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Abstract

A long-standing conjecture of Erdős and Simonovits is that ex(n, C2k), the maximum number
of edges in an n-vertex graph without a 2k-gon is asymptotically 1

2 n1+1/k as n tends to infinity.
This was known almost 40 years ago in the case of quadrilaterals. In this paper, we construct a
counterexample to the conjecture in the case of hexagons. For infinitely many n, we prove that

ex(n, C6) >
3(
√

5− 2)

(
√

5− 1)4/3
n4/3 +O(n) > 0.5338n4/3.

We also show that ex(n, C6)��n4/3 +O(n) < 0.6272n4/3 if n is sufficiently large, where � is
the real root of 16�3−4�2+�−3=0. This yields the best-known upper bound for the number
of edges in a hexagon-free graph. The same methods are applied to find a tight bound for the
maximum size of a hexagon-free 2n× n bipartite graph.
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1. Introduction

The forbidden subgraph problem involves the determination of the maximum number
of edges that an n-vertex graph may have if it contains no isomorphic copy of a fixed
graph H. This number is called the Turán number for H, and denoted ex(n, H). In
this paper, we study the Turán problem for the hexagon, that is, the cycle of length
six, C6.

The densest constructions of 2k-cycle-free graphs for certain small values of k arise
from the existence of rank two geometries called generalized k-gons, first introduced
by Tits [18]. These may be defined as rank two geometries whose bipartite incidence
graphs are regular graphs of diameter k and girth 2k, and are known to exist only
when k is three, four or six. This fact is a consequence of a fundamental theorem of
Feit and Higman [11]. It is therefore of interest to examine the extremal problem for
cycles of length four, six and ten.

In these cases, Lazebnik et al. [15] used the existence of polarities of generalized
polygons to construct dense 2k-cycle-free graphs when k ∈ {2, 3, 5}. In particular, for
k = 3, their construction shows that

ex(n, C6) � 1
2n4/3 +O(n)

for infinitely many n. Erdős and Simonovits [10] conjectured the asymptotic optimality
of these graphs, asking whether ex(n, C2k) is asymptotic to 1

2n1+1/k as n tends to
infinity. This was known to hold for quadrilaterals almost 40 years ago, as proved
by Erdős et al. [9], and independently by Brown [4], but was recently disproved in
[15] for cycles of length ten. The only remaining case allowed by the Feit–Higman
theorem is that of hexagons. In this paper, we refute the Erdős–Simonovits conjecture
for hexagons:

Theorem 1.1. For infinitely many positive integers n, there exists an n-vertex hexagon-
free graph of size at least

3(
√

5− 2)

(
√

5− 1)4/3
n4/3 +O(n) > 0.5338n4/3.

For all n, ex(n, C6)��n4/3 +O(n) < 0.6272n4/3 if n is sufficiently large, where � is
the real root of 16�3 − 4�2 + �− 3 = 0.

This theorem gives the best-known upper bound for ex(n, C6). The proof of
Theorem 1.1 requires a statement about hexagon-free bipartite graphs, which is in-
teresting in its own right (see [6]). Let ex(m, n, C6) be the maximum number of edges
amongst all m×n bipartite hexagon-free graphs. We are able to determine ex(m, 2m, C6)

asymptotically for all m:

Theorem 1.2. Let m, n be positive integers. Then

ex(m, n, C6) < 21/3(mn)2/3 + 16(m+ n).
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Furthermore, if n = 2m then as n tends to infinity,

ex(m, n, C6) =
{

21/3(mn)2/3 +O(n) for infinitely many m,

21/3(mn)2/3 + o(n4/3) for all m.

Another natural question is the maximum number of edges in a quadrilateral-free
subgraph of a hexagon-free graph. We answer this question completely, generalizing a
theorem of Györi [12] and of Kühn and Osthus [14]:

Theorem 1.3. Let G be a hexagon-free graph. Then there exists a subgraph of G of
girth at least five, containing at least half the edges of G. Furthermore, equality holds
if and only if G is a union of edge-disjoint complete graphs of order four or five.

Throughout the paper, G = (V , E) denotes a graph with vertex set V = V (G)

and edge set E = E(G). We write uv ∈ E instead of {u, v} ∈ E. If uv is assigned
an orientation, then u → v means the edge uv is oriented from u to v. A sequence
(x1, x2, . . . , xk+1) of distinct vertices of G is used to denote a path of length k or, if
xk+1 = x1, a cycle of length k. The vertices x1 and xk+1 are referred to as endvertices
of the path. If A is a set of vertices of G, then G[A] = {uv ∈ E(G) : u, v ∈ A}
is the subgraph of G induced by A. Finally, dG(v) and �G(v) denote the degree and
neighborhood of a vertex v ∈ V in the graph G. In general, the subscript G is omitted.

2. Constructions

The aim of this section is to give a construction of hexagon-free graphs achieving
the lower bound in Theorem 1.1, and bipartite hexagon-free graphs achieving the lower
bound in Theorem 1.2. We start with a known construction of generalized quadrangles,
and then modify it.

2.1. Bipartite construction

It is known that there exist (q+ 1)-regular bipartite graphs H = Hq , with q3+ q2+
q + 1 vertices in each part, and girth eight, where q is a prime power. These are the
incidence graphs of certain rank two geometries known as generalized quadrangles. Let
L and R be the parts of H. To construct m× 2m bipartite graphs achieving the lower
bound in Theorem 1.2, we add a new set L∗ of |L| vertices to H, and let � : L∗ ↔ L

be a bijection. Define a bipartite graph H ∗q = H ∗ with parts R and L∪L∗ as follows:

E(H ∗) = E(H) ∪ {uv : u ∈ L∗, v ∈ R, �(u)v ∈ E(H)}.

