
Discrete Mathematics 306 (2006) 3097–3111
www.elsevier.com/locate/disc

On set systems with a threshold property

Zoltán Füredia,b,1, Robert H. Sloanc,2, Ken Takatad,2,3, György Turáne, f ,2,4

aDepartment of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
bRényi Institute of Mathematics of the Hungarian Academy of Sciences, Budapest, P.O. Box 127, Hungary 1364

cDepartment of Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7053, USA
dDepartment of Mathematics, Hamline University, Saint Paul, MN 55104-1284, USA

eDepartment of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
f Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Szeged, Hungary 6720

Received 17 November 2003; received in revised form 21 December 2005; accepted 21 December 2005
Available online 16 October 2006

Abstract

For n, k and t such that 1 < t < k < n, a set F of subsets of [n] has the (k, t)-threshold property if every k-subset of [n] contains
at least t sets from F and every (k − 1)-subset of [n] contains less than t sets from F. The minimal number of sets in a set system
with this property is denoted by m(n, k, t). In this paper we determine m(n, 4, 3) exactly for n sufficiently large, and we show that
m(n, k, 2) is asymptotically equal to the generalized Turán number Tk−1(n, k, 2).
© 2006 Published by Elsevier B.V.
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1. Introduction

For n, k and t such that 1 < t < k < n, a set F of subsets of [n] = {1, . . . , n} has the (k, t)-threshold property if

• every k-subset of [n] contains at least t sets from F,
• every (k − 1)-subset of [n] contains less than t sets from F.

Let m(n, k, t) denote the minimal number of sets in a set system with the (k, t)-threshold property. The set of all
(k − 1)-subsets over [n] satisfies the requirements for every t, and thus it follows that

m(n, k, t)�
(

n

k − 1

)
. (1)
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It was shown in [22] that for every fixed k it holds that

m(n, k, t) = �(nk−1) (2)

and

m(n, 3, 2) =
(

n − 1
2

)
+ 1. (3)

Also, Sloan et al. [22] gave bounds for m(n, 4, 2) and m(n, 4, 3). The function m(n, k, t) was studied in [22] in the
context of frequent sets of Boolean matrices, a concept used in knowledge discovery and data mining [1]. Jukna [12]
studied the same function in circuit complexity theory, in a different range of the parameters, for establishing trade-offs
between the size of threshold circuits and the size of the thresholds used in the gates of the circuit.

In this paper we determine m(n, 4, 3) exactly for n sufficiently large. The optimal solution turns out to be rather
complicated (see Section 4.1). There are only a few exact results known for this kind of extremal problem (such as
[3,9]). We also show that m(n, k, 2) is asymptotically equal to the generalized Turán number Tk−1(n, k, 2).

The paper is organized as follows. In Section 2 we give some preliminaries. Section 3 gives the bound for m(n, k, 2).
The result for m(n, 4, 3) is contained in Sections 4 and 5, the former giving the proof without the proofs of the lemmas,
and the latter proving the lemmas. Finally, in Section 6 we mention some open problems.

2. Preliminaries

For a set system F, let Fi denote the set of i-element subsets in F.5

Proposition 1. For every n, k and every t �3 there are optimal set systems over [n] with the (k, t)-threshold property
for which Fk = ∅.

Proof. Let F be an optimal set system with the (k, t)-threshold property, and let H be a k-element set in F. As H
cannot be deleted from F, it must be the case that besides H itself, H contains exactly t −1 sets from F. At least one of
these sets is nonempty. Let one of its elements be x. Then H\{x} contains at most t −2 sets from F. If H\{x} /∈F then
deleting H from F and adding H\{x} instead, one maintains the (k, t)-threshold property and decreases the number
of k-sets in F. Otherwise, as t − 1�k − 2, there is a y �= x such that H\{y} /∈F. Deleting H from F and adding
H\{y} instead, one again maintains the (k, t)-threshold property and decreases the number of k-sets in the system F.
Repeating this operation, all k-element sets can be eliminated from F. �

For t = 2 the situation is somewhat different, as the family consisting of ∅ and all k-subsets of [n] has the (k, 2)-
threshold property, and it contains fewer sets than the family of all (k − 1)-sets, for small values of n. Proposition 1
remains valid, though, for large values of n, and one can also note that optimal systems cannot contain the empty set.

Proposition 2. For every k and n > 2k there are optimal set systems over [n] with the (k, 2)-threshold property for
which

F0 = Fk = ∅.

Proof. Let F be an optimal set system with the (k, 2)-threshold property. The assumption n > 2k implies that F
cannot contain ∅. Otherwise, the nonempty sets in F all have to be of size k, thus |F|�1 + (

n
k

)
, and so F cannot be

optimal. In order to show k-subsets can be eliminated from F, one can now argue as in the first case of the proof of
Proposition 1. �

The generalized Turán number Tr(n, k, t) is the minimal number of r-subsets of [n] such that every k-subset of [n]
contains at least t of these subsets. Then clearly

m(n, k, t)�Tk−1(n, k, t). (4)

5 We use capitals A, B, . . . for sets of elements and pairs, and script letters H,M,T . . . for sets of triples, quadruples, etc., with the exception
of F0,F1 and F2.
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The best known bounds for T3(n, 4, 2) are due to Mubayi [15] (the lower bound, improving a previous result of de
Caen [5]) and Frankl and Füredi [9] and independently by Sidorenko [19] (the upper bound).

