn formallyde�ned as

Ωn
def
= {x ∈ R

n | ||x|| = 1}.In other words we limit ourselves to 
onsidering signature 
odewords of unit energy.Su
h 
onstellations are known as spheri
al 
odes and have been extensively studiedin the literature. (See, e.g., the ex
ellent book of Eri
son and Zinoviev [2001℄ on this
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t.) Re
all that three most important parameters of a spheri
al 
odes are dimension,
ardinality and minimum distan
e. Spheri
al 
ode C whi
h satis�es the 
onditions ofDe�nition 1 will be refered to as spheri
al superimposed 
ode and will be denoted as
(n, d,m, t)-SSC.It is 
lear from the de�nitions that an (n, d,m, t)-SSC is also an (n, d′,m, t)-SSC forevery d′ < d. In most of the 
onstru
tions of SSCs presented here the exa
t determinationof the minimum distan
e is impossible. A lower bound on d is 
omputed instead.We start with some basi
 
onstru
tions.Constru
tion 1. An orthonormal basis of R

n forms a (n, 1, n, n)-SSC.We 
an a
tually a

ommodate one more user while keeping the same dimension,minimum distan
e and number of a
tive users. This 
an be done in the following manner.The points that form an orthonormal basis of R
n+1 lie on a hyperplane of dimension n.By proje
ting them onto R

n and some re-s
aling we obtain the so-
alled simplex 
odeon Ωn. It 
an be easily 
he
ked that the following is true.Constru
tion 2. A simplex 
ode on Ωn forms a (n, 1, n, n+ 1)-SSC.Before pro
eeding with more advan
ed 
onstru
tions we give one way to obtainSSCs in two dimensions.Constru
tion 3. A regular n-gon on Ω2 forms a (2, d, k − 1, n)-SSC, where d > 0 and
k is the least non-unit divisor of n.The drawba
k of Constru
tion 3 is that the a
tual minimum distan
e is dif�
ult to
ompute.A powerful method for deriving SSCs is to use 
ertain mappings from the set
{0, 1, . . . , p− 1} into R or R

2. Examples of su
h mappings are the following.
AM1 : f

(n)
1 (x) =

x√
n(p− 1)

,

AM2 : f
(n)
2 (x) =

1√
n

(

1 − 2x

p− 1

)

,

PhM : f
(n)
3 (x) =

1√
n

(

cos
2πx

p
, sin

2πx

p

)

.The �rst more advan
ed 
onstru
tion of SSCs is des
ribed in [1988℄.Constru
tion 4. (The EG 
onstru
tion) Let Cb be a binary linear
[N,K,D]-
ode whi
h 
ontains the all-one word. Let Cb be the set that is obtained from
Cb by deleting all words starting with 1 and deleting the �rst 
oordinate from the rest.Suppose that

D ≥ d0
def
=

a2(n+ 2) − 2a(n+ 1) + d2n

2a(a− 1)
(3)for some d, 0 < d ≤ 1, where a def

= min{t, 2m} and n = N − 1. Applying the mappingAM2 to Cb, we obtain (n, d,m, t)-SSC.
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onstru
tion 
an be generalized. The main idea is to �nd some ne
essary 
on-ditions for a spheri
al 
ode to posses 
ertain superimposed properties. We de�ne a non-negative valued fun
tion g(m, t, s1, s2) in the following manner. Let g(m, t, s1, s2) =
gi(m, t, s1, s2) whenever (m, t, s1, s2) ∈Mi ⊂ Z

2
+ ⊗ R

2, i = 1, 2, 3, 4, 5, 6. The fun
-tions gi(m, t, s1, s2) are de�ned as
g2

i (m, t, s1, s2) =

8>>>>>><>>>>>>: (2m2 + t2 − 2mt − t)s1 + 2m(m − t)s2 + t, if i = 1,
(t(t − 2)s1 − t2s2 + 2t)/2, if i = 2,
2m((m − 1)s1 − ms2 + 1), if i = 3,
m((m − 1)s1 + 1), if i = 4,
1, if i = 5,
0, if i = 6.The regions Mi, i = 1, . . . , 6 depend on the 
hoi
e of parameters m, t, s1 and s2.Their des
ription is given below.