In words, we take two edge-disjoint copies of H and identify them on the vertices in
R. To see that H ∗ contains no hexagons, suppose C = (v1, v

′
2, v3, v

′
4, v5, v

′
6, v1) is a
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hexagon in H ∗. By symmetry, we may assume C contains at least four edges of H.
Form the closed walk � = (v1, v2, v3, v4, v5, v6, v1) in H, where vi = v′i if v′i ∈ L and
vi = �(v′i ) if v′i ∈ L∗. Since H contains no cycles of length at most six, � traverses each
edge of a tree T ⊂ H twice. However, T has at least four edges, since C contains at
least four edges of H. This implies � has length at least eight, which is a contradiction.
Therefore H ∗ contains no hexagons. Also, H ∗ has 2(q + 1)(q3 + q2 + q + 1) edges
and, with n = 2(q3 + q2 + q + 1) and m = q3 + q2 + q + 1, we have

|E(H ∗)| > 21/3(mn)2/3 + 2
3 n−O(n2/3).

It is known that there is a prime number in the interval {n, n + 1, . . . , n + cn�} for
some � ∈ [ 12 , 1). The most recent advance is due to Baker et al. [2], who proved that
� = 21/40 works. Then the infinite sequence of graphs H ∗q shows that for all m and
n = 2m,

ex(m, n, C6) > 21/3(mn)2/3 −O(n�+5/6).

This shows Theorem 1.2 is asymptotically optimal when n = 2m.

2.2. Non-bipartite construction

A polarity of a bipartite graph is a bijection between the parts of the bipartite graph
which is an involutary automorphism of the graph. The existence of polarities for
incidence graphs of certain rank two geometries, known as generalized polygons, was
used by Lazebnik, Ustimenko and Woldar to construct dense graphs without cycles
of length 2k for k ∈ {2, 3, 5}. In particular, it is known that the bipartite graphs Hq

possess a polarity (see [16]) if and only if q = 22�+1, for some positive integer �. This
was used in [15] to construct from Hq a graph Gq with N = q3+ q2+ q + 1 vertices,
1
2 [(q + 1)(q3 + q2 + q + 1) − q2 − 1] edges, and no cycles of length three, four or
six. For our construction, we start with the graph Gq = G = (V , E). Let (A, B) be a
partition of V into two sets, A and B, let G[A] be the subgraph of G induced by A,
and suppose that each edge in G[A] is given an orientation. Let W be a new set of
vertices, disjoint from V, with |W | = |A|, let � be a bijection W ↔ A, and let G∗ be
the graph on V ∪W defined as follows:

E(G∗) = E ∪ {uv : u�(v) ∈ E, u ∈ B, v ∈ W } ∪ {uv : u ∈ A, v ∈ W, �(v)→ u}.

We claim that G∗ is hexagon-free. To see this, suppose C = (v1, v2, v3, v4, v5, v6, v1)

is a hexagon in G∗, and form the closed walk

� = (u1, u2, u3, u4, u5, u6, u1),

where ui = vi if vi ∈ V and ui = �(vi) if vi ∈ W . Note that � is a closed walk
in G. Since G contains no cycles of length three, four or six, � is a walk on a tree
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T ⊂ G. Now C contains at least two vertices in W, otherwise T contains four edges
of C and � has length at least eight. So there are two vertices u, v ∈ W of C, each
incident with two edges of E(G∗)\E(G), since W is an independent set in G∗. The
four edges of C incident with u and v correspond to two subpaths of � of length two
whose center vertices are �(u) and �(v), by construction. These subpaths must share
an edge, otherwise T has at least four edges, and � has length at least eight, which is
not possible. Furthermore, the edge they have in common must be �(u)�(v) ∈ G[A],
by construction. However, this implies both �(u)→ �(v) and �(v)→ �(u), which is
impossible, since �(u)�(v) was given only one orientation. This contradiction completes
the proof.

We now choose A so as to maximize |E(G∗)|. Fix a positive integer K < N and
let A ⊂ V be a subset of size K, chosen uniformly at random among all such subsets.
Observe that in expectation, the number of edges incident with A is at least

(
N−2
K−2

)+ 2
(
N−2
K−1

)
(
N
K

) = K

N
·
(

2− K − 1

N − 1

)
|E|.

Therefore we can choose such an A ⊂ V for which

|E(G∗)| � |E| + K

N

(
2− K − 1

N − 1

)
|E|.

The number of vertices in G∗ is n = N +K . Choosing K = 	(√5− 2)N
 we find

|E(G∗)| � 3(
√

5− 2)

(
√

5− 1)4/3
n4/3 + 2(

√
5− 2)

(
√

5− 1)
n−O(n2/3).

This completes the construction for the lower bound in Theorem 1.1.

3. The structure of hexagon-free graphs

The quadrilateral relation on the edge-set of a hexagon-free graph G = (V , E)

is the symmetric relation � under which two edges are related if some quadrilateral
in G contains both of them. In bounding ex(n, C6), we require a description of the
components of �. In this section, we give a complete description of these components.
The set of edges in each component of � is the edge-set of a subgraph of G. We
let �(G) denote the set of all subgraphs of G formed in this way. Let us say that a
subgraph H of G is strongly induced if every path of length at most four with both
endvertices in H is contained in H. A maximal complete bipartite subgraph of G is a
complete bipartite subgraph of G which contains a cycle and is not contained in any
other complete bipartite subgraph of G. Since G is hexagon-free, these consist of a pair
of vertices and all their common neighbors in G. We say that a collection of subgraphs
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Type (1) Type (2) Type (3)

Fig. 1. Strongly induced subgraphs.

of a graph G decomposes G if the subgraphs are pairwise edge-disjoint and every edge
of G is in one of the subgraphs. The main theorem we prove is as follows:

Theorem 3.1. Let G be a hexagon-free graph. Then �(G) decomposes G into single
edges, maximal complete bipartite graphs and strongly induced subgraphs of types (1),
(2) or (3).