Lemma 3 (Mubayi [15], Frankl and Füredi [9], Sidorenko [19]).(
2

3
+ 10−6

)(
n

3

)
�T3(n, 4, 2)� 5

7
(1 + o(1))

(
n

3

)
.

The best known bounds for Tk−1(n, k, 2) for k�5 are the following:

2

k − 1
(1 + o(1))

(
n

k − 1

)
�Tk−1(n, k, 2)�C

log k

k

(
n

k − 1

)
.

Here the lower bound is due to de Caen [6] and the upper bound can be obtained modifying the constructions of [10,21].
A (3, 2)-packing is a set of triples such that every pair is contained in at most one triple. In this paper by a packing

we always mean a (3, 2)-packing. The packing number P(r, 3, 2) is the maximal number of triples of [r] which form
a packing. A maximum packing is a packing of P(r, 3, 2) triples. The size of maximum packings of triples were
determined by Spencer [23]. The following results are also presented, e.g., in Rogers and Stanton [18].

The size of a maximum packing is given by

P(r, 3, 2) =

⎧⎪⎨
⎪⎩
⌊

r

3

⌊
r − 1

2

⌋⌋
if r /≡ 5 (mod 6),⌊

r

3

⌊
r − 1

2

⌋⌋
− 1 if r ≡ 5 (mod 6).

Given a packing P, a pair is called missing if it is not contained in any triple of P. If r ≡ 1 or 3(mod 6) then maximum
packings are Steiner systems, containing every pair exactly once, thus there are no missing pairs. If r ≡ 0 or 2(mod 6)

then missing pairs in maximum packings form a perfect matching. If r ≡ 4(mod 6) then the graph of missing pairs is
a star on four vertices plus a perfect matching on the remaining vertices. If r ≡ 5(mod 6) then the missing pairs form
a cycle of length four.

3. The bound for m(n, k, 2)

In this section we show that m(n, k, 2) is asymptotically equal to a generalized Turán number. This shows that in
these cases using subsets of size less than k − 1 does not help, at least asymptotically. For k = 3, the optimal system
consists of a singleton plus a complete graph on the remaining vertices, while the best solution using only pairs is a
complete graph minus a perfect matching. Thus, for the exact solution it does help to use smaller sets, at least in this
special case.

Theorem 4. It holds that m(n, k, 2) = (1 + o(1))Tk−1(n, k, 2).

Proof. In view of (4), we only need to prove

m(n, k, 2)�(1 + o(1))Tk−1(n, k, 2).

First we state a result of Erdős and Simonovits [8]. If H is any r-uniform hypergraph then exr (n,H) denotes the
maximal number of r-tuples over [n] that do not contain a copy of H. It was shown by Katona et al. [13] that

lim
n→∞

exr (n,H)(
n
r

)
always exists (see, e.g., [4,11]). The limit is denoted by �r (H).

Erdős and Simonovits [8] showed that if there are significantly more r-tuples than exr (n,H), then there are many
copies of H. Let v denote the number of vertices of H. �

Lemma 5 (Erdös and Simonovits [8]). For every ε > 0 there is a � = �(ε,H) > 0, such that every set of at least
(�r (H) + ε)

(
n
r

)
r-subsets over [n] contains at least �

(
n
v

)
copies of H.
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In order to apply this result, let us consider the hypergraph Hk consisting of k−1 of the (k−1)-subsets on k vertices.
Then, by definition, it holds that

Tk−1(n, k, 2) =
(

n

k − 1

)
− exk−1(n,Hk).

Thus, the statement of the theorem can be reformulated as

m(n, k, 2)�(1 + o(1))(1 − �k−1(Hk))

(
n

k − 1

)
.

Now let us assume that for some ε > 0 there are arbitrarily large values of n such that

m(n, k, 2) < (1 − ε) (1 − �k−1(Hk))

(
n

k − 1

)

<
(
1 − �k−1(Hk) − ε′) ( n

k − 1

)
, (5)

for some ε′ > 0 depending on ε and k. Here we used that

�r (H)� e(H) − 1

e(H)

holds for every hypergraph H which follows from

ex(n,H)� e(H) − 1

e(H)

(n

r

)
.

This can be proved by a direct averaging argument [20].
Let F be an optimal system over [n] with the (k, 2)-threshold property. By Proposition 2 we may assume that F

contains no k-subsets or the empty set. Inequality (5) implies

|Fk−1| <
(
1 − �k−1(Hk) − ε′) ( n

k − 1

)
.

Thus, by Lemma 5 (switching over to the set of (k − 1)-subsets not contained in Fk−1),

there are at least �
(n

k

)
many k-subsets of [n]

containing at most one set from Fk−1. (6)

It follows from the definition of the (k, 2)-threshold property that F contains at most one set of size at most
�(k − 1)/2	, as the union of two such sets would be of size at most k − 1, and it would contain two sets from F. Thus,
the number of k-subsets of [n] containing any set from F of size at most �(k − 1)/2	 is O(nk−1).

If k is even, than any two sets in F of size k/2 must be disjoint, for the same reason, thus their number is O(n).
Hence, the number of k-subsets of [n] containing any set from Fk/2 is O(n nk/2) = O(nk−1).

Furthermore, if k/2 < j �k − 2 then the intersection of any two sets of size j in F is at most 2j − k, again for the
same reason. (Note that for j =k−1 this restriction is meaningless.) Thus, every subset of [n] of size at most 2j −k+1
can be contained in at most one set belonging to Fj , and so |Fj | = O(n2j−k+1).

