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Summary. Our aim is to exhibit a short algebraic proof for the Erd6s—Ko-Rado
theorem. First, we summarize the method of linearly independent polynomials show-
ing that if Xi,...,X,, C [n] are sets such that X; does not satisfy any of the set
of s intersection conditions R; but X; satisfies at least one condition in R; for all
j>ithenm < (") +(,",) +--+ (}). The EKR theorem is follows by carefully
choosing the intersection properties and adding extra polynomials. We also prove
generalizations for non-uniform families with various intersection conditions.
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1 Proofs of the EKR Theorem

In 1961, Erdés, Ko, and Rado [EKR61] proved that if F is a k-uniform family
of subsets of a set of n elements with k& < %n and with every pair of members
of F intersect, then | F |< (7~}). They also showed that for k < 3n, equality
holds if F consists of all k-sets containing a given element of the underlying
set.
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In addition to their remarkable proof (induction on k and, for a given
k, left-shifting and induction on n), there are many interesting new proofs.
For example, in 1972, Katona [Kat72] used a simple and elegant argument,
the permutation method. Daykin [Day74] obtained Erdés-Ko-Rado from
the Kruskal-Katona theorem. Hajnal and Rothschild [HR73] proved it for
n > ng(k) by an early version of the kernel (or delta-system) method, devel-
oped and used very successfully by Frankl [Fra77] (the first full description of
the method was published in Deza, Erdés, and Frankl [DEF78]). The most re-
markable technique was due to Lovéasz, in his ground-breaking paper [Lov79],
which used a geometric representation to prove that the Shannon capacity
of the Kneser graph K (n, k) is at most (Zj) for all k < %n, thus yielding
another proof (and generalization). Wilson [Wil84] gave an ingenious proof,
using Delsarte’s linear programming bound. (Actually, he proved much more
concerning t-intersecting families.) Finding different ways to prove EKR has
been the subject of a set of papers recently by Ehud Friedgut from (1) Graph
Homomorphisms [DF06"] (a joint work with I. Dinur) and (2) Harmonic Anal-
ysis [Fri067].

One of the most powerful methods for counting the number of objects in
a certain combinatorial structure is to correspond polynomials to the objects
and to show that these polynomials are, in fact, linearly independent in some
space. See, for example, Delsarte, Goethals and Seidel [DGS77] as well as
Larman, Rogers and Seidel [LRS77] for deep early results. This method has
been used to prove intersection theorems by Blokhuis [Blo90], and then by
Alon, Babai and Suzuki [ABS91], and most recently by Ramanan [Ram97],
Snevily [Sne03] and others. See the monograph of Babai and Frankl [BF92] for
more details. Interestingly, none of the new algebraic proofs can be directly
applied as a new proof for the original Erdés—-Ko—Rado.

The aim of this paper is to exhibit a short algebraic proof for the
FErdés—Ko—Rado theorem, and then to give a number of Frankl-Wilson-Ray—
Chaudhuri type generalizations. Before that, in section 2, we summarize the
essence of the polynomial method in a powerful lemma, in a form that best
fits our purposes. In section 3 the new proof for EKR is given, in section 4
we summarize old generalizations for non-uniform hypergraphs, and finally in
section 5 some new generalizations are presented.

2 The Polynomial Method for Intersection Theorems

Suppose that A = {A;, As,..., A} is a family of finite sets where each
A; is a subset of [n] := {1,2,...,n}. We say that the set X satisfies the
intersection property (P, «) (where P is a set and « is a non-negative integer)
if | X N P| = a. Suppose that for each A; € A a set of (at most) s intersection
properties are given

R .= {(Pi,ain),...,(Pis,is)}-
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(An intersection condition can be repeated, even for the same ).