We give a description of the graphs in the illustrations. A subgraph of G of type (1)

is a subgraph of G consisting of a complete graph with vertex set {a, b, c} (the vertices
a, b and c are shown as white squares in the leftmost drawing), such that a and b have
at least two common neighbors, a and c have at least two common neighbors, and the
set of common neighbors of a and b is disjoint from the set of common neighbors of
a and c. A subgraph of type (2) is a subgraph consisting of a complete graph with
vertex set {a, b, c, d}, together with all common neighbors of {b, c} (the vertices b and
c are shown as white squares in the center Fig. 1). Finally, a subgraph of type (3) is
a graph of minimum degree at least three on exactly five vertices.

Proof of Theorem 3.1. One observes that if V is the vertex set of a subgraph of G
of type (i), then G[V ] is of type (j) for some j � i. Let us prove that J = G[V ] is a
strongly induced subgraph of G. Let P be a shortest path, with both endpoints in V,
such that P �⊂ J . Then P has length at least two, since J is an induced subgraph of G.
Let k be the length of P. By inspection, any pair of vertices of V is joined by a path
of length two, three, and four in J, excepting those pairs of vertices (drawn as white
squares in the illustration), all of whose common neighbors are already included in J.
If k�4, then we find a path P ′ ⊂ J , of length 6−k, with the same pair of endvertices
as P. However, P ∪ P ′ is a hexagon in G. This contradiction shows k�5, so J is a
strongly induced subgraph of G. In particular, if J ⊂ H for some H ∈ �(G), then
H = J : since J is strongly induced, there can be no quadrilateral in G containing an
edge in E(J ) and an edge in E(G)\E(J ).

Now we complete the proof. Suppose H ∈ �(G) is not a complete bipartite graph
(in particular, not a single edge). Then H contains quadrilaterals, Q1 and Q2, such that
E(Q1) ∩ E(Q2) �= ∅ and Q1 ∪Q2 is non-bipartite. For if Q1 ∪Q2 is bipartite, then
Q1�Q2 is a cycle of length six. Let V consist of the union of V (Q1) ∪ V (Q2) and
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Fig. 2. K-triangles.

all vertices of G with at least two neighbors in V (Q1) ∪ V (Q2). Since G is hexagon-
free, Q1 and Q2 share at least three vertices. If V (Q1) = V (Q2), then Q1 ∪Q2 is a
complete graph on four vertices. It follows that G[V ] contains a subgraph, J, of type
(2) or (3). By the first part of the proof, H = J . Now suppose Q1 and Q2 share
three vertices. Then Q1 ∪Q2 is of type (1), so G[V ] contains a subgraph J of type
(1), (2) or (3). By the first part of the proof, H = J . Therefore H has type (1), (2)

or (3). �

3.1. Quadrilateral-free subgraphs

In this section, we prove Theorem 1.3, that every hexagon-free graph contains a
subgraph of girth at least five containing at least half its edges.

Proof of Theorem 1.3. By Theorem 3.1, �(G) decomposes G into single edges, max-
imal complete bipartite graphs and strongly induced subgraphs of types (1)–(3). Let
F be the subgraph consisting of all single edges in the decomposition given by �(G).
By inspection, each H ∈ �(G) of types (1)–(3) has a subgraph TH of girth at least
five containing more than half the edges of H, except if H is a complete graph of
order four or five in which case |E(TH )| = 1

2 |E(H)|. If F is non-empty, then we can
choose a bipartite subgraph of F of girth at least five with a least 1

2 |E(F)|+1 edges. It
remains to deal with those components of �(G) which are complete bipartite graphs.

Let K be such a component. A triangle in G is defined to be a K-triangle if it
contains an edge of K. We claim that there is an edge eK ∈ E(G) joining two vertices
of K such that every K-triangle in G contains eK . One checks the claim using the fact
that every quadrilateral in G is either contained in K or edge-disjoint from K, which
follows since K is a component of �(G). We now define a tree TK ⊂ K so that every
triangle containing at least one edge of K also contains an edge of E(K)\E(TK). Then
the graph consisting of the union over K of all trees TK has girth at least five. The
tree TK is chosen according to the location of the edge eK , as shown in Fig. 2 (the
tree TK is shown in bold and the edge eK is dotted). In all cases except one, TK

has 1
2 |E(K)| + 1 edges. The exceptional case is when eK joins two vertices of degree

1
2 |E(K)| in K (the figure on the right in the illustration above).

Let J be the union of all the subgraphs TH and TK , together with F. Then J contains
no quadrilateral (each is contained in an element of �(G)) and no triangle, since a
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triangle not contained in a type (1), (2) or (3) subgraph and not contained in F consists
of at least one edge of a maximal complete bipartite subgraph of G. Finally, J has size
at least

∑
H∈�(G)

1
2 |E(H)| = 1

2 |E(G)|.