Hence, the number of k-subsets of [n] containing any set from Fj is at most O(n2j−k+1nk−j )=O(nj+1). Therefore,
the number of k-subsets of [n] containing any set fromFj is O(nk−2) (resp., O(nk−1)) for every j such that k/2 < j < k−
2 (resp., j = k − 2).

In summary, the number of k-subsets of [n] containing any set from F of size at most k − 2 is O(nk−1). Thus, there
are (1 − o(1))

(
n
k

)
many k-subsets of [n] which contain at least two sets from Fk−1. This contradicts (6), thus proving

the theorem. �
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4. Determining m(n, 4, 3)

In order to formulate our main result, the exact determination of m(n, 4, 3) below as Theorem 8, we define an integer
valued function f. Then a number of properties of the function f are noted. The proofs of these properties, as well as
the proofs of the other lemmas used in this section, are postponed to the next section.

Define

f (n) =
⌊n

2

⌋⌈n

2

⌉
+
(�n

2 	
3

)
+
(
n

2 �
3

)
− P

(⌊n

2

⌋
, 3, 2

)
− P

(⌈n

2

⌉
, 3, 2

)

= n3

24
− n2

12
+ O(n).

Lemma 6. For every fixed constant � it holds that

f (n) = f (n − �) + n2

8
� + O(n).

Consider the function

g(n1, n2) = n1n2 +
(n1

3

)
+
(n2

3

)
− P(n1, 3, 2) − P(n2, 3, 2). (7)

Note that f (n) = g(�n/2	, 
n/2�).

Lemma 7. If n is sufficiently large and n1 + n2 = n then g(n1, n2) is minimal iff |n1 − n2|�1.

As g(2, 1) = 2, g(3, 0) = 0, g(2, 2) = 4 and g(3, 1) = 3, equal division does not give the minimal value of g if n is
3 or 4.

Now we formulate the result determining m(n, 4, 3).

Theorem 8. If n is sufficiently large then m(n, 4, 3) = f (n).

The rest of this section presents the proof of the theorem. First, we describe a construction proving the upper bound,
and then we give the lower bound. At the end of the section we discuss optimal systems.

4.1. A construction

A set system over [n] of size f (n) with the (4, 3)-threshold property can be constructed as follows. Divide the
ground set into two halves of sizes �n/2	, and 
n/2�. Include in F all pairs that contain one element from each half,
and all triples contained in either half except a maximum packing in both halves. It is easy to check that this system
has size f (n) and it indeed has the (4, 3)-threshold property. Lemma 7 means that the same construction for unequal
halves gives no improvement. As there are many non-isomorphic maximum packings, this construction gives many
non-isomorphic systems of size f (n). We will refer to all these as packing constructions.

4.2. The lower bound

LetF be a set system over [n] with the (4, 3)-threshold property. By Proposition 1, it may be assumed thatF contains
no quadruples. It must be the case that ∅ /∈F, as otherwise F without ∅ has the (4, 2)-threshold property, and from
the lower bound of Lemma 3 it follows that |F| > f (n) if n is sufficiently large. An important property, which follows
directly from the definition of the (4, 3)-threshold property, is that F2 is a triangle-free graph.

Now F may contain at most two singletons. If the singleton {x} belongs to F then the (4, 3)-threshold property
implies that there can be at most one pair inF containing x.Also, if there is such a pair {x, y}, then y cannot be contained
in any further pair inF. If there are two singletons inF, then, again from the definition of the (4, 3)-threshold property,
neither can be contained in a pair belonging to F.
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Thus, there is a set C of at most two vertices such that C contains all singletons of F, and there is no pair in F
that contains exactly one element from C. Let us assume w.l.o.g. that the vertices not in C are {1, . . . , m}, where
n − 2�m�n. Consider the graph G induced by F2 on [m]. Thus, G = ([m],F2|[m]). Let d(x) denote the degree of
vertex x in G.

We distinguish two cases, based on the degrees of G. These two cases are discussed in separate subsections below.

4.2.1. Case I:
∑m

x=1((m − 1)/2 − d(x))2 > 2(m − 1)2

Let t () denote the number of triangles in a graph. We use the identity

m∑
x=1

(
d(x)

2

)
+
(

m − 1 − d(x)

2

)
=
(m

3

)
+ 2(t (G) + t (Ḡ)). (8)

This holds as the left-hand side counts triangles in G, resp., in Ḡ, three times, and all other triples once (see, e.g., Lovász
[14]). As noted above, the (4, 3)-threshold property implies that t (G) = 0. Using the identity6

(a

2

)
+
(

b − a

2

)
= 2

(
b
2
2

)
+
(

b

2
− a

)2

,

Eq. (8) can be rewritten as

t (Ḡ) = 1

2

(
2m

(
m−1

2
2

)
−
(m

3

)
+

m∑
x=1

(
m − 1

2
− d(x)

)2
)

= m3

24
− m2

4
+ O(m) + 1

2

m∑
x=1

(
m − 1

2
− d(x)

)2

>
m3

24
+ 3

4
m2 + O(m).

In the last step we used the assumption of Case I to estimate the last term from below.
Now let S be the set of triples over [m] containing no set from F. It follows from the definitions that

t (Ḡ)� |S| + |F3|.

Thus one gets

|F3|� m3

24
+ 3

4
m2 + O(m) − |S|.

Hence, one can get a lower bound to |F3| by proving an upper bound for |S|. This is obtained in the following lemma.