Lemma 2.1. Suppose that for each A; € A one can find a set X; C [n] such
that

1. X; does not satisfy any of the conditions in R;, and
2. X; satisfies at least one condition in R; for all j > i.

Then
()

Proof. Define the (n-variable, real) polynomial f; (z) as follows.

fi(®1,2a,... 2y,) = H ((Z xv>—aiu>

1<u<s vEP;,

If we use the notation X for the characteristic vector of X C [n] (i.e., X is a
0-1 vector from R™ with its #** coordinate is 1 if and only if ¢ € X), then the
scalar product XV is equal to |X NY| for all X,V C [n]. With this notation
one can rewrite f; as

£ (%) =TT (XPu — i) = [T1X 0 Pl = i)

In any case, it is obvious that our conditions imply that

=\ [=0ifi<y
Ti (X’){#Oifi:j. (2)
Now define the (integer coefficient, real, n-variable) multilinear polynomial g;
by eliminating all the parentheses from f; and repeatedly replacing a higher

order factor 2 by z, (for all 1 < v < n). Note that for a 0-1 vector = one has
fi (x) = gi (x), so (2) implies that

g (X5) #0 but g; (X)) =0fori<j. (3)

The multilinear, n variable, real polynomials of degree at most s form a
vectorspace V' (over R), of dimension

dimv:(g)+(sﬁl)+...+(g). (4)

We claim that the polynomials g, g2, - - -, gm are linearly independent in this
space. Then (4) gives the desired upper bound on m. Indeed, suppose on the
contrary, that there exists a linear dependency, i.e.,

c1g1 (z) + c2g2 (¥) + -+ + emgm (z) =0 (5)
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holds for every x € R", where the ¢;’s are reals, not all 0. Suppose that i is the
smallest integer with ¢; # 0, and substitute X; into (5). Since ¢; =0 for j < ¢

and g; (5(:) =0 for j > i the equation becomes ¢;g; (3(\1) = 0. However, this

contradicts the fact that both ¢; and g; (5(\,) are non-zero.

3 The Polynomial Proof of EKR Theorem

Let F be an intersecting family of k-sets of [n], n > 2k, |F| = m. In the
above Lemma 2.1 we will define s = k& — 1. The dimension of the vector
space of multilinear polynomials V' is not a perfect binomial coefficient, so at
first Lemma 2.1 does not seem to be applicable to prove m < (7). Instead
of narrowing the vectorspace, which does not look viable, one can add more
polynomials to the g;’s defined by the members of F, and show that the larger
system is still linearly independent. This method appeared first in a paper of

Blokhuis [Blo84]. In fact, we will join to F another

(kﬁ 1)*(£2)*"'*G)*(3)‘(2: i) = 2x k;(” . 1) (6)

sets, together with appropriate intersection conditions.
Select a member p of [n] arbitrarily. Define the family A as the union of
the following four hypergraphs, Fy, H, 71 and G, where

o Fo . ={FeF:p¢F},

« Hi={HCln):ipg¢ H, 0<|H <Fk-2},
e Fi:={Fe€F:peF} and

e G:={GCn]:peG, 1<|G|<k-1}.

Order these sets linearly in the above order. First, we put the members of Fg
(in arbitrary order), then the members of H increasing by size, (i.e., H € H
precedes H' € H if |H| < |H'|) then F; (again in arbitrary order) and, finally,
the members of G again in increasing order. Next, for each set 4; € A we
associate another set X; C [n], and at most k — 1 intersection conditions
(Pi'zu aiu) -

e For F € Fy we let X := [n]\ {p} \ F' with intersection conditions (F,a),
1<a<k-1.

e For H € 1 we let X := H with intersection conditions ({h},0), (for each
he€ H) and ([n],n —k—1).

e For F € F; welet X := F\ {p} with intersection conditions (F'\ {p},a),
0<a<k-2.

e For G € G we let X := G with intersection conditions ({g},0) for each
g €q.



Erdés—Ko—Rado from Polynomials 219

It is straightforward to check that the {A4;, X;, (Piy, aiy)} system defined
above indeed satisfies the constrains of Lemma 2.1 with s = k — 1. This gives
|‘7:| + |g| + |H| < (kﬁl) + (kfg) +ot (8) since |g| = |H| = Zk—QZuZO (nil)

u

(6) gives the desired upper bound for |F|.

Summary

To make the construction more explicit and transparent we repeat the the
definitions of the associated functions and their characteristic properties.

For F' € Fy we have fr (2) = [T cucr 1 ((Xoep ze) —u) and gr ()A() =0
if and only if | X NF| e {1,...,k—1},

for H € H we have fg (z) = ((Zl<e<nxe) —(n—k-— 1)) [I.cq®e and
gH()/f) =0ifandonly if | X|=n—-k—-—1or H¢Z X,

for ' € 71 we have fr(z) = [locucps ((EeeF,e#I,xe) —U) and
gr ()?) =0 if and only if | X N (F\ {p})] € {0,1,...,k — 2},

for G € G we have fg (z) = [[.cq e and gg ()?) = 0 if and only if
GZX.

Let us point out the part where the condition n > 2k was used. We needed
gH (f[) # 0 and this is only true if |H| # n — k — 1. Furthermore, as in most

cases when one uses linear algebra, it does not seem immediate from the above
proof that for n > 2k equality can hold only for (| F # 0.

4 Generalizations for Non-uniform Families

Here we briefly discuss some old generalizations. In this section F ={F}, F>, ...
Fp} is a family of subsets of [n], K = {ki,...,k} and L = {ly,...,ls} are
sets of non-negative integers. We call F an (n, K, L)-family if |F| € K for
every F' € F and |F; N Fj| € L for any distinct F;, Fj € F.

A celebrated result of Frankl and Wilson [FW81] claims that

1< () + (7)) + o+ () (7

independent of K. The determination of max |F| is very much related to a
basic coding problem when a binary code is given with given weights and
distances. There are many improvements of (7).

For L = {1,2,...,s} Frankl and Fiiredi [FF81] conjectured that

G e e % S
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This can be achieved by the family {F : 1 € F C [n], |F| < s+ 1}. They
proved (8) for n > 100s?/log (s + 1), Pyber showed it for n > 6 (s + 1) and
finally Ramanan [Ram97] proved it for all n. Recently, Snevily [Sne03] showed
that (8) holds for any L with min L > 1.

Alon, Babai, and Suzuki [ABS91] proved that

me ()00 () ®

holds for the case min K > s —¢.
Snevily [Sne95] proved that in the case min K > max L

A< ("N (0
- s s—1 s—2t4+1)°

Frankl [Fra85] showed that if F is any family with |F; \ F;| € L for all

1 <i < j<m then
n
1< ¥ (7). (10)
0<i<s

5 New Generalizations

Here we prove other generalizations of the Erdés—-Ko-Rado Theorem allowing
different sizes of the subsets and introducing a new parameter 7.

Again F = {F1, F>, ..., Fy} is a family of subsets of [n], K = {k1,...,k}
and L = {ly,...,ls} are sets of non-negative integers. We suppose that
|F| € K for all F' € F. Define

ri= min‘{|F| :q € FeF},
q€[n]

the number of different sizes through ¢. Obviously, » < ¢. Choose a vertex
p € [n] so that ‘{|F| tpeF e .7-'}‘ = r. Assume, without loss of generality,
that p ¢ F; for 1 <i < a and p € F; for a < i < |F|. Thus F has been split
into two parts, Fo ={F :p¢ Fe€ F},and Fy ={F :pe F € F}.

Theorem 5.1. Suppose that the F;’s satisfy the following intersection prop-
erties:

(i) |F;\Fi|leLforalll<i<j<a,
(i) 1<I|Fj\Fj|<sfor1<i<a<j<m,
(i) |[F;NF;le€{l,...,s} fora<i<j<m.

Suppose further that min L > 0, |F;| > s fora<i<m, andn—k;—1>s—r

for 1 <i<r. Then
- n—1
< .
HEE Y

i=s—r+41
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In the proof of this theorem we define an n-variable multilinear polyno-
mial fr of degree at most s for each F' € F. These polynomials are linearly
independent (due to the intersection conditions) so we get an upper bound on
|F|. To decrease this bound we add more polynomials to this collection which
form a space perpendicular to the space spanned by {fr : F € F}, and then
calculate the dimension of the spaces they span. The additional polynomials
are defined using the families H and G, the subsets [n] of size at most s — 1.

Proof. We proceed exactly like in Section 3. We divide the proof into two
cases: 7 < s and s < r. First, we consider r < s. Define the families
H={HCn|:p¢ HO<|H|<s—r}and
G={GCn:peG,1<|G|<s).
Order both of them linearly in increasing order, (i.e., H precedes H' if |H| <
|H'|). Put the four families Fo, H, F; and G in this order (keeping their inner
order). For each member A of these four families we associate an n variable
polynomial fa (z1,...,%,) and a special set X such that for the characteristic
vector of X we have fu ()? ) # 0 but fp ()A( ) = 0 for all B following A in
the linear order. Reduce f4, as it was done in Lemma 1, to a multilinear
polynomial g4 by replacing every higher order term z2 by z,. We show that
these polynomials are linearly independent, implying the upper bound for |F|.
For each F; € Fy, consider the polynomial

8§

fi@) =] wi-z—1),

j=1
where v; is the characteristic vector of F;. The special set is [n] \ F; \ {p}.
For each H € H, we define the polynomial

T n

fH(.’L‘):H( xl—(n—kb—l))ij.
b=1 I[=1 JjEH
The corresponding special set is H itself. Since n—k; —1 > s—r, fg (fI) #0,

and fg (I;T) = 0 for any |H| < |H'|. Thus {fu () : H € H} is a linearly
independent family.
For each F; € F; let

s—1

fi@) =] ;-2 -4,

=0

where v} is the characteristic vector of F; \ {p}. The special set is F; \ {p}.
For each G € G let
fa (@) =T =

jEG



222 Zoltén Fiiredi, Kyung-Won Hwang, and Paul M. Weichsel

with special vector G. Note that fq (@) # 0 and feo (@) =0 for any |G| <

|G'|, and thus { fo (z) : G € G} is alinearly independent family of polynomials.

For the rest of the proof of this case (i.e., the case r < s) we continue as
in the proof of the EKR theorem.

For the r > s case, we only need the family G as above, and then we show
that {f; (z) : F; € F}U{fe(z) : G € G} is linearly independent. We get
the bound |F| < 37 (";"). (Note that the summation index i starts at 0
because s —r + 1 < 0).

We give another generalization. Note that this result is almost identical to
the previous one, but each is independent of the other (i.e., neither of them
implies the other).

Theorem 5.2. Suppose that with given n, K, L and p € [n] the family F =
Fo U Fy satisfies the following intersection conditions

(i) |F;\Fi|€Lforall<i<j<a,
(ii) 1<|F\F|<s—r+1lforl1<i<a<j<m,
(iii) |F;NFjle{l,...,s—r+1} fora<i<j<m.

Suppose further that min L > 0, |F;| > s—r+1 fora<i <m, andn—k;—1 >
s—r for1 <i<r. Then

|l < Z (”;1)

i=s—r+1

Proof. The proof closely follows the proof of Theorem 2 above. We divide the
proof into the same two cases: r < s and s < r. For the first case, we construct
the same two families (G and H) and the same associated polynomials, and
for the second case we only use the family G. The only difference is that the
polynomial f; for the set F; € F; is defined as follows.

S—T

fitw) =[] @i -z —14). ]

=0

Finally, the above method also gives the following bound for the general
Erdds—Ko—Rado problem. For exact upper bound see Ahlswede and Khacha-
trian [AK97].

Theorem 5.3. Let F = {F\, ..., F,} denote a family of k-subsets of [n]. Sup-
pose that |[F; N Fj| € {d,d+1,---,k—1} for alli < j. Ifn>2k—d+1, then
71 < ()
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