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Abstract. Codes for Euclidean Channels are discussed in this chapter. In case of
Euclidean Channels the input and output codewords are usually arbitrary members
of the n-dimensional Euclidean space R™. However, by energy constraint reasons
the codewords are assumed to have small Euclidean norm: usually they are sup-
posed to have norm one at most. This way they are closely related to spherical codes
and “kissing numbers”. In addition to this some other constraints are assumed, usu-
ally with respect to the Euclidean distance of codewords or groups of codewords.
Here we shall discuss the best known bounds and constructions for Multiple Access
Euclidean Channels.
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1. Channel Model

The Euclidean channel is a special case of the multiple-access channel. This channel is
an adder channel for real numbers. The channel input and output alphabets are the set R
of real numbers, and the output is simply the sum of the inputs:

This channel is much like the binary adder channel, the difference is the channel input
and output alphabet, which is the set R of real numbers in the case of the Euclidean
channel instead of the set {0, 1} and the set N which is the input and the output alphabet
of the binary adder channel, respectively.

We will discuss multiple-access codes for this channel. For simplicity, we use signa-
ture codes, where as usual, each user (each component code) has only two elements, and
one of these is the all zero. The non-zero one is denoted by x(*) for the ith user. Let us
call users sending their all zero codeword inactive, and users sending their non-zero one
as active.

Since the channel is synchronized and deterministic, the channel output is simply
the sum of the codewords of the active users. If we denote the set of active users by U,
then the channel output is
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yo =3 x0.
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Certainly, if we do not have any noise, then the channel capacity is infinite. To bet-
ter model real transmissions, we introduce minimal distance and maximal energy con-
straints. This yields the definition of Euclidean signature codes:

Definition 1. C = {x(l),>c(2)7 . ,x(t)} is an Euclidean signature code of length n for
t total, and maximum m active users if

x® e R", Hx(i) <1 Vi € [t],
and
dmin(C) = d,
where
dmin(C) = Ugt]ﬂ’lingﬂ: lyo —yvll,

U|<m,[V]|<m,U#V
and ||.|| denotes the Euclidean norm in R™.

The reason for these constraints is straightforward. Consider some disturbing noise
in the communication. The minimum distance criteria makes it possible to recover the
messages of the users from the noisy output with a certain fidelity. Certainly, if the code-
words are from R"”, the minimum-distance criteria makes no sense without a maximal en-
ergy constraint. Codes having properties above are also called in the literature Euclidean
superimposed codes as sometimes we will refer to these codes.

Furthermore, we assume, that only a small subset of the users are communicating
simultaneously. We will use the m-out-of-f model, where there are ¢ total users out of
which at most m are active at any given instant. In our model the minimum distance d
is some absolute constant which is independent from the number of codewords ¢, code
length n and maximum active users m.

We also mention here that such codes are often called in the literature spherical
superimposed codes and are frequently denoted by (n, d, m, t)-SSC, where n, d, m and
t are the above parameters of the code.

For given values of ¢, m and d, we define the minimal Euclidean signature code
length N (¢, m,d) as the length of the shortest possible Euclidean signature code with
this given parameters:

Ng(t,m,d) = min{n € N: 3C(n,t,m) Euclidean code with dmin(C) > d}. (1)
Since choosing U = {1} and V = () the distance ||yy —yv| = HX(I)H < 1,

so there are no codes with minimum distance d,,;;, > 1, therefore we only consider
Ng(t,m,d) for0 < d < 1.
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2. Bounds for Euclidean Signature Codes

It was proved by Ericson and Gyorfi [1988] using a simple sphere packing argument, that
for the minimal Euclidean signature code length defined by (1) the Ng (¢, m,d) = %lgof;b t
asymptotic lower bound holds. Indeed, this follows from the fact that for arbitrary code
where the norm of every codeword is at most one the points yy (U C [¢], |U| = m) are
within a ball of radius of 24/m.

The main idea of the following improvement is to show that for arbitrary code where
the norm of every codeword is at most one, say, half of the vectors y (U C [t], |U| =
m) are within a ball of radius of 2y/m. From this, the stronger lower bound on the code
length immediately follows by the same sphere packing argument applied to the sphere
with radius 2/m. This proof is an application of the well known “second moment”
method.

Theorem 1. (Fiiredi—Ruszinkd, [1999])

Ng(t,m,d)logm

lim inf lim inf > 2,
m—oo t—00 mlogt
Le.,
2mlogt
NE(ta m, d) Z m

logm °

Notice that this is an exponential improvement for the maximum number of code-
words. To prove this theorem, we need the following lemma:

Lemma 1. For arbitrary code C C R"™ (|C| = t) where the norm of every codeword is at
most one and arbitrary integer m << t the inequality

t
> lyw — me||* < ( )m
m

UCIt]: |U|=m

holds, where ¢ = % Zﬁzl x@ s the average vector.