Lemma 9. |S|�m(m − 1)/3.

Thus we get

|F3|� m3

24
+ 3

4
m2 − m2

3
+ O(m) >

m3

24
+ m2

3
+ O(m),

which is greater than f (n) if n is sufficiently large. This completes the proof of the theorem for Case I.

6 Here we write
( x

2
)

for x(x − 1)/2, where x is not necessarily an integer.
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4.2.2. Case II:
∑m

x=1((m − 1)/2) − d(x))2 �2(m − 1)2

In order to consider this case, let us introduce some further notation. Let us consider the set

D = {x : d(x) < 0.45(m − 1)}.
By the assumption of Case II, the size of D is bounded by a constant. In particular, it holds that |D|�800. Assume,
w.l.o.g. that [m]\D = [r].

We use the following result of Andrásfai et al. [2].

Lemma 10 (Andrásfai et al. [2]). Every triangle-free non-bipartite graph on r vertices has a vertex of degree at
most 2

5 r .

Let G′ be the graph induced by G on [r], and let the set of edges of G′ be E. Now every vertex of G′ has degree at
least 0.45(m − 1) − 800. This is greater than 2

5 r if n is sufficiently large. Hence, if n is sufficiently large then G′ is
bipartite. Let the two halves of this bipartite graph be A and B, with |A| = r1 and |B| = r2.

In summary, so far we have partitioned the ground set into four sets: the exceptional sets C and D, which are of size
bounded by a constant and the sets A and B. The graph G′ = ([r], E) formed by the pairs in F2 over [r] is bipartite,
with bipartition (A, B).

The assumption of Case II implies that G′ is ‘almost’ a complete bipartite graph with equal halves. In particular, we
have the following.

Lemma 11. If n is sufficiently large then it holds that

(1) |r1 − n/2|�n3/4 and |r2 − n/2|�n3/4,
(2) there are O(n7/4) edges missing between A and B.

In fact, O(
√

n) and O(n3/2) can be proved (instead of n3/4 and O(n7/4)), but it would not simplify the main line of
the arguments later.

Now we introduce some more notation for different types of triples in F3. For x ∈ C ∪ D let Wx denote the set of
triples in F containing x which have their other two elements in A ∪ B. Let T1 (resp., T2) be the set of triples in F
with two points in A and one in B (resp., two in B and one in A), and put T = T1 ∪ T2. Let H1 (resp., H2) be the
set of triples in F contained in A (resp., B), and let M1 (resp., M2) be the set of triples contained in A (resp., B) which
do not belong to F. Finally, let M0 be the set of pairs {x, y} /∈F, for which x ∈ A and y ∈ B.

As quadruples in A, resp., B, do not contain any singletons or pairs from F, it must be the case that they contain at
least three triples from F. Hence M1 and M2 are packings, implying |Mi |�P(ri, 3, 2). Thus,

|Hi | =
( ri

3

)
− |Mi |�

( ri

3

)
− P(ri, 3, 2). (9)

Hence, by the definition of the function g, and by Lemma 7, it holds that

r1r2 +
2∑

i=1

|Hi |�g(r1, r2)�f (r). (10)

Lemma 7 also implies that (10) holds with strict inequality unless |r1 − r2|�1, for large enough n.
The lower bound estimates for remainder of the proof begin with the following inequality, which is a direct conse-

quence of the definitions:

|F|�
∑

x∈C∪D

|Wx | +
2∑

i=1

(|Ti | + |Hi |) + |E|. (11)

We start by formulating two lemmas that are used to treat the exceptional sets C and D.
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First, let us consider an element x ∈ C, and y1, y2, y3 ∈ A. The quadruple {x, y1, y2, y3} contains no pairs from F2.
It may be the case that {x} ∈ F and {y1, y2, y3} ∈ F, but we still need one more triple in {x, y1, y2, y3}. Hence, at
least one of the triples {x, y1, y2}, {x, y1, y3}, {x, y2, y3} belongs to F3. If, in addition, it holds that {y1, y2, y3} /∈F3,
then at least two of the triples {x, y1, y2}, {x, y1, y3}, {x, y2, y3} belong to F3.

Let us consider the graph Gx
A = (A, Ex

A), where {y1, y2} ∈ EA iff {x, y1, y2} /∈F. It follows from the remarks above
that Gx

A is triangle-free, and furthermore, it contains at most one edge from every triple {y1, y2, y3} belonging to the
packing M1. The following lemma shows that every triangle-free graph, which contains at most one edge from every
triple in a large packing, has relatively few edges. This lemma implies that either there are only a few triples missing
in F from A or B, or there are many triples incident to x. In both cases one obtains a lower bound for the number of
triples in F.

Lemma 12. Let H be a triangle-free graph on s vertices and P be a packing of size at least 1
8 s2 over the vertex set of

H, such that every triple in P contains at most one edge from H. Then H has at most (1 − 1/50)(s2/4) edges, if s is
sufficiently large.

The next lower bound shows that there are many triples incident to the vertices of D.

Lemma 13. For every x ∈ D it holds that |Wx |�(1 + 1
120 )(n2/8), if n is sufficiently large.

Recall that M0 denotes the set of pairs between A and B that are missing from F2. We consider the bipartite graph
G0 = (A ∪ B, M0). Note that G0 is the ‘bipartite complement’ of G′ above. Depending on the degrees of this graph,
we distinguish two subcases of Case II. The maximal degree of G0 is denoted by �(G0).

Case II.1: �(G0)�10.
In this case we use the following lemma.

Lemma 14. If �(G0)�10 then |M0| < |T|.

As |M0| = r1r2 − |E|, it follows that

|T| + |E| > r1r2. (12)

Rearranging (11), using Lemma 13 and (12) we get

|F|�
∑
x∈D

|Wx | + |T| + |E| +
∑
x∈C

|Wx | +
2∑

i=1

|Hi |

> (1 + 1

120
)
n2

8
|D| + r1r2 +

∑
x∈C

|Wx | +
2∑

i=1

|Hi |. (13)

We distinguish two subcases, depending on the sizes of the sets M1,M2.
Case II.1.1: |Mi |�(r2

i /8) holds for i = 1, 2.
In this case Lemmas 11 and 12, and (10) imply that we can continue inequality (13) by writing, for large enough n,

|F| >
(

1 + 1

120

)
n2

8
|D| +

(
2∑

i=1

(( ri

2

)
−
(

1 − 1

50

)
r2
i

4

))
|C| + f (r)

�
(

1 + 1

120

)
n2

8
|D| +

(
1 + 1

60

)
n2

8
|C| + f (r). (14)

Using Lemma 6 it follows that (14) is greater than f (n), for large enough n.
Case II.1.2: |Mi | < (r2

i /8) holds for some i = 1, 2.
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Assume w.l.o.g. that |M1| < (r2
1 /8). Then, Eq. (9) can be rewritten as

|H1| =
( r1

3

)
− |M1| >

( r1

3

)
− r2

1

8

�
( r1

3

)
− P(r1, 3, 2) + 1

24
r2

1 + O(r1). (15)

In this case we cannot apply Lemma 12. However, as Gx
A is triangle-free, it still holds that |Ex

A|�(r2
1 /4) by Turán’s

theorem. Hence, in this case, using (15), we can continue inequality (13) with

|F|�
(

1 + 1

120

)
n2

8
|D| + r1r2

+
(

2∑
i=1

(( ri

2

)
− r2

i

4

))
|C| +

2∑
i=1

|Hi |

�
(

1 + 1

120

)
n2

8
|D| +

(
2∑

i=1

(( ri

2

)
− r2

i

4

))
|C|

+ f (r) + 1

24
r2

1 + O(r1)

�
(

1 + 1

120

)
n2

8
|D| + n2

8
|C| + f (r) + 1

96
n2 + o(n2). (16)

Using Lemma 6 it again follows that (16) is greater than f (n) for large enough n.
Case II.2: �(G0) < 10.
In this case we replace Lemma 14 with the following.

Lemma 15. If �(G0) < 10 then

|Ti | + P(ri, 3, 2)� |Mi | + 1
2 |M0|.

If equality holds then Ti = M0 = ∅ and Mi is a maximum packing.

Using |Mi | = (
ri
3

)− |Hi | and |M0| = r1r2 − |E|, Lemma 15 implies

|Ti | + |Hi | + 1

2
|E|�

( ri

3

)
− P(ri, 3, 2) + 1

2
r1r2. (17)

Similar to Case II.1 above, we distinguish two subcases depending on the sizes of the sets M1,M2.
Case II.2.1: |Mi |�(r2

i /8) holds for i = 1, 2.
Summing (17) for i, we get(

2∑
i=1

(|Ti | + |Hi |)
)

+ |E|�f (r). (18)

Thus, using (11), (18), Lemmas 12 and 13, it follows that

|F|�
∑

x∈C∪D

|Wx | +
(

2∑
i=1

(|Ti | + |Hi |)
)

+ |E|

�
(

1 + 1

120

)
n2

8
|D| +

(
1 + 1

60

)
n2

8
|C| + f (r),

which is at least f (n) for large enough n.
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It also follows that |F| > f (n) for large enough n, unless C =D =M0 =T1 =T2 =∅, M1 and M2 are maximum
packings and |r1 − r2|�1. In this case F is one of the packing constructions described in Section 4.1.

Case II.2.2: |Mi | < (r2
i /8) holds for some i = 1, 2.

Assume w.l.o.g. that |M1| < (r2
1 /8). In this case we further modify Lemma 15.

Lemma 16. If �(G0) < 10 and |M1| < (r2
1 /8) then

|T1| + 4
5P(r1, 3, 2)� |M1| + 1

2 |M0|.

Rewriting as in the previous subcase, we get

|T1| + |H1| + 1

2
|E|�

( r1

3

)
− P(r1, 3, 2) + 1

2
r1r2 + 1

5
P(r1, 3, 2). (19)

For i = 2 inequality (17) holds. Adding it to inequality (19), one gets

2∑
i=1

(|Ti | + |Hi |) + |E|�f (r) + 1

5
P(r1, 3, 2). (20)

Hence, arguing as in Case II.1.2,

F�
∑

x∈C∪D

|Wx | +
(

2∑
i=1

(|Ti | + |Hi |)
)

+ |E|

�
(

1 + 1

120

)
n2

8
|D| + n2

8
|C| + f (r) + 1

5
P(r1, 3, 2) + o(n2),

which is again greater than f (n) for large enough n. This completes the proof of the theorem.

4.3. Optimal systems

As noted in Section 4.1, there are many non-isomorphic packing constructions, thus there are many different optimal
systems with the (4, 3)-threshold property. One can ask whether all optimal systems are packing constructions? In this
section we show that the answer to this question depends on the (mod 12) remainder of n.

Theorem 17. Every optimal system with the (4, 3)-threshold property is a packing construction iff n ≡ 0, 1, . . . ,

6 (mod 12), for n sufficiently large.

Proof. It was noted at the beginning of the proof of Theorem 8 that optimal systems cannot contain ∅.
The proof of the theorem also shows that, assuming that an optimal system contains no quadruples, it also cannot

contain any singletons. The proof of Proposition 1 shows that quadruples can be eliminated by repeatedly replacing
a quadruple by a triple contained in it. Combining these two observations, it follows that an optimal system cannot
contain any singletons.

We concluded |F| > f (n) in all cases of Theorem 8 except Case II.2.1. In that case, we noted that only packing
constructions can provide equality. The proof of Theorem 8 assumed that F contains no quadruples.

Hence, the remaining question is to decide if there are optimal systems which contain quadruples? We recall from
Section 2 that a pair is missing from a maximum packing P if it is not contained in any triple of P. The results on
maximum packings described there imply that the graph formed by missing pairs is the same for every maximum
packing on a given ground set. Inspecting the graph of missing pairs in all cases, it can be observed that maximum
packings over [r] contain incident missing pairs iff r ≡ 4 or 5 (mod 6). If r ≡ 4 (mod 6) then the missing pairs form
a star on four vertices, and if r ≡ 5 (mod 6) then the missing pairs form a cycle of length four.
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Now let us assume that there is an optimal system containing quadruples as well. Then, using the procedure described
in the proof of Proposition 1, let us eliminate all quadruples. Let the system obtained before eliminating the last quadruple
be F′. Then it holds that

F = F′\{Q} + {T },
where F is a packing construction, Q = {x, y, z, u} and T = {x, y, z}.

As F is a packing construction, it must be the case that x, y, z belong to the same half. The element u must also
belong to the same half, as otherwise {u, x}, {u, y}, {u, z} would be in F′, and so Q could have been deleted from
F′. It also follows that F′ contains exactly two of the triples {u, x, y}, {u, x, z} and {u, y, z}. Assume w.l.o.g. that F′
contains {u, x, z} and {u, y, z}.

Consider the maximum packing P consisting of the triples missing from F′ in the half containing Q. We claim that
{x, z} and {y, z} are missing pairs for P.

Let us assume that this is not the case. Thus, there is a v in the same half such that, w.l.o.g., {v, x, z} ∈ P, or,
equivalently, {v, x, z} /∈F. Then v must be different from u or y. But then the quadruple {x, y, z, v} contains at most
two sets from F′, contradicting the (4, 3)-threshold property. Thus, we can conclude that if there is an optimal system
which is not a packing construction, then either �n/2	 or 
n/2� is congruent to 4 or 5 (mod 6). This happens when n
is congruent to 7, 8, 9, 10 or 11 (mod 12).

To complete the proof of the theorem, we also have to show that in these cases there is an optimal system which is
not a packing construction. Reversing the above argument, let us assume that F is a packing construction, and {x, z}
and {y, z} are missing pairs for some maximum packing P in one of the halves. Then T ={x, y, z} ∈ F. Also, as {x, y}
cannot be a missing pair, there is a triple {u, x, y} ∈ P, or, equivalently, {u, x, y} /∈F. Then, let us form the system

F′ = F\{T } + {Q},
where Q={x, y, z, u}. We claim that F′ has the (4, 3)-threshold property. It only has to be shown that every quadruple
{x, y, z, v} contains at least three triples from F′, where u �= v and v is in the same half as u. But {v, x, z} and {v, y, z}
are in F, and hence, in F′, as {x, z} and {y, z} are missing pairs. Also, {v, x, y} is in F, and hence, in F′, as P is a
packing and {u, x, y} /∈F. This completes the proof of the theorem. �

5. Proofs of the lemmas for Theorem 8

In this section we give the proofs of the lemmas used in the proof of Theorem 8.

Proof of Lemma 6. Follows by direct calculation. �

Proof of Lemma 7. Let us assume that n1 �n2 > 0. Considering cases corresponding to the possible parities of n1
and n2, one gets

P(n1, n2) − P(n1 + 1, n2 − 1) = �n2 − �n1 + �,

where � and � are 1
6 or 1

2 , and �� − 13
3 . Using this, it follows again by direct calculation that

g(n1 + 1, n2 − 1) − g(n1, n2)�
n2

1 − n2
2

2
− 2n1 + 8

3
n2 − 13

3
,

which is positive if, e.g., n�14. �

Proof of Lemma 9. It is sufficient to show that every pair x, y is contained in at most two triples from S, as then the
size of S is at most 2

(
m
2

)
/3. Assume that {x, y, z1}, {x, y, z2} and {x, y, z3} are different triples in S.

The quadruple {x, y, z1, z2} contains at least three sets from F. But neither of the triples {x, y, z1}, {x, y, z2} or the
pairs {x, y}, {x, z1}, {x, z2}, {y, z1}, {y, z2} are in F. Thus, it must be the case that {z1, z2} is in F. Similarly, {z1, z3}
and {z2, z3} are in F. But this is a contradiction, as then {z1, z2, z3} contains three sets from F. �
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Proof of Lemma 11. Let us call a vertex bad if∣∣∣∣m − 1

2
− d(x)

∣∣∣∣ � 1

2
m3/4,

and good otherwise. The assumption of Case II implies that, for large enough n, there are at most m3/4 bad vertices.
For the first part of the claim, assume that r1 > m/2 + m3/4. Then, as A is an independent set, all the vertices of A have
degree at most m/2 − m3/4, contradicting the above inequality. If r1 < m/2 − m3/4, then r2 > m/2 + m3/4 − 800, and
we get a similar contradiction.

The second part follows by noting that missing edges can be of two types. Either their endpoint in A is bad, or it is
good. For the first type, the bound follows as there are at most m3/4 bad vertices, each incident to at most m missing
edges. For the second type, for each of the at most good m vertices in A, there are O(m3/4) missing edges by the degree
condition and the upper bound on the size of B. �

Proof of Lemma 12. Let us assume that H has more than (1− 1
50 )(s2/4) edges. If H is not bipartite then let us iteratively

delete vertices of minimum degree until the remaining graph becomes bipartite. Let the number of remaining vertices
be denoted by j. By Lemma 10 and Turán’s theorem, it holds that

s∑
�=j+1

2

5
� + j2

4
�
(

1 − 1

50

)
s2

4
. (21)

Direct computation gives j > 0.94s if s is sufficiently large. Thus, the number of vertices deleted is at most 0.06s,
and the number of edges deleted is at most 2

5 0.06s2 < 0.1s2/4. Hence, the final bipartite graph has at least (0.98 −
0.1)(s2/4)=0.88(s2/4) edges. Therefore, there are at most (1−0.88)(s2/4)=0.12(s2/4) edges missing from between
the two halves of the bipartition.

The number x of vertices in one half of the bipartition satisfies x(s − x)�0.88(s2/4). Thus, it follows that both
halves have at least 0.32s vertices. The number of triples of the packing P contained within the two halves is at most
1
6 (0.322 + 0.682)s2 + O(s�0.0942s2. Hence, at least ( 1

8 − 0.0942)s2 > 0.123(s2/4) triples of P contain points from
both halves. Now H has at most one edge in each such triple. Thus, for each triple there is at least one edge missing
from between the two halves. As P is a packing, the edges corresponding to different triples are different. So there
are at least 0.123(s2/4) triples missing from between the two halves, contradicting the upper bound 0.12(s2/4) given
above. �

One can obtain a slightly stronger statement using a more involved argument and applying some results of Erdős,
Faudree, Pach, and Spencer [7] concerning how to make a graph bipartite. But, again, these improvements do not seem
to simplify the proof of our main theorem.

Proof of Lemma 13. Consider a vertex x ∈ D, and let the number of pairs {x, y} /∈F2 with y ∈ A (resp., y ∈ B) be
a (resp., b).

If {x, z1} ∈ F2 and {x, z2} ∈ F2 for z1 ∈ A and z2 ∈ B then, as F2 is triangle free, it must be the case that
{z1, z2} /∈F2. Hence, the second part of Lemma 11 implies

(r1 − a)(r2 − b) = O(n7/4). (22)

Thus at least one of the terms, say, r1 − a, is O(n7/8), and so a�n/2 − O(n7/8). By assumption, a + b > 0.55(m − 1),
so the first part of Lemma 11 implies that b > 1

21n, if n is sufficiently large.
Now consider a quadruple {x, y1, y2, y3} with y1, y2, y3 ∈ A such that {x, yi} /∈F2 for i = 1, 2, 3. This quadruple

contains no singletons or pairs from F. Hence, it must contain at least two of the triples {x, y1, y2}, {x, y1, y3},
{x, y2, y3}. In other words, only one of these three triples can be missing from F3. So the number of triples {x, y, z} ∈
F3 with y, z ∈ A is at least(a

2

)
−
⌊a

2

⌋
. (23)
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Of course, the same argument applies to B as well. Hence the number of triples containing x is at least

(a

2

)
−
⌊a

2

⌋
+
(

b

2

)
−
⌊

b

2

⌋
�
(

1
21n

2

)
+
( n

2 − O(n7/8)

2

)
− O(n)

�
(

1 + 1

120

)
n2

8
,

if n is sufficiently large. �

Proof of Lemma 14. Consider vertices x ∈ A and y1, y2, y3 ∈ B such that {x, yi} ∈ M0 for i = 1, 2, 3. Then the
quadruple {x, y1, y2, y3} contains no singleton or pair from F. Hence, even if {y1, y2, y3} ∈ F, at least two of the
triples {x, y1, y2}, {x, y1, y3}, {x, y2, y3} belong to F. This shows that in general, if x ∈ A has � neighbors y1, . . . , y�

in G0 = (A ∪ B, M0), then at least
(

�
2

)
− ��/2	 of the

(
�
2

)
triples {x, yi, yj } are in F. Otherwise, two triples not

belonging to F would share a yi , contradicting the above argument.
Hence, as(

�

2

)
−
⌊

�

2

⌋
�� (24)

for ��4, it follows that if x ∈ A (resp., x ∈ B) and dM0(x)�4, then dT2(x)�dM0(x) (resp., dT1(x)�dM0(x)).
Now, starting with G0 and the set of triples T, let us iteratively delete a vertex of maximal degree, as long as

its degree is at least 4. Then (24) guarantees that in each step we delete at least as many M0-pairs as T-triples.
Furthermore, as(

�

2

)
−
⌊

�

2

⌋
�� + 19 (25)

if ��10, and we assumed �(G0)�10, it follows that in the first phase we delete at least 19 more M0-pairs than
T-triples.