Equality holds only if every element of � is a complete graph of order four or five
(which are subgraphs of types (2) and (3), respectively) or a maximal complete bipartite
graph K with two vertices of degree 1

2 |E(K)| joined in G, and E(F) = ∅. Now suppose
every subgraph of G of girth at least five has size at most 1

2 |E(G)|. We claim that all
components of �(G) are complete graphs of order four or five. Suppose this is not true.
Then there is a component of �(G) which is a maximal complete bipartite graph with
two vertices of degree 1

2 |E(K)|, joined by the edge eK . Note that there is no triangle
in G containing eK with is not already contained in E(K)∪{eK}. Since E(F) = ∅ and
|E(J ) ∪ {eK}| > 1

2 |E(G)|, eK is contained in a quadrilateral in E(J ) ∪ {eK}, and this
quadrilateral is contained in a complete bipartite component L of �(G). It follows that
eL = eK and so the tree TL ⊂ L has size 1

2 |E(L)| + 1. Therefore |E(J )| > 1
2 |E(G)|,

which is a contradiction. So all components of �(G) are complete graphs of order four
or five. �

In fact, for bipartite graphs, the following stronger statement is true.

Theorem 3.2. Let G = (V , E) be a bipartite hexagon-free graph. Then G contains a
sub-graph F, of girth at least eight, such that dF (v)� 1

2dG(v) for every vertex v ∈ V .

Proof. By Theorem 3.1, each H ∈ �(G) is either a complete bipartite graph containing
a quadrilateral, or a single edge. For each H ∈ �(G) containing a quadrilateral, we
choose a spanning tree TH in H containing at least half the edges on each vertex of
H. The union of all these trees together with all single edges in �(G) is the required
subgraph of G. �

Corollary 3.1. Let G be a hexagon-free bipartite graph with parts A and B. Suppose
every vertex of A has degree at least �(A) and every vertex of B has degree at least
�(B), and G has maximum degree �. Then

�(�(A)− 2)(�(B)− 2)�8 max{|A|, |B|}.

For any n-vertex hexagon-free graph of minimum degree � and maximum degree �, the
inequality �(�− 4)2 �64n holds.

Proof. Let F be a subgraph of G as in the last theorem. Then every vertex of A has
degree at least �(A)/2 in F and every vertex of B has degree at least �(B)/2 in F.
Let v be a vertex of maximum degree in F. Then dF (v)��/2. We assume v ∈ A, as
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similar arguments are applied in the case v ∈ B. Since F has girth at least eight, the
number of vertices of F at distance three from v is at least

�

2
·
(

�(A)

2
− 1

)(
�(B)

2
− 1

)
.

As all these vertices are distinct, this expression is at most |B|. For the second statement
of the corollary, we use an observation of Erdős [7]: any graph G contains a bipartite
subgraph F such that dF (v)� 1

2dG(v) for all vertices v of G. By the first part of the
corollary,

�

2

(
�

2
− 2

)2

� 8n.

This completes the proof. �

4. Matrix inequalities

A very general Hölder-type inequality for matrices was proved by Blakley and Roy
[3]: they showed that if A is an n× n symmetric pointwise non-negative matrix and v

is a non-negative unit vector, then

〈
Akv, v

〉
� 〈Av, v〉k .

In the current context, we note that the Blakley–Roy inequality implies that ‖Ak‖1 �
(‖A‖1)k , where ‖A‖1 is the sum of the entries of the matrix A divided by n. If A is
the adjacency matrix of an n-vertex graph, then ‖Ak‖1 is precisely the (normalized)
number of walks of length k in the graph, where the walks (�0, �1, �2, . . . ,�k) and
(�k, �k−1, . . . ,�1, �0) are considered distinct. It is not hard to deduce that the number
of paths of length three in a graph G = (V , E) with n vertices is at least

1

2
(W3 − 6T − 4P2 − 2P1)�

4|E|3
n2 − 3�|E|, (1)

where � is the maximum degree of G, Pi is the number of paths of length i in G, W3
is the number of walks of length three in G, and T is the number of triangles in G. The
above inequality follows from the fact that G contains at most (�− 1)|E|/3 triangles,
at most (�−1)|E| paths of length two, and |E| paths of length one. Inequality (1) may
also be deduced from a Moore-type bound, established recently by Alon et al. [1].

In the case of bipartite graphs, Sidorenko [17] proved a similar statement to (1) for
matrices which are not necessarily symmetric. Extending the results in [1], Hoory [13]
gave a tight lower bound on the number of paths of length k in an m × n bipartite
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graph with prescribed average degree. A consequence of these inequalities is that the
number of paths of length three in an m×n bipartite graph G = (V , E) with maximum
degree � is at least

1

2
(W3 − 4P2 − P1)�

|E|3
mn
− 2�|E|. (2)

These inequalities will be used in the proofs of Theorems 1.1 and 1.2.

5. Degenerate and non-degenerate pairs

Throughout this section, G = (V , E) is a fixed hexagon-free graph and � is a pair
of vertices of G. We denote by |�| the number of paths of length three in G with both
endvertices in �. Suppose P1, P2, . . . , Pk are the paths of length three joining the two
vertices of �. We say that � is degenerate if the distance between the vertices of � in
P1 ∪ P2 ∪ . . . ∪ Pk is two, and � is non-degenerate otherwise. We emphasize that the
distance in the definition of degeneracy is taken in P1 ∪ P2 ∪ . . . ∪ Pk , and not in G.

Lemma 5.1. Let � ∈ (V2) with |�|�2, and let P1, P2, . . . , Pk be the paths of length
three with both endvertices in �. Then � is non-degenerate if and only if

K� =
k⋃

i,j=1

E(Pi) � E(Pj )

is a complete bipartite graph, and E(P1) ∩ E(P2) ∩ · · · ∩ E(Pk) consists of a single
edge, e�, incident with a vertex of maximum degree in K�.