M1 = {(m, t, s1, s2) | −
1

m − 1
≤ s1 ≤ −

1

t
,

(t − m − 1)s1 + 1

2m
≤ s2 ≤ −s1,

(t − 1)(ts1 + 1)

2m(t − m)
− s1 ≤ s2 ≤

t((t − 1)s1 + 1)

2m(t − m)
− s1, m < t < 2m},

M2 = {(m, t, s1, s2) | m ≤ t < 2m, −
1

t − 1
≤ s1 ≤ 0, s2 ≥ −s1,

t(t − 2)s1 + 2(t − 1)

t2
≤ s2 ≤

(t − 2)s1 + 2

t
},

M3 = {(m, t, s1, s2) | 4 ≤ 2m ≤ t,−
1

m − 1
≤ s1 ≤ 0, s2 ≥

(m − 1)s1 + 1

2m
,

(m − 1)s1 + 1

m
−

1

2m2
≤ s2 ≤

(m − 1)s1 + 1

m
},

M4 = {(m, t, s1, s2) | 2 ≤ m ≤ t, −
1

m − 1
≤ s1 ≤ −

1

m
, s2 = s1 if t = m,

s2 ≤
(a − m − 1)s1 + 1

2m
if m 6= t and a = min{t, 2m}, s2 ≥ s1},

M5 = {(m, t, s1, s2) | 2 ≤ m ≤ t, s2 ≤ (1 −
2

t
)s1 + 2

(t − 1)

t2
if m ≤ t < 2m,

s2 ≤
(a − 1)(as1 + 1)

2m(a − m)
− s1 if m 6= t and a = min{t, 2m}, s2 ≥ s1, −

1

m
≤ s1 ≤ 0},

M6 = Z
2
+ ⊗ R

2 \ ∪5
i=1MiThe fun
tion g(m, t, s1, s2) gives a
tually a lower bound on the minimum distan
eof a 
ertain spheri
al 
ode 
onsidered as a SSC. The result is given in the next statement.Theorem 4. Let m ≥ 2 be an integer and C be a (n, t, d0)-spheri
al 
ode su
h that

〈x,y〉 ∈ [s1, s2] for every x 6= y in C. Then C is a (n, d = g(m, t, s1, s2),m, t)-SSC.
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n d m t n d m t n d ≥ m t n d ≥ m t

6 1 2 8 11 1 3 14 6 0.453 2 12 12 0.930 3 17

7 1 2 10 12 1 3 16 7 0.819 2 14 12 0.342 3 20

8 1 2 13 13 1 3 19 9 0.442 2 30 13 0.831 3 20

9 1 2 18 14 1 3 20 10 0.554 2 40 14 0.993 3 21

10 1 2 20 15 1 3 23 11 0.289 2 54 14 0.808 3 23

11 1 2 26 16 1 3 26 11 0.161 2 60 15 0.985 3 24

12 1 2 39 12 1 4 14 12 0.826 2 48 15 0.227 3 30

13 1 2 52 13 1 4 15 13 0.808 2 54 16 0.600 3 31

14 1 2 54 14 1 4 16 14 0.999 2 55 11 0.663 4 13

15 1 2 50 15 1 4 18 8 0.719 3 10 13 0.663 4 16

16 1 2 50 16 1 4 20 9 0.719 3 12 14 0.947 4 17

9 1 3 11 15 1 5 17 10 0.530 3 14 15 0.776 4 19

10 1 3 12 16 1 5 18 11 0.483 3 17 14 0.648 5 16Table 1. Spheri
al superimposed 
odes derived from the best 
odes in G(n, 1) known.The proof of Theorem 4 is more or less straightforward. Two parti
ular 
ases ofspe
ial interest need to be stated here. The �rst is when the interval [s1, s2] is symmetri
around the zero.Corollary 2. Let C be a (n, t, d0)-spheri
al 
ode with inner produ
ts within the interval
[s,−s], where −1 ≤ s ≤ 0. Let m be a positive integer and de�ne a = min{2m, t}.Then C is an (n, 1,m, t)-SSC if s ∈ [−1/a, 0] and (n,

√

a(1 + (a− 1)s),m, t)-SSC if
s ∈ [−1/(a− 1),−1/a].This 
orollary is espe
ially appli
able for spheri
al 
odes obtained from 
odes inthe Grassmannian spa
e G(n, 1) 
onsisting of all lines in R

n passing trough the origin.Constru
tions of 
odes in G(n, 1) 
an be found in [1996℄. Table 1 gives the parametersof some spheri
al superimposed 
odes obtained from these 
odes with help of the 
on-stru
tion given above. The lower bound on the minimum distan
e is 
omputed with helpof Corollary 2.The next interesting 
ase is when we obtain superimposed 
odes with d = 1 andmany points.Corollary 3. Let C be a (n, t, d0)-spheri
al 
ode with inner produ
ts in the inter-val [s1, s2] and let m ≤ t/2 be an integer number. If s1 ∈
[

− 1

m
, 0

] and s2 ∈
[

s1,
((m− 1)s1 + 1)

m
− 1

2m2

] then C is a (n, 1,m, t)-SSC.Based on this 
orollary we 
an assure the existen
e of (q(q2 − q + 1), 1, q − 1, (q +
1)(q3 + 1))-SSC for any prime power q ≥ 3 due to the existen
e of a 
lass of opti-mal spheri
al 
odes des
ribed of Levenshtein [1987℄. It is also worth mentioning the ex-isten
e of spheri
al superimposed 
odes with parameters (21, 1, 2, 162), (22, 1, 2, 100)and (22, 1, 2, 275), respe
tively.We turn ba
k to the mapping method and use p-ary representations of so-
alled As-and Bs-sets whi
h give the following result.
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tion 5. (The A 
onstru
tion) Given a primitive polynomial of degree m + 1overGF (q), we 
an obtain (n, d,m, t)-SSC with t = q+1 and the following parameters,for any integer r ≥ 2 and for v = (qm+1 − 1)/(q − 1)

AM1 : n = ⌊logr v⌋ + 1, d =
1√

n(r − 1)
,

AM2 : n = ⌊logr v⌋ + 2, d =
2√

n(r − 1)
,

PhM : n = 2⌊log3 v⌋ + 3, d =

√

6

n+ 1
, r = 3.It is always interesting to show that some 
onstru
tions are optimal in a 
ertain sense.For example for given dimension n, 
ardinality t and maximal number of a
tive usersmwe want to �nd the maximal minimum distan
e d(n,m, t) that 
an be a
hieved, i.e. thereexists an (n, d(n,m, t),m, t)-SSC and there is no (n, d,m, t)-SSC with d > d(n,m, t).This is a rather dif�
ult task in higher dimensions but we 
an a
tually state some su
hresults for dimension 2.In order to simplify the des
riptions we introdu
e some notations. First we identify

R
2 with the set of 
omplex numbers C. Every point (a, b) ∈ R

2 is asso
iated with thenumber a+ ib = ρeiϕ, where i2 = −1. Every set on the unit 
ir
le 
an be represented bya set of angles ϕ ∈ [0, 2π) 
orresponding to its points. For example the set Ck
def
= {ϕj =

2jπ/k, j = 0, 1, . . . , k − 1} represents a regular k-gon whi
h has vertex (1, 0).A natural way of obtaining 
odes with even 
ardinalities is to take away one pointfrom the regular polygon with one more vertex. However the following 
onstru
tion givebetter minimum distan
es.Constru
tion 6. Let t be an even number whi
h is not a power of 2. Let p be the smallestodd prime divisor of t. Choose the set Bt
p to be the subset of C2t 
onsisting of the angles

ϕi
k =

(

2k

p
+
i

t

)

π, k = 0, 1, . . . , p− 1, i = 0, 1, . . . , t/p− 1.The exa
t determination of the minimum distan
e of the 
odes Bt
p in the general 
aseis still an open problem. The results for the 
ase p = 3 are des
ribed below.Theorem 5. Let t be a positive integer number divisible by 6. Then the 
odes Bt

3 givenin Constru
tion 6 have parameters
(n, d,m, t) = (2, 4 sin π

t
sin π

2t
, 2, t).Proof. Let B be the set all sums of up to two different ve
tors in Bt

3 in
luding the all-zero ve
tor. We observe that the set B is preserved by the rotations through angle 2π/3and 
enter in the origin. It is also kept by the re�e
tions in the lines along the ve
tors
orresponding to the angles (2i+ 1)t− 3

6t
π, i = 0, 1, 2. Thus we 
an 
onsider the non-zero points of B whi
h 
orrespond to angles in the interval [0, 2π/3]. These points 
anbe divided in three sets de�ned as B1 = {ϕi

0 | i = 0, 1, . . . , t/3 − 1}, B2 = {ϕi
0 +
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ϕj

0 | i, j = 0, 1, . . . , t/3 − 1, i 6= j} and B3 = {ϕi
0 + ϕj

1 | i, j = 0, 1, . . . , t/3 − 1}.It is easy to see that the distan
e between two points from different sets as well as thedistan
e of every point to the origin is at least 2 sin π
2t
, whi
h is the side-length of theregular 2t-gon. Further the points of B3 
an be divided in �levels� by their Eu
lideannorm. The minimum distan
e between the different levels is 2 sin π

2t
and between thepoints on the level of radius r is 2r sin π

2t
. The innermost level with at least 2 points has

r = 2 sin π
t
and thus dmin(B3) = 4 sin π

t
sin π

2t
. By similar arguments we 
an dedu
e

dmin(B2) = 4 sin π
t

sin π
2t
. Clearly dmin(B1) = 2 sin π

2t
whi
h 
on
ludes the proof.For the 
ase p > 3 we 
laim that the minimum distan
e of the 
onstru
ted 
odes isnon-zero. Before pro
eeding with the proof of this fa
t we need the following lemma.Lemma 3. Let t be an even positive number that is not a power of 2 and p be its leastodd prime divisor. Then there are no opposite ve
tors in Bt

p, i.e. ve
tors with zero sum.Moreover all regular p-gons with verti
es in C2t are either 
ompletely in
luded or doesnot have points in Bt
p.Proof. Suppose �rst that there are opposite points in Bt

p. Then
π = |ϕi

k − ϕj
l | =

∣

∣

∣

∣

2(k − l)

p
− i− j

t

∣

∣

∣

∣

π,for some integers i, j, k, l su
h that i, j ∈ [0, t/p − 1] and k, l ∈ [0, p − 1]. This isimpossible sin
e p is an odd number and |i−j|/t < 1/p. The se
ond part follows dire
tlyfrom the easy observation that all regular p-gons, whi
h are subsets of C2t are {ϕi
k}p−1

k=0for i = 0, 1, . . . , 2t/p− 1.Now we 
an state the main result 
on
erning Constru
tion 6.Theorem 6. The 
odes Bt
p des
ribed in Constru
tion 6 are (2, d, p − 1, t)-SSCs where

d > 0.Proof. Suppose that d = 0, whi
h means that we have two different sets M and N ofup to p − 1 points in Bt
p whi
h have the same sum. We 
an assume that M ∩ N = ∅.Let us denote by N the set of opposite ve
tors to those in N . Then the sum of theve
tors in M ∪ N is the zero-ve
tor. Sin
e M ∪ N ⊆ C2t this 
an happen only if thepoints in M ∪ N are all the verti
es of a regular l-gon, where l|t and l ≥ 2. We have

1 ≤ |M ∪N | ≤ 2(p − 1) and from the de�nition of t and p we get two possible 
ases,namely |M ∪N | even or |M ∪N | = p. Both 
ases are ex
luded by Lemma 3.Sin
e the angle between any two lines trough the origin and the points of a
(2, d,m, t)-SSC with m ≥ 2 must be at least 2 arcsin(d/2) we obtain the followingupper bound on the minimum distan
e of su
h a 
ode.Proposition 1. If there exists a (2, d,m, t)-SSC with m ≥ 2 and t ≥ 3, then d ≤
2 sin(π/(2t)).Proof. The only thing we must see is the obvious fa
t that the minimum angle between tlines trough the origin in R

2 is at most π/t.
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t d3 d6 dub

6 0.24697960 0.51763809 0.51763809

10 0.16037889 0.17557050 0.31286893

12 0.11538526 0.13513066 0.26105238

14 0.08693075 0.09965775 0.22392895

18 0.05436845 0.06053774 0.17431149

20 0.04455177 0.04909482 0.15691819

22 0.03716936 0.04061049 0.14267837

24 0.03147895 0.03414728 0.13080626

26 0.02700081 0.02911129 0.12075699

28 0.02341378 0.02511159 0.11214089Table 2. Comparison of Constru
tion 3 and Constru
tion 6for 
odes of dimension n = 2 and order m = 2.
n m T d(n,m,T)

2 2 4 2 sin(π/10) ≈ 0.61802399

2 2 5 2 sin(π/12) ≈ 0.51763809

2 2 6 2 sin(π/12) ≈ 0.51763809Table 3. Known d-optimal spheri
al superimposed 
odes with d < 1.For the spe
ial 
ase ofm = 2 the bound from Proposition 1 is asymptoti
ally betterthen the sphere pa
king bound, dis
ussed in the se
ond se
tion, as t → ∞. It is notsurprising that for largerm we have the opposite situation. A natural explanation is thatthe limitation on the angles of the lines is quite weak in those 
ases.Table 2 shows the advantages of Constru
tion 6 to Constru
tion 3. The notation direfers to the minimum distan
e of the 
odes obtained from the 
orresponding 
onstru
-tion. The 
odes from Constru
tion 3 are obtained by removing one point from the ver-ti
es of a regular (t + 1)-gon. We list also the 
orresponding upper bound obtained byProposition 1 in the last 
olumn of the table.Other possibilities for 
hoosing some points of Ck to obtain (2, d,m, t)-SSCs 
an beinvestigated. This idea is promising as we 
an see from the following example.Example 1. The 
ode C0,1,4,7
10 
onsisting of ve
tors 
orresponding to the angles