Let the graph obtained from G0 at the end of this process be G1 = (A1 ∪ B1, M1), and the set of remaining triples
be U. By construction, it holds that �(G1)�3.

Consider two independent pairs {x1, y1} and {x2, y2} in G1. The quadruple {x1, x2, y1, y2} contains no singletons,
and at most two pairs from F. Thus, it contains at least one triple from F. If {xi, yi}, i = 1, . . . , �, is a maximum set
of independent pairs in M1, then this construction gives at least

( �
2

)
different triples, hence |U|� ( �

2

)
. On the other

hand, |M1|�3� by König’s theorem.
If ��7 then 3��

( �
2

)
, hence in this case |M1|� |U|. If � < 7 then it follows that |M1|�18. The ‘advantage’19 gained

by M0-pairs over T-triples in the first phase guarantees that the lemma holds in both cases. �

Proof of Lemma 15. We may assume that M0 �= ∅. Otherwise the statement follows directly, as M1 is a packing.
Also, we assume w.l.o.g that i = 1. We show that under these assumptions, the statement of the lemma holds with strict
inequality.

Let {x, y} be a pair in M0 for x ∈ A, y ∈ B, and let {x, z1, z2} be a triple in M1. Then {x, y, z1, z2} contains at most
two pairs from F. Thus, F contains at least one of the triples {x, y, z1}, {x, y, z2}, {y, z1, z2}. In this way, for every
triple {x, z1, z2} ∈ M1 we find a corresponding triple in T1, incident to y. As M1 is a packing, for different triples in
M1 we get different triples in T1. Thus,

dT1(y)�dM1(x), (26)

where d denotes the degrees in the corresponding hypergraphs. In order to apply (26), let B1 be the set of non-isolated
vertices of M0 in B. For every y ∈ B1, select an x ∈ A such that {x, y} ∈ M0. Let the set of x’s selected be A1. As
�(G0) < 10, it holds that

|M0| < 10|B1|�100|A1|. (27)
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As the assumption M0 �= ∅ implies 100|A1|� 2
3�(r1 − 1)/2	|A1| − 4 if n is large enough, (27) implies

2

3

⌊
r1 − 1

2

⌋
|A1| − 4 > |M0|. (28)

Adding up the inequalities (26) for every selected pair it follows that∑
y∈B1

dT1(y)�
∑

x∈A1
dM1(x). (29)

(After the summation, every term on the right-hand side appears with a coefficient �1, which is then changed to 1.)
Using again the fact that M1 is a packing, dM1(x)��r1 − 1/2	, and so

|A\A1|
⌊

r1 − 1

2

⌋
�

∑
x∈A\A1

dM1(x). (30)

Now adding up 1
2 times (28) and 1

3 times (29) and (30), we get

1

3

∑
y∈B1

dT1(y) + 1

3
r1

⌊
r − 1

2

⌋
− 2 >

1

3

∑
x∈A

dM1(x) + 1

2
|M0|. (31)

The lemma now follows by noting that the first term on the left-hand side is at most |T1|, and the second term on the
left-hand side is at most P(r1, 3, 2). �

Proof of Lemma 16. The assumption of the lemma implies

|M1|� 3
4P(r1, 3, 2) + O(r1).

Hence (30) can be replaced by∑
x∈A\A1

dM1(x)�
∑
x∈A

dM1(x) = 3|M1|� 9

4
P(r1, 3, 2) + O(r1). (32)

Let us add up 1
3 times (29), (32) and 1

2 times

|M0|�10r1.

We get

1

3

∑
y∈B1

dT1(y) + 3

4
P(r1, 3, 2) + O(r1)�

1

3

∑
x∈A

dM1(x) + 1

2
|M0|, (33)

and the statement of the lemma follows. �

6. Remarks and open problems

The results of Section 4.3 have been completed by Takata [24], who gives a description of all optimal systems for n
sufficiently large.

The general lower bound (2) uses a repeated application of the Ramsey theorem, and thus the constants involved
decrease rapidly with k. Hence there are no lower bounds for m(n, k, t) when k increases with n. In view of the detailed
results for m(n, 4, t), it would also be interesting to get bounds for the case k = 5.

In general, one expects that for fixed n and k, the function m(n, k, t) decreases with t in the range 1 < t < k. It would
be interesting to prove this. Another general question is to consider the case when F may be a multiset. The results of
[22] apply to this more general case, but in the present paper we did not consider this version.

The case t �k was recently investigated by Mubayi and Zhao [16,17]. Among other results they solved (asymptoti-
cally) all cases k = 4, t �16. They also proposed a series of new problems.
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In the opposite range of parameters, it would be interesting to look at m(n, n/2, t). The results of Jukna [12] imply
that m(n, n/2, t) is superpolynomial if t = o(n/ log n). This can be also showed in a simpler way by noting that if F
is a system over [n] with the (n/2, t)-threshold property then every n/2-subset of [n] contains a different family of t
sets from F. Thus it must be the case that(

n
n
2

)
�
(m

t

)
.

A specific question here is, motivated by the fact that for fixed k one has m(n, k, k − 1) = �(nk−1), whether
m(n, n/2, n/2 − 1) is exponential?

Finally, we mention an open problem related to Lemma 12, giving an upper bound for the number of edges of
triangle-free graphs which contain at most one edge in every triple of a large packing. This appears to be an extension
of the Turán theorem in a direction which has not been studied yet. Thus, one could ask for the maximal number of
edges in a triangle-free graph which contains at most one edge from every triple in some fixed maximum packing.
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