Proof. It is clear that if K� is a complete bipartite subgraph of G, then the distance
between the vertices of � in P1 ∪ P2 ∪ . . . ∪ Pk is three, so � is non-degenerate. Now
suppose � is non-degenerate. Let E� be the set of edges of P1∪P2∪ . . .∪Pk which are
not incident with �. Since G is hexagon-free, E� is an intersecting family, so E� is a
star or a triangle. In the latter case it is not hard to see that � is degenerate. Therefore
E� is a star. Let w be the center of E�. Then exactly one vertex v of � is adjacent to
w. If the other vertex u of � is not adjacent to some endvertex x of E�, then the edge
wx is not in any of the paths Pi , which is a contradiction. Therefore u is adjacent to
all endvertices of E�, which means that the union of all E(Pi) � E(Pj ) is a complete
bipartite subgraph of G. Furthermore,

E(P1) ∩ E(P2) ∩ . . . ∩ E(Pk) = {vw},

so we take the edge e� to be vw (Fig. 3). �
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K�

�

e�

�

Fig. 3. A non-degenerate pair.

We define a graph H to be central if some vertex of H is adjacent to all other
vertices in H. In other words, H has a spanning star.

Lemma 5.2. Let � be a pair of vertices of G with |�|�2, and suppose P1, P2, . . . , Pk

are the paths of length three in G joining the vertices in �. Then � is degenerate if
and only if the graph P1 ∪ P2 ∪ · · · ∪ Pk is central.

Proof. Suppose J = P1 ∪P2 ∪ . . .∪Pk is central. Since � is not an edge of any Pi , �
is certainly degenerate. Now suppose � is degenerate, and let E� be the set of edges
of J which are not incident with a vertex of �. Then E� is an intersecting family,
so E� is a star or a triangle. If E� is a triangle, then J has five vertices, and it is
straightforward to verify that J is central. Suppose E� is a star with center w. Since
� is degenerate, there is a path (u, x, v) in J with both endvertices in � = {u, v}. If
x = w, then u and v are adjacent to w, so w is central. If x �= w, then since E� is
a star with center w, (u, x, w, v) and (v, x, w, u) are paths of length three in J, so u
and v are adjacent to w. It follows that J is central. �

6. Counting paths: bipartite graphs

We now prove that very few pairs of vertices in a bipartite hexagon-free graph are
joined by at least three paths of length three. More precisely:

Lemma 6.1. Let G = (V , E) be a hexagon-free bipartite graph of maximum degree
�, and let � be the set of pairs � for which |�|�2 and � ∈ E, or |�|�3. Then

∑
�∈�
|�| � �|E|.
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Proof. A complete bipartite subgraph of G is called maximal if it is not properly
contained in any other complete bipartite subgraph, and contains a cycle. By Theo-
rem 3.1, �(G) is a decomposition of G into maximal complete bipartite graphs and
single edges. Moreover, every maximal complete bipartite graph in G is a component
of �(G), since every two edges of this subgraph are related in �. Now let � ∈ �.
By Lemma 5.2, the union of all paths of length three with endvertices in a degen-
erate pair is a central graph, and such a graph cannot be bipartite. So every pair
� ∈ � is non-degenerate. Now we use the notation K� and e� of Lemma 5.1. By
this lemma, for each � ∈ �, K� is a complete bipartite graph, and all paths of length
three with both endvertices in � comprise a subpath of K� of length two, together
with a fixed edge e�, incident with a vertex of maximum degree in K�. For � ∈ �,
define

h(�) =
{

K� ∪ {�, e�} if � ∈ E,

K� if � /∈ E.

Note that h(�) is a complete bipartite subgraph of G, with exactly two vertices of
degree at least three. We claim that h(�) is a maximal complete bipartite subgraph
of G. Suppose, for a contradiction, that this is false for some � ∈ �. Then there is
a path P ⊂ G, of length two, such that P �⊂ h(�), and P joins the two vertices of
h(�) of degree at least three. However, P ∪ {e�} is a path of length three with both
endvertices in �, which contradicts Lemma 5.1. This proves the claim, and we conclude
that h(�) ∈ �(G). Let �◦(G) consist of all elements of �(G) which are not single
edges. Now define

h� : �◦(G)→ � where h�(H) = {� ∈ � : h(�) = H }.

Thus h� is the inverse image of h. Our next claim is |h�(H)|�2� for all H ∈ �◦(G).
For a fixed H ∈ �◦(G), if h(�) = H and � ∈ E, then � ∈ E(H), by definition of h(�).
So the equation h(�) = H has |E(H)| solutions � ∈ E. The equation h(�) = H has at
most 2�− |E(H)| solutions � /∈ E, since K� = H in this case, and there are at most
2� − |E(H)| choices of the edge e� ∈ E(G)\E(H). We conclude that |h�(H)|�2�
for all H ∈ �◦(G), proving the claim.

Finally, for all � ∈ �, we have 2|�| = |K�|, so |�|� 1
2 |E(H)| for all � ∈ h�(H).

Therefore

∑
�∈�
|�| =

∑
H∈�◦(G)

∑
�∈h�(H)

|�|

�
∑

H∈�◦(G)

∑
�∈h�(H)

1
2 |E(H)|



488 Z. Füredi et al. / Advances in Mathematics 203 (2006) 476–496

=
∑

H∈�◦(G)

|h�(H)| · 1
2 |E(H)|

�
∑

H∈�◦(G)

�|E(H)|.