0, π/5, 4π/5 and 7π/5, whi
h is a subset of C10 is a (2, 2 sin(π/10), 2, 4)-SSC.It is possible to show that the 
ode in Example 1 satis�es d(2, 2, 4) = 2 sin(π/10).With the aid of the bound from Proposition 1 we are able to determine two more values ofthe fun
tion d(n,m, T ), namely d(2, 2, 3) = 1 and d(2, 2, 6) = 2 sin(π/12). The 
odesa
hieving these values are C3 and B6
3 , respe
tively. Observe that C3 is d2-optimal, but
learly not d3-optimal. Further geometri
al reasons reveal that d(2, 2, 5) = d(2, 2, 6) =

2 sin(π/12). The known 
ases of dm-optimal 
odes with d < 1 are summarized in Ta-ble 3.
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odes in other normed spa
esSo far in this 
hapter we presented results for Eu
lidean 
odes. We will shortly outlinehere that these results 
an be extended to arbitrary normed spa
es.Let N = (X, || · ||) be a �nite-dimensional (n-dimensional) normed ve
tor spa
e,and let B(c, r) denote the 
losed ball with 
enter c and radius r > 0. We also use Bfor the unit-ball B(0, 1) of N . In general, this B may also be 
onsidered as an arbitrary
n-dimensional symmetri
 
onvex body in R

n, the symmetry being with respe
t to theorigin. One might also be interested in the growth rate of normed signature 
odes inthe more general normed ve
tor spa
e N , where the norm is de�ned by an arbitrary n-dimensional 
entral symmetri
 
onvex body. Similarly to the Eu
lidean norm 
ase, thismeans the following.Let C be a �nite set of (at most) unit norm ve
tors in N , it is 
alled a normed sig-nature 
ode in N with parameters (n,m, t, d) if |C| = t and for two arbitrary distin
tsubsets A and B of C with 0 ≤ |A|, |B| ≤ m the N -distan
e of the ve
tors f(A) and
f(B) is at least d. (Here f(A) and f(B) is the sum of ve
tors in A and B, respe
tively.)That is

dN (Cm) := min
A6=B

0≤|A|,|B|≤m

A,B⊆C

||f(A) − f(B)||N ≥ d.As before, for given t, m and d, let nN (t,m, d) denote the minimum length of su
h a
ode.We are able to extend the bounds of Theorems 1 and 2 for all �nite-dimensionalnormed spa
es, N , in a somewhat weaker form.Theorem 7. (Füredi�Ruszinkó, [1999℄)
nN (t,m, d)

log t
= Θ

(

m

logm

)

. (4)Here Θ is used in the 
onventional sense, i.e., for sequen
es f(m) and g(m),
f(m) = Θ(g(m)) if f(m) ≤ c1g(m) and f(m) ≥ c2g(m) hold with appropriate posi-tive 
onstants c1, c2 and everym.Proof. (Sket
h) To prove the upper bound (4) use the following theorem of Milman[1985℄. For every ε > 0 there exists a positive 
onstant ψ(ε) > 0, su
h that one 
an�nd a proje
tion of a se
tion of B (say, ΠF2

(F1 ∩ B) with F2 ⊂ F1 ⊂ Rn) whi
his (1 + ε)-equivalent to an ellipsoid and has dimension at least ψ(ε)n. Here the ψ isindependent from the 
onvex body B, but, of 
ourse, the 
hoi
e of the subspa
es, F1and F2, varies with B. (For more ba
kground on this topi
 and proofs see the ex
ellentbook of Pisier [1989℄). An ellipsoid is af�ne invariant to the Eu
lidean ball, so taking aEu
lidean signature 
ode C, of maximum size in the subspa
e F2 � by the af�ne invarianttransformation mapping the unit ball to the ellipsoid � we will get a signature 
ode withthe same parameters with respe
t to the distan
e de�ned by the ellipsoid. Proje
t C ba
kto F1 ∩ B, and � by Milman's theorem � obtain a signature 
ode in N with parameters
(n,m, |C|, d/(1 + ε)).
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son and Györ�[1988℄,
(

T

m

)

≤
(

m+ d/2

d/2

)n

,whi
h is true for every spa
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