Proof. We will denote the Euclidean inner product with (., .).

> ye-melf = Y (IvolP - 2miyo,e) +mel?) @

UCH: |Ul=m UCH: [U]=m

We can do the summation by terms. For the second term,

> —2m(yy.c) = —2m< > yU,c>
uclt

UC[t]: |U|l=m 1: [Ul=m

—2m (;__11)75(@ c)

t
—2( )m
m
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since in the sum ZUC[t] . |U|=m YU €very vector of code C is summed up with multiplic-
ity (;:_11). For the third term,

t
3 m2||c||2( >m2||c||2.
m
UC[t]: |U|=m
For the first term,

2

Yo dyolP= >0 [Dox0

UC[t]: |U|l=m UC[t]: |U|=m llicU
(2 . :
= ¥ E}P@ + Y <ﬂ¢xm>
UC[t]: |[U|=m \i€U 1,J€U: i#]

and since |[x(V|] < 1,

Sowlrs X [mr X (x0x0)

UC[t]: |U|l=m UC[t]: |U|l=m i,jEU : i#j

t—2

From the fact that a pair of vectors is contained in exactly (m_2

that

) m-tuples, it follows

> vl (L) (7)) 3 (x00).

UCl): [U|=m igelt]: i)

By adding the positive term (/%) Dicrs We get

> vl

UC[t]: |U|=m

2

<gqu>+(t—2) Hﬂﬂ
_ m—2)
#J i€ft]

2

IA

I
N
3 -
N— N
3
+
TN N TN N
S
|
Lo
"
~
()
o
T



Danev, Fiiredi and Ruszinké / Euclidean Channel 5

And putting the three terms in (2) together we get

t
3 ||yU—mc||2<( )m.
m

UClt]: |U|l=m

Now we are ready to prove the new upper bound on the rate of Euclidean superim-
posed codes.

Proof of Theorem 1. Take an arbitrary Euclidean superimposed code C for ¢ total users
out of which at most m are active. Let n denote the length of the code, and — similarly
to the above lemma — let ¢ = % Zie[t] x(_ Let U be a random variable with uniform
distribution over the m sized subsets of [£].

PU=V)=—+ YV C [t]: |[V] = m.
By the definition of expected value,

VC[t]: [V]=m

1
Bllyo —mell’ = < > lyv —mel,
(n)

and using Lemma 1:

Ellyy — mel[* < m.

Jensen’s inequality [1966], for the random variable ||y — mc|| says

(B(lyo = mel))* < E (Jlyo - me|*).
SO
Elyy —me| < vm.
Thus by Markov’s inequality [1966],

E(|lyv —mc|) 1
— vm) < —we U
P (HyU mcl| > 2 m) N 5

This means that at least half of the m active user’s sum vectors lies within an n-
dimensional sphere of radius 2,/m.



6 Danev, Fiiredi and Ruszinké / Euclidean Channel
But C is a Euclidean code, which means that even those received vectors within the

sphere of radius 2/m must have distance at least d from each other. Applying the sphere
packing argument to these vectors we get that

()= (*57)

thus
()<
m d

log 1 + m(logt — logm)
n Z 9
log (1 + #)

N

and by taking the logarithm,

and this also holds for the shortest possible Euclidean code with given parameters:

log % + m(logt — logm)

NE (ta m, d) 2 )
4\/m
log (1 + T)
thus
Jim inf Tim inf Y2 T D1ogm
m—oo  t—00 mlogt

Theorem 2. (Ericson—-Gyorfi, [1988])

Ng(t,m,d)logm <4

lim sup lim sup ,
m— 00 t—o0 mlogt
Le.,
dmlogt
NE(tamad) 5 o8 .
logm

Notice that there is still an exponential gap between the bounds given in Theorems
1 and 2 in terms of the maximum number of possible codewords. The lower bound gives
only the square root of the upper bound.

Proof. The proof is based on random coding. Choose a random code for ¢ total and m
active users with length n with the following distribution:

p({x0= LY op(fx o L1 2L wicpvien
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For the probability of that this code does not have minimal distance d, we have
P (dyin(C) < d) = P (d2,,(C) < d?)
=P ((U,\glg}n,m lyo —yvll* < d2> ;
where
Ay ={(U,V): UC[t],V C[t],|U <m,|V| <m,U #V}.
Since for each pair (U, V) setting the minimum, the disjoint pair (U\UNV,V\UNV)

also sets the minimum, it is enough to take into account the disjoint sets only:

P(dmin(C) < d) =P i —yvlF<d*|,
(dmin(C) < d) o lyv —yvll
Uunv=0

and applying the union bound, we get

P(dwin(C) <d) < > P<||yU_yv||2<d2).
(U, V)EA: m
unv=0

Since the codewords are composed of components - —=, if [U| + V] is odd, then

|[YU_YV]]"Z% Vi € [n],
so |lyv — yv | > 1. Thus for |U| + |V| odd for d < 1, the probability
P (o —yvl* <d?) =0,
so we do not have to sum these cases. For |U| + |V even

P(dmn(@ <d) < > P(lyo-yvl*<a).
(va)eAt,m

unv=p
|U|+|V] is even

Moreover, for U NV = () the distributions of yy — yv and y + yy are the same, i.e.:
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Pdnn(©) <d) < Y P(lyo+yv]’ <d?)
(U, V)EA: m
unv=0
|U|4]V| is even

— Z P
(U, V)EA: m

Uunv=0
|U|4]V| is even

n 2
= Z Pln ( Z Xgi)) <nd* |,
(U V)EAL,m j=1 \sicUuV

Uunv=0
|U|4]V | is even

2

< d?

Z X (%)

iceUuV

and by the Chernoff bounding technique,

n 2
(U, V)EAt,m Jj=1

Uunv=0
|U|+| V] is even

n 2

nd? n i

< E e 2 E|exp -3 ( E Xg, )>
(U, V)EALm Jj=1

Uunv=0
|U|+| V| is even

2
_ 242 T 1 (0
_(U,V)ze:At,me 2 J];[lE o 2 (ﬁ Z Xj )

Uunv=0
|U|+| V] is even

2

n 2 ]. 7

= Z 5 | E exp | —3 <\/ﬁ Z X(1)>
(U,V)EAm ieUuv

Uunv=0
|U|4]V | is even

If [U| 4 [V']is even, then /n D, iy X]@ is also even, with distribution

G) _ 2k 1
(5 x02) ()

icUuV

over z € {—k, ..., k}, where 2k = |U| + |V|. Thus

2
1 @ b2\ 1
E | exp —3 \/EZXJ- :Ze bt o) 22
=k

1ieUuUV z
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So the Chernoff-bound is
nd? k 2,2 Qk 1 "
Plw@ << S (3 e () k)
(UV)EAm =k +z
unv=0p
|U|+|V|=2k

where we enumerate the appropriate pairs (U, V') with respect to 2k = |U| + |V|:

P (dmin(C) < d) < i <2tk) 9%k 24" ( Zk: e 2% (kilcz)rg’“)n,

k=1 z=—k

and since (,;,)2%* < 2t** and d < 1,

m k n
0 2 2k
P (diin <2) ez —2= 272k | =2(A+B
(dmin(C) < d) < g:lt e (E e <k+z) ) (A+ B),

z=—k

where

and

m k n
n 2k
B = E t2k) 5 E —222 ( )2—2k§ .
k=2 ’ ( ‘ kt+z

z=—k

We will derive upper bounds on A and B:

1
A =exp (2 logt +n (2 +1log(1l +e7?) — log 2>>

< exp (2logt — 0.066n) .

For B, we willuse (%)) < (%) and (37)27%% < L (e.g. [1968)):

k k
—222 2k —2k 1 —222

E 2 < — E
—k ’ (k + Z) B k ‘ ’

and using exp(—22z2) < exp(—2|z|), we get
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k

o2 2Kk —2k
2
X ()

z=—k

k

1 22|
e (&

= 2

1

IN

z=—k

ﬁ <1 + 22622>

IA

So for B, we have
zm: o8 (0 741>
Vk

log k
<m max exp <2kzlogt +n <O.201 — og)) .

k=2..m

It can be easily seen, that the exponent is convex in k. So the maximum is either at k = 2
oratk =m

B < mmax{C, D},

where

log 2
C = exp <4logt+n(0.201— O§ ))

< exp (4logt — 0.145n) ,

and

1
D = exp <2mlogt—|—n <0.201 - °g2m>) .

We want to show that for large values of ¢, the probability of that this random code
does not have a certain minimal distance is less than one. We have P (dyin(C) < d) <
2(A 4+ mmin{B, C}), so it is enough to show that

lim A =0, hm C =0and hmD—O

t—oo
Set n = [¢(m)logt], then

A < exp ((2—0.066c(m)) logt) ,
C < exp ((4 — 0.145¢(m)) logtt) ,
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and

D < exp <(2m - <1°g2m - 0.201) c(m)> logt> .

All these quantities A, B and C' tend to 0 as t — oo if in the exponents logt¢ has a
negative factor. We have this for A if ¢(m) > 30.304, for C' if ¢(m) > 27.587, and for
D if

1
2m — ( °g2m - 0.201) c(m) < 0.

All of these conditions are satisfied by

4(1+e)m
logm

c(m) =

for m > 25 and m > exp (().4#(1%)), where € > 0 arbitrary.

Summarizing, we have shown that for any € > 0, if

0.4005(1 + 5)) } 7

m > max {25,exp (
€

the probability of a randomly selected code with length

= | ™ g

logm
not having minimal distance d tends to 0:

tlim P(dmin(C) < d) =0.
This means that for ¢ large enough, a good code with certain parameters exists, so for
any € > 0, m large enough and ¢ large enough

4(1+e)m

Ng(t,m,d) <
o(t,m, d) logm

logt+1,

which implies that

Ng(t d) 1
lim sup lim sup u(t,m, d)logm < 4.

m— o0 t—o00 m IOg t




12 Danev, Fiiredi and Ruszinké / Euclidean Channel
3. Signature Coding and Information Transfer for the Euclidean Channel

There are ¢ users of the channel: U = {1,2,...,¢}. Each user u has a component code,
which is formed by s real valued codewords of length n:

Ch = {x®D x| xwo)y,

each codeword is associated with a specific message of the user. We have an energy
constraint: Hx(“’j) | < 1, where [|.|| denotes the Euclidean norm. At a given instant,
there are some (say ) active users. They are denoted by the set U. Enumerate them as
U = {uy,us,...,u,}, where u; < ug < ... < u,. We consider, that at any time at
most m users are active, so < m. For each active user u; € U, let m; € {1,2,...,s}
denote the message this user wants to send. Form a vector of length r from the messages
asm = (ml7 Mo, ... 7mr). The pair (U, m), which is the set of active users and the
vector of their messages together, is called a message constellation.

The active users send their corresponding codewords to the channel: user u; with
message m; sends x(%"™i) The receiver gets the sum of the codewords sent, which is
denoted by S(U, m):

T
S(U,m) = 3 xomo),
=1

If the code C is such that for each different pair (U, m), the channel output is different
at least by d in Euclidean norm, then this code has distance d. Formally,

IS(U;m) —S(V,n)|| <d <= (U=V and m = n)
YU, V,m,n: |U| <m,|V| < m.
Given t, m, s and d, the smallest codeword length for which a d-distance s-message
Euclidean code C for ¢ total users out of which at most m are active exists is noted by
N(t,m,s,d).

An analogue of Theorem 1 of Fiiredi and Ruszinké for this case can be stated as
follows

Theorem 3. (Laczay, [2005])

N(t,m,s,d)logm 59

lim inf lim inf ,
m—oo ts—o00 mlogts
Le.,
2mlogt
N(t,m,s,d) > Zmiogts
logm

To prove this theorem, we taylor Lemma 1 to our needs:
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Lemma 2. (Laczay, [2005]) For arbitrary code C defined above, the inequality

> I el < (| s

UC[t]: [U|=m
me{1,2,...,s}™

holds, where

i€{1,2,...,t}
ke{1,2,...,s}
is the average vector.
Proof. The proof is similar to the proof of Lemma 1. O

Proof of Theorem 3. Similarly to the proof of Theorem 1, combine Lemma 2 with the
sphere packing argument by using Markov’s and Jensen’s inequalities. O

For the upper bound, consider that an Euclidean signature code with ¢’ = ts users
(and so with t = ts codewords) is also an s-message Euclidean code for ¢ users. This
is because for a signature code with ¢’ = ts users we required that all sum of at most m
codewords should be distinct by distance d. For an s message code for ¢ users we require
that only those at most /m sums must be distinct, which has at most one codeword from
all component code. Thus Theorem 2 of Ericson and Gyorfi provides an upper bound
also for the minimal codeword length of s-message Euclidean codes, that is

Corollary 1. (Laczay, [2005])

N(t,m,s,d)logm

2 < lim sup lim sup < 4.
m—oo ts—oo mlOg ts
Le.,
2mlogts 4mlogts

SN(t,m,s,d) <

logm logm

4. Constructions of superimposed codes for the Euclidean channel

Until now we considered only the asymptotic behavior of the function Ng (¢, m,d) for
large t and m. In this section we present several constructions of Euclidean signature
codes. These are exclusively representing sets of points on the unit sphere €2,, formally
defined as

def n
Q% {x e R" | ||x]| = 1}.

In other words we limit ourselves to considering signature codewords of unit energy.
Such constellations are known as spherical codes and have been extensively studied
in the literature. (See, e.g., the excellent book of Ericson and Zinoviev [2001] on this
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subject.) Recall that three most important parameters of a spherical codes are dimension,
cardinality and minimum distance. Spherical code C' which satisfies the conditions of
Definition 1 will be refered to as spherical superimposed code and will be denoted as
(n,d,m,t)-SSC.

Tt is clear from the definitions that an (n, d, m, t)-SSC is also an (n, d’, m, t)-SSC for
every d’ < d.Tn most of the constructions of SSCs presented here the exact determination
of the minimum distance is impossible. A lower bound on d is computed instead.

We start with some basic constructions.

Construction 1. An orthonormal basis of R™ forms a (n,1,n,n)-SSC.

We can actually accommodate one more user while keeping the same dimension,
minimum distance and number of active users. This can be done in the following manner.
The points that form an orthonormal basis of R"*! lie on a hyperplane of dimension 7.
By projecting them onto R™ and some re-scaling we obtain the so-called simplex code
on (2,,. It can be casily checked that the following is true.

Construction 2. A simplex code on §,, forms a (n,1,n,n + 1)-SSC.

Before proceeding with more advanced constructions we give one way to obtain
SSCs in two dimensions.

Construction 3. A regular n-gon on Qs forms a (2,d, k — 1,n)-SSC, where d > 0 and
k is the least non-unit divisor of n.

The drawback of Construction 3 is that the actual minimum distance is difficult to
compute.

A powerful method for deriving SSCs is to use certain mappings from the set
{0,1,...,p — 1} into R or R%. Examples of such mappings are the following.

T

Vn(p—1)
AM2 : £ (2) = % 1- p2_x1> ,

. 1 2 2
PhM : f; )(x) = — | cos ﬂ,sin m) .
p p

AM1 : £ (z) =

The first more advanced construction of SSCs is described in [1988].

Construction 4. (The EG construction) Let Cy, be a binary linear

[N, K, D]-code which contains the all-one word. Let Cy, be the set that is obtained from
Cy by deleting all words starting with 1 and deleting the first coordinate from the rest.
Suppose that

2 2

def a*(n+2) —2a(n+1) +d*n
D>dy = 3
> do Sala—1) 3)

for some d, 0 < d < 1, where a def min{t,2m} and n = N — 1. Applying the mapping
AM2 10 Cy, we obtain (n,d, m,t)-SSC.
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This construction can be generalized. The main idea is to find some necessary con-
ditions for a spherical code to posses certain superimposed properties. We define a non-
negative valued function g(m,t, s1, $2) in the following manner. Let g(m, ¢, s1, 82) =
gi(m,t, s1, s2) whenever (m, ¢, s1,s2) € M; C Zi ®R? i=1,2,3,4,5,6. The func-
tions g;(m,t, 1, o) are defined as

(2m? 4+ t* — 2mt — t)s1 + 2m(m —t)se + ¢, if i =1,

(t(t — 2)s1 — t2s2 + 2t) /2, ifi =2,
2 ) 2m((m —1)s1 —ms2 + 1), ifi =3,
9i (Mot 51,52) = 1 (m — 1)sy + 1), ifi=4,
1, ifi =5,
0, ifi = 6.
The regions M;, i = 1,...,6 depend on the choice of parameters m,t, s; and So.

Their description is given below.

Ml:{(mat751732)\*m_1_ ST T om S

(t—1)(ts1 +1)
2m(t —m) =52= 2m(t —m)

1
M2 :{(m7t751782)‘m§t< 2m7 _ﬁ S S1 S 07 52 2 —S1,

1&(1572).91+2(1371)SSQS(th)s1+2}7
t2 t
1 -1 1
Ms = {(m,t,s1,82) |4 <2m < t,——— < 1§0,522M7
m—1 2m
(m—-1)s1+1 1 §S2<( )81+1}’
m - 2m?2 m
1 1
M4:{(m,t,81,82)‘2§m§t, _771_81<_E, so = s1 if t = m,
-m-1 1
52§(a m2 )51t if m # t and a = min{t,2m}, s2 > s1},
m

2 t—1).
M;,:{(m,t,sl,sQ)\2§m§t,32§(1—;)81+2( 2 )1fm§t<2m,
(a—1)(as1 +1)

<
52 2m(a — m)

1
— 51 if m # t and @ = min{t, 2m}, s2 > s1, - < s <0},

Mg = Z+®R \uz 1 M;

The function g(m,t, s1, $2) gives actually a lower bound on the minimum distance
of a certain spherical code considered as a SSC. The result is given in the next statement.

Theorem 4. Let m > 2 be an integer and C be a (n,t,dy)-spherical code such that
(x,y) € [s1,82] foreveryx £y in C. Then Cis a (n,d = g(m,t, s1, 82),m, t)-SSC.
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n |d|lm nldm|t||n|d>m|t|ln|d>|m|t
6(1|2|8]|11|1|3|14|| 6 |0.453| 2 [12({12]|0.930| 3 |17
71112 (10(|12|1| 3 |16|| 7 [0.819] 2 |14||12]0.342| 3 |20
8 (12 (13|13|1| 3 |19(| 9 [0.442| 2|30{|13|0.831| 3 |20
9 (1|2(18{|14|1| 3]20({10]0.554| 2 {40({14|0.993| 3 |21
10|1| 2 |20{|15]|1| 3 |23||11|0.289| 2 |54||14]0.808| 3 |23
11|1]2|26{|16|1|3|26{{11]0.161| 2 |60||15|0.985| 3 |24
12{1]2 (39(|12(1|4 |14(|12]0.826]| 2 |48||15|0.227| 3 |30
13[1{2 [52||13|1|4 |15([13]0.808]| 2 |54||16|0.600| 3 |31
14(1|2 |54|(14]1|4 |16(|14]|0.999| 2 |55||11|0.663| 4 |13
15(1| 2 |50|(|{15|1| 4 [18]| 8 |0.719| 3 |10(|13|0.663| 4 |16
16|1] 2 |50{|16|1|4 |20|| 9 |0.719| 3 |12{|14|0.947| 4 17
9 (1| 3|11{|15(1| 5|17|{10]|0.530| 3 {14(|15|0.776| 4 |19
10{1{3 [12||16(1|5 |18([11]0.483| 3 |17|{14|0.648| 5 |16

Table 1. Spherical superimposed codes derived from the best codes in G(n, 1) known.

The proof of Theorem 4 is more or less straightforward. Two particular cases of
special interest need to be stated here. The first is when the interval [sq, s2] is symmetric
around the zero.

Corollary 2. Let C be a (n,t,dy)-spherical code with inner products within the interval
[s,—s], where —1 < s < 0. Let m be a positive integer and define a = min{2m,t}.
Then C'is an (n,1,m,t)-SSC if s € [—1/a,0] and (n,\/a(1 + (a — 1)s),m,t)-SSC if
se€[-1/(a—-1),—1/al

This corollary is especially applicable for spherical codes obtained from codes in
the Grassmannian space G(n, 1) consisting of all lines in R™ passing trough the origin.
Constructions of codes in G(n, 1) can be found in [1996]. Table 1 gives the parameters
of some spherical superimposed codes obtained from these codes with help of the con-
struction given above. The lower bound on the minimum distance is computed with help
of Corollary 2.

The next interesting case is when we obtain superimposed codes with d = 1 and
many points.

Corollary 3. Let C be a (n,t,dy)-spherical code with inner products in the inter-

1
val [s1,s2] and let m < t/2 be an integer number. If s1 € [—,O} and sy €
m

_1 1 1
, (m-1)s1+1) then C'is a (n,1,m,t)-SSC.
m 2m?2

Based on this corollary we can assure the existence of (q(¢> —q¢+1),1,¢—1,(q+
1)(¢® + 1))-SSC for any prime power ¢ > 3 due to the existence of a class of opti-
mal spherical codes described of Levenshtein [1987]. It is also worth mentioning the ex-
istence of spherical superimposed codes with parameters (21,1, 2,162), (22,1, 2,100)
and (22,1, 2,275), respectively.

We turn back to the mapping method and use p-ary representations of so-called A,-
and B;-sets which give the following result.
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Construction 5. (The A construction) Given a primitive polynomial of degree m + 1
over GF(q), we can obtain (n,d, m, t)-SSC with t = q+1 and the following parameters,
for any integer v > 2 and for v = (¢™ —1)/(q — 1)

1
AM1:n=]1 l,d= ————
n |_Og7“ UJ + ) \/5(7"2— 1)7
AM2:n = |1 2. d=—=
n I_ OgT UJ + ) \/H(T’ _ 1))
6
PhM :n =2|logsv| +3, d= n+1’T:3'

It is always interesting to show that some constructions are optimal in a certain sense.
For example for given dimension n, cardinality ¢ and maximal number of active users m
we want to find the maximal minimum distance d(n, m, t) that can be achieved, i.e. there
exists an (n, d(n, m,t), m,t)-SSC and there is no (n, d, m,t)-SSC with d > d(n,m,t).
This is a rather difficult task in higher dimensions but we can actually state some such
results for dimension 2.

In order to simplify the descriptions we introduce some notations. First we identify
R? with the set of complex numbers C. Every point (a,b) € R? is associated with the
number a4+ ib = pe’?, where 2 = —1. Every set on the unit circle can be represented by

a set of angles ¢ € [0, 27) corresponding to its points. For example the set Cy, def {p; =
2jm/k, 5 =0,1,...,k — 1} represents a regular k-gon which has vertex (1, 0).

A natural way of obtaining codes with even cardinalities is to take away one point
from the regular polygon with one more vertex. However the following construction give
better minimum distances.

Construction 6. Let t be an even number which is not a power of 2. Let p be the smallest
odd prime divisor of t. Choose the set Bf) to be the subset of Coy consisting of the angles

. 2k i
@7]‘6: (‘Fi)ﬂ', k:(),]-,"',p*l’ Z:O’l”t/pil
p

The exact determination of the minimum distance of the codes th) in the general case
is still an open problem. The results for the case p = 3 are described below.

Theorem 5. Let t be a positive integer number divisible by 6. Then the codes BB given
in Construction 6 have parameters

(n,d,m,t) = (2,4sin ¥ sin 37,2, 1).

Proof. Let B be the set all sums of up to two different vectors in B% including the all-
zero vector. We observe that the set B is preserved by the rotations through angle 27/3
and center in the origin. It is also kept by the reflections in the lines along the vectors
(2t +1)t—3

6t

zero points of B which correspond to angles in the interval [0, 27 /3]. These points can
be divided in three sets defined as By = {p{ | i = 0,1,...,t/3 — 1}, Ba = {¢} +

corresponding to the angles m, 4 = 0,1, 2. Thus we can consider the non-
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@) |ij=0,1,...,t/3—1, i # j}and Bs = {©} + % | i,j = 0,1,...,¢/3 — 1}.
It is easy to see that the distance between two points from different sets as well as the
distance of every point to the origin is at least 2sin Z;, which is the side-length of the
regular 2¢-gon. Further the points of B3 can be divided in “levels” by their Euclidean
norm. The minimum distance between the different levels is 2sin 5; and between the
points on the level of radius 7 is 2r sin J;. The innermost level with at least 2 points has
r = 2sin ¥ and thus dpin(B3) = 4sin T sin 7;. By similar arguments we can deduce

dimin(B2) = 4sin ¥ sin ;. Clearly dwin(B1) = 2sin g; which concludes the proof. [

For the case p > 3 we claim that the minimum distance of the constructed codes is
non-zero. Before proceeding with the proof of this fact we need the following lemma.

Lemma 3. Let t be an even positive number that is not a power of 2 and p be its least
odd prime divisor. Then there are no opposite vectors in B, i.e. vectors with zero sum.
Moreover all regular p-gons with vertices in Coy are either completely included or does
not have points in Bf).

Proof. Suppose first that there are opposite points in B;. Then

, o2k i—j
— A I = _
™= ek — ¥l ) ;

T

for some integers i, j, k,[ such that i, € [0,¢/p — 1] and k,l € [0,p — 1]. This is
impossible since p is an odd number and |i—j|/t < 1/p. The second part follows directly
from the easy observation that all regular p-gons, which are subsets of Cy; are {@};}Q;é
fori=0,1,...,2t/p — 1. O

Now we can state the main result concerning Construction 6.

Theorem 6. The codes B;, described in Construction 6 are (2,d,p — 1,t)-SSCs where
d>0.

Proof. Suppose that d = 0, which means that we have two different sets M and N of
up to p — 1 points in ij which have the same sum. We can assume that M N N = ().
Let us denote by N the set of opposite vectors to those in N. Then the sum of the
vectors in M U N is the zero-vector. Since M U N C Co; this can happen only if the
points in M U N are all the vertices of a regular [-gon, where [|t and [ > 2. We have
1 <|MUN| < 2(p—1) and from the definition of ¢ and p we get two possible cases,
namely |M U N| even or |M U N| = p. Both cases are excluded by Lemma 3. O

Since the angle between any two lines trough the origin and the points of a
(2,d,m,t)-SSC with m > 2 must be at least 2 arcsin(d/2) we obtain the following
upper bound on the minimum distance of such a code.

Proposition 1. If there exists a (2,d, m,t)-SSC with m > 2 and t > 3, then d <
2sin(7/(2t)).

Proof. The only thing we must see is the obvious fact that the minimum angle between ¢
lines trough the origin in R? is at most 7 /. O
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t ds dg dub

0.24697960(0.51763809(0.51763809
10(0.16037889|0.17557050|0.31286893
12|0.11538526|0.13513066|0.26105238
14/0.08693075|0.09965775|0.22392895
18]0.05436845|0.06053774(0.17431149
20(0.04455177]0.04909482(0.15691819
22(0.03716936(0.04061049(0.14267837
2410.03147895/0.03414728(0.13080626
26(0.02700081{0.02911129(0.12075699
28(0.02341378]0.02511159(0.11214089

o]

Table 2. Comparison of Construction 3 and Construction 6

for codes of dimension n = 2 and order m = 2.

T d(n,m,T)

4 |2sin(7/10) ~ 0.61802399
5

6

[\
[\

2sin(n/12) & 0.51763809
2sin(7/12) &~ 0.51763809

Table 3. Known d-optimal spherical superimposed codes with d < 1.

For the special case of m = 2 the bound from Proposition 1 is asymptotically better
then the sphere packing bound, discussed in the second section, as ¢ — oco. It is not
surprising that for larger m we have the opposite situation. A natural explanation is that
the limitation on the angles of the lines is quite weak in those cases.

Table 2 shows the advantages of Construction 6 to Construction 3. The notation d;
refers to the minimum distance of the codes obtained from the corresponding construc-
tion. The codes from Construction 3 are obtained by removing one point from the ver-
tices of a regular (¢ + 1)-gon. We list also the corresponding upper bound obtained by
Proposition 1 in the last column of the table.

Other possibilities for choosing some points of Cy, to obtain (2, d, m, t)-SSCs can be
investigated. This idea is promising as we can see from the following example.

Example 1. The code 0?61’4’7 consisting of vectors corresponding to the angles
0,7/5,47 /5 and T /5, which is a subset of C1g is a (2,2 sin(7/10), 2, 4)-SSC.

It is possible to show that the code in Example 1 satisfies d(2,2,4) = 2sin(7/10).
With the aid of the bound from Proposition 1 we are able to determine two more values of
the function d(n, m,T’), namely d(2,2,3) = 1 and d(2,2,6) = 2sin(r/12). The codes
achieving these values are C3 and BS, respectively. Observe that C3 is da-optimal, but
clearly not ds-optimal. Further geometrical reasons reveal that d(2,2,5) = d(2,2,6) =
2sin(7/12). The known cases of d,,-optimal codes with d < 1 are summarized in Ta-
ble 3.
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5. Signature codes in other normed spaces

So far in this chapter we presented results for Euclidean codes. We will shortly outline
here that these results can be extended to arbitrary normed spaces.

Let V' = (X, || - ||) be a finite-dimensional (n-dimensional) normed vector space,
and let B(c,r) denote the closed ball with center ¢ and radius > 0. We also use B
for the unit-ball B(0, 1) of M. In general, this B may also be considered as an arbitrary
n-dimensional symmetric convex body in R”, the symmetry being with respect to the
origin. One might also be interested in the growth rate of normed signature codes in
the more general normed vector space N, where the norm is defined by an arbitrary n-
dimensional central symmetric convex body. Similarly to the Euclidean norm case, this
means the following.

Let C be a finite set of (at most) unit norm vectors in N, it is called a normed sig-
nature code in A/ with parameters (n,m,t,d) if |C| = t and for two arbitrary distinct
subsets A and B of C with 0 < |A],|B| < m the N -distance of the vectors f(.A) and
f(B) is at least d. (Here f(.A) and f(B) is the sum of vectors in A and B, respectively.)
That is

(€)= min (A~ fB)lly = d

0<|Al]|B|<m
A,BCC

As before, for given ¢, m and d, let nar(t, m,d) denote the minimum length of such a
code.

We are able to extend the bounds of Theorems 1 and 2 for all finite-dimensional
normed spaces, NV, in a somewhat weaker form.

Theorem 7. (Fiiredi—Ruszinko, [1999])

ny(t,m,d) o m
logt logm ) °

“)

Here © is used in the conventional sense, i.e., for sequences f(m) and g(m),
flm) = O(g(m)) if f(m) < c1g(m) and f(m) > cag(m) hold with appropriate posi-
tive constants c1, co and every m.

Proof. (Sketch) To prove the upper bound (4) use the following theorem of Milman
[1985]. For every € > 0 there exists a positive constant ¢)(¢) > 0, such that one can
find a projection of a section of B (say, Iy, (Fy N B) with F» C F; C R™) which
is (1 4+ &)-equivalent to an ellipsoid and has dimension at least ¢)(¢)n. Here the v is
independent from the convex body B, but, of course, the choice of the subspaces, F}
and F3, varies with B. (For more background on this topic and proofs see the excellent
book of Pisier [1989]). An ellipsoid is affine invariant to the Euclidean ball, so taking a
Euclidean signature code C, of maximum size in the subspace F5 — by the affine invariant
transformation mapping the unit ball to the ellipsoid — we will get a signature code with
the same parameters with respect to the distance defined by the ellipsoid. Project C back
to 'y N B, and — by Milman’s theorem — obtain a signature code in N with parameters
(n,m, ICl,d/(1 +¢)).



Danev, Fiiredi and Ruszinké / Euclidean Channel 21

The upper bound in (4) easily follows from the volume bound of Ericson and Gyorfi

[1988],

T < (Mt d/2\" ’

m/) ~ d/2
which is true for every space N and every ¢, n, m and d. O
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