This is at most �|E|, since the subgraphs in �◦(G) are pairwise edge-disjoint. �

Remark. The condition � ∈ � in this lemma is necessary. For example, the bipartite
graph H ∗, defined in Section 2, has maximum degree 2(q+ 1) and 2(q+ 1)(q3+ q2+
q + 1) edges, and

∑
|�|=2
�/∈�

|�| =
∑
|�|=2
�/∈E

|�| ∼ 4q6 ∼ q�|E|.

The reason the lemma does not apply to pairs � /∈ � with |�| = 2 is that if two
non-adjacent vertices � with |�| = 2 are joined by paths P and Q of length three, then
P ∪Q contains a quadrilateral by Lemma 5.1, but this quadrilateral (the subgraph h(�)

in the proof above) might not be a maximal complete bipartite subgraph of G.

7. Proof of Theorem 1.2

We prove, by induction on m+n, that if G = (V , E) is a bipartite graph with parts A
and B of sizes m�3 and n�3 respectively, and |E|�21/3(mn)2/3+16(m+n), then G
contains a hexagon. Let f (m, n) = 21/3(mn)2/3+16(m+n). First note that the statement
of the induction hypothesis is vacuously true if m + n�16, since f (m, n) > mn in
this case. Now let m + n > 16, and suppose, for a contradiction, that some m by n
bipartite graph G = (V , E), with |E|�f (m, n), contains no hexagon. Let

�(A) = 2
3 · 21/3m−1/3n2/3 + 16,

�(B) = 2
3 · 21/3n−1/3m2/3 + 16.

Note that �(A)�f (m, n)− f (m− 1, n) and �(B)�f (m, n)− f (m, n− 1). It follows
that every vertex of A has degree at least �(A), otherwise we remove a vertex of degree
less than �(A) to obtain an (m − 1) by n bipartite graph with at least f (m − 1, n)

edges, and this graph contains a hexagon, by induction. Similarly, every vertex of B
has degree at least �(B). By Corollary 3.1,

� · 4
9 (m1/3n1/3) < �(�(A)− 2)(�(B)− 2) � 8n.

It follows that � < 18 · 21/3n2/3m−1/3. Now the number of paths of length three
in G is

∑ |�|, where the sum is over all pairs � ∈ (
V
2

)
. By Lemma 6.1 and
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inequality (2),

|E|3
mn
− 2�|E| �

∑
|�| � 2mn+ 2�|E|.

Let g(x) = x3/mn − 4�x − mn and z = 27(mn)2 + 3
√

(3mm)4 − 192(�mn)3. Then
g(x) has a unique real root x0 given by

x0 = 1
3 z

1
3 + 4�mnz−

1
3

< 2
1
3 (mn)

2
3 + 4�mn(27mn)−

2
3

< 2
1
3 (mn)

2
3 + 4 · 18 · 2 1

3

27
2
3

n

< 2
1
3 (mn)

2
3 + 16n

In this calculation we used the upper bound � < 18 ·21/3n2/3m−1/3. The above expres-
sion is an upper bound for |E|, which contradicts the lower bound
|E|�f (m, n). �

8. Counting paths: non-bipartite graphs

In the case of non-bipartite hexagon-free graphs, we prove that
∑ |�|�35�|E| where

the sum is over all pairs � of vertices which have |�|�3 or |�|�2 and � ∈ E or |�|�2
and � is degenerate:

Lemma 8.1. Let G = (V , E) be a hexagon-free graph of maximum degree �, and let
�∗ be the set of degenerate pairs � ∈ (V2) with |�|�2. Then

∑
�∈�∪�∗

|�| � 35�|E|.

Proof. We first consider the contribution of pairs � ∈ �∗ to the sum on the left. Let
p[v] denote the number of paths of length three in G consisting only of vertices in
A = �(v)∪ {v}. By Lemma 5.2, for � ∈ �∗, the union of all the paths of length three
with endvertices in � is a central subgraph of G. Therefore

∑
�∈�∗

|�|�
∑
v∈V

p[v].

Let e[v] be the number of edges of G[A]. If we choose a pair of disjoint edges in
G[A], then there are at most four choices for a path of length three containing these
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edges. Therefore p[v] < 2e[v]2. Now since G is hexagon free, no path of length four
consists entirely of edges in �(v). By the Erdős–Gallai theorem [8], there are then at
most 3d(v)/2 edges in �(v), so e[v]�5d(v)/2. It follows that

∑
�∈�∗
|�| <

∑
v∈V

2e[v]2 �
∑
v∈V

25�
2 d(v) � 25�|E|.

This takes care of the sum over �∗.
Now let � ∈ � and define h(�) = K� if � /∈ E and h(�) = K�∪{e�, �} if � ∈ E, as

in the proof of Lemma 6.1. Recall that a maximal complete bipartite subgraph of G is a
complete bipartite subgraph of G which contains a cycle and it not properly contained
in any other complete bipartite subgraph of G. Following the proof of Lemma 6.1, h(�)

is a maximal complete bipartite subgraph of G. By Theorem 3.1, h(�) is contained in
a unique subgraph H� ∈ �◦(G), where �◦(G) is the set of subgraphs of G in �(G)

which contain a cycle. By inspection, using Theorem 3.1, each H ∈ �◦(G) contains
at most ten maximal complete bipartite subgraphs of G. Define

g : �◦(G)→ � by g(H) = {� : H� = H }.

Fix H ∈ �◦(G). Then the equation g(�) = H with � ∈ E has at most |E(H)| solutions,
since � ∈ E implies � ∈ E(H�). The equation g(�) = H with � /∈ E has at most 20�
solutions, since there are ten choices for h(�), which is a maximal complete bipartite
subgraph of H, and then at most 2� choices for e�, which is incident with one of
the two vertices of h(�) of maximum degree. Finally, |�|� 1

2 |E(H)| for all � ∈ g(H).
Therefore

∑
�∈�
|�| =

∑
H∈�◦(G)

∑
�∈g(H)

|�|

�
∑

H∈�◦(G)

|g(H)| · 1
2 |E(H)| �

∑
H∈�◦(G)

10�|E(H)|.

This is at most 10�|E|, by Theorem 3.1. �

8.1. Maximum directed cuts

A maximum directed cut in an oriented graph G is a partition of the vertex set into
two sets X and Y such that the number of directed edges from X to Y is as large as
possible. This maximum is denoted mdc(G).

Lemma 8.2. Let G = (V , E) be an oriented graph on n vertices, and suppose that
mdc(G)��|E|. Then G contains at least (1− �)2|E|2/n directed paths of length two.

The proof of Lemma 8.2 is based on the following numerical inequality:
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Lemma 8.3. For n�1 let V be an n-point set and f, g : V → [0,∞) be two functions
such that

∑
f (v) =∑ g(v). Then

∑
v∈V

f (v)g(v) � 1

n

[∑
v∈V

min{2f (v)− g(v), f (v)}
]2

.

Proof. If f = g, then the inequality becomes the Cauchy–Schwartz inequality

∑
v∈V

f (v)2 � 1

n

(∑
v∈V

f (v)

)2

.

Suppose, therefore, that there exist u, v ∈ V such that f (u) > g(u) and f (v) <

g(v), and let ε = min{|f (u) − g(u)|, |f (v) − g(v)|}. Then define functions f ′ and
g′ which are identical to f and g on V \{u, v} and such that f ′(u) = f (u) − ε and
g′(v) = g(v)−ε, and f ′(v) = f (v) and g′(u) = g(u). Then f ′ and g′ are non-negative
functions with the same sum. Furthermore, the left-hand side of the inequality decreases,
whereas the right-hand side stays the same. Repeating the transformation f → f ′ and
g → g′ finitely many times, we arrive at the Cauchy–Schwartz inequality. Since the
inner product

∑
f (v)g(v) only decreased under the transformation, this completes

the proof. �

Proof of Lemma 8.2. We assume the vertex set of G is V. For a vertex v ∈ V , let
f (v) and g(v) be the number of edges incident with v which are oriented into v, and
the number of edges oriented out of v, respectively. The number of directed paths of
length two is exactly

∑
f (v)g(v). The restriction on the size of the maximum directed

cut implies that for some a��|E|,
∑
v∈I
[g(v)− f (v)] = a where I = {v : g(v) > f (v)}.

Also
∑

f (v) = |E| =∑ g(v). By Lemma 8.3,

∑
v∈V

f (v)g(v)� 1

n
(|E| − a)2 � 1

n
(1− �)2|E|2.

Therefore the number of directed paths of length two in G is at least
(1− �)2|E|2/n. �

8.2. Pairs joined by a unique path

Lemma 8.1 shows that less than 18�|E| pairs of vertices of a hexagon-free graph
G are joined by at least three paths of length three. The question remains: does there
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exist an extremal n-vertex hexagon-free graph for which almost all pairs are joined by
two paths of length three? In this section, we prove a lemma which shows that such
graphs are far from extremal. This should be compared with the bipartite construction
in Section 2.

An oriented path of length three is a forward path if it contains a directed path
of length two from one of its endvertices. For example, u → v → w ← x and
u → v ← w ← x are forward paths, whereas u → v ← w → x is not. For a given
orientation of a graph G, let �∗∗ denote the set of pairs of vertices joined by at least
one forward path and at least two paths of length three.

Lemma 8.4. Let G = (V , E) be a hexagon-free graph of maximum degree �. Then
there is an orientation of G such that

∑
�∈�∗∗

|�| < 43�|E|.

Proof. The orientation is described as follows. For subgraph H ∈ �(G) which is not a
quadrilateral and not a single edge, we orient the edges of E(H) so that each vertex of
degree two in H has indegree two. The remaining edges of G are oriented arbitrarily.
By Theorem 3.1, since �(G) decomposes G, this orientation is consistent. Then, by
Lemma 8.1, ∑

�∈�∗∪�
|�|�35�|E|.

For the rest of the proof, � ∈ �∗∗\(�∗ ∪�), so that |�| = 2 and � is non-degenerate.
If P = P� and Q = Q� are the paths of length three with endvertices in �, then
E(P )�E(Q) is a quadrilateral, K�, by Lemma 5.1. By Theorem 3.1, K� is contained
in a unique subgraph H� ∈ �(G). It is not hard to see, via Theorem 3.1, that there are
at most 4�|E| choices of � ∈ (V2) such that at least one of the two vertices incident
in K� with a vertex of � has degree at least three in H�, or such that K� = H�. Now
suppose � is not such a pair and |�| = 2. Then we can assume � = {u, v},

K� = (u, x, w, y) P� = (u, x, w, v) Q� = (u, y, w, v)

and K� �= H = H�, and dH (x) = dH (y) = 2. Since H is not a quadrilateral, K� has
the orientation u← x → w ← y → u. If P� is a forward path, then u→ x → w or
v→ w→ x, however, these orientations both conflict with the orientation of K�. We
conclude that neither P� nor Q� is a forward path. So there are less than 4�E| pairs
� ∈ �∗∗\(�∗ ∪�). It follows that

∑
�∈�∗∗

|�|�
∑

�∈�∗∗\(�∗∪�)

|�| +
∑

�∈�∗∪�
|�| < 35�|E| + 8�|E| < 43�|E|.

This completes the proof. �
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Corollary 8.1. Let G = (V , E) be a hexagon-free graph of minimum degree � and
maximum degree �, where ��2, and suppose G has no cut of size more than �|E|.
Then the number of pairs of vertices of G joined by exactly one path of length three
is greater than

(1− �)2 (�− 2)|E|2
n

− 43�|E|.

Proof. By Lemma 8.2, the number of directed paths of length two in any orientation
of the edges of G is at least (1 − �)2|E|2/n. In particular, the number of forward
paths in any orientation of G is at least (1− �)2(�− 2)|E|2/n, since there are at least
� − 2 ways of extending a given directed path of length two to a forward path. By
Lemma 8.4, there is an orientation of G such that fewer than 43�|E| forward paths are
the unique path of length three joining their endvertices. This completes
the proof. �

9. Proof of Theorem 1.1

Let G = (V , E) be an n-vertex graph with at least �n4/3+cn edges and no hexagon,
such that n is as small as possible. Let � = 	 4

3�n1/3
+c, and suppose G has maximum
degree �. We may assume dG(v) > �− 1 for all v ∈ V , otherwise we remove a vertex
of smallest degree to obtain a graph with at least �(n−1)4/3+ c(n−1) edges, and this
graph contains a hexagon, by the minimality of G. Consider a maximum cut H with
parts of sizes m and n−m, where m = 	n/2
. By Theorem 1.2, if c > 32�, then

|E(H)|�21/3(m(n−m))2/3 + 16n� 1

2
n4/3 + 16n <

1

2�
|E|.

Let �i be the set of pairs of vertices of G joined by exactly i paths of length three.
Using the lower bound for |�1| given by Corollary 8.1, with � = 1/2�,

|�1| + 2|�2| < n2 −
(

1− 1

2�

)2
(�− 2)|E|2

n
+ 43�|E|.

By inequality (1), G has at least 4|E|3
n2 − 3�|E| paths of length three. So, by

Lemma 8.1,

4|E|3
n2 − 3�|E| <

∑
|�| < |�1| + 2|�2| + 35�|E|

< n2 −
(

1− 1

2�

)2
(�− 2)|E|2

n
+ 78�|E|

< n2 −
(

1− 1

2�

)2 4|E|3
3n2 +

(c + 9)|E|2
3n

+ 78�|E|.
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By Corollary 3.1, � is within a constant factor of the average degree of G:

��(6/�)2n1/3.

Using this inequality, we may rearrange the preceding inequality by replacing |E| by
�n4/3 + cn, multiplying by n2, and moving all terms to the left-hand side. A small
calculation shows that after this rearrangement, the coefficient of n4 is 1

3 (16�3− 4�2+
�− 3). By definition of �, this is zero. The rest of the inequality above becomes:

(
c + 3�2 + 49

3
�2c − 2916

�
− 4�c

)
n

11
3 +

(
c2

�
+ 50

3
�c2 + 6�c − 2916c

�2 − 4c2
)

n
10
3

+
(

17c3

3
− 4c3

3�
+ c3

3�2 + 3c2
)

n3 < 0.

The left-hand side is positive if c is large enough, which is a contradiction. Therefore
if c is large enough constant, then every n-vertex graph with at least �n4/3+ cn edges
contains a hexagon. This proves Theorem 1.1. �

10. Concluding remarks

• Using Corollary 8.1, one can deduce the following statement:

if o(n2) pairs of vertices in an n-vertex hexagon-free graph G are joined by
exactly one path of length three, then G has a bipartite subgraph with |E(G)|−
o(n4/3) edges.

This is proved as follows. First we observe that the statement is trivial if |E(G)| =
o(n4/3), so we assume |E(G)|�	n4/3 where 	 > 0 is an absolute constant. As in
the proof of Theorem 1.1, one proves that the minimum degree of G is at least
c|E|/n and the maximum degree of G is at most d|E|/n where 0 < c < d are
absolute constants (for example see the upper bound on � given in the proof of
Theorem 1.1). If the maximum cut in G has size �|E(G)| then Corollary 8.1 shows
that at least

(1− �)2c	3n2 −O(d	2n5/3)

pairs of vertices of G are joined by exactly one path of length three. On the other
hand, the number of such pairs of vertices of G is o(n2), by assumption. Therefore
� = 1− o(1), and G has a maximum cut of size |E(G)| − o(n4/3).
• The non-bipartite construction in Section 2 above gives a large family of hexagon-

free graphs with roughly the same number of edges. Indeed, the base graph G is
known to be pseudorandom (see [5]), and it is known that in such graphs, the number



Z. Füredi et al. / Advances in Mathematics 203 (2006) 476–496 495

of edges between disjoint sets A and B of vertices and the number of edges induced
by A are roughly the same as in a random graph with the same density. Therefore
we may choose any subset A of size K = 	(√5− 2)N
 and any orientation of the
edges within A, and the construction will have about the same density. On the other
hand, the distribution of the degrees of the new vertices in W depends explicitly on
the orientation of A, so many of the graphs obtained are non-isomorphic.
• There is not much evidence to suggest whether

lim
n→∞ ex(n, C6)/n4/3

exists. If the limit does exist, then determining its value is an interesting problem. We
are only able to show that the value is in the interval (0.5338, 0.6272). We believe
that its value should be closer to 0.5338 than 0.6272, but do not have a conjecture
as to the exact value, even under the assumption that our graphs are regular. For
these reasons, we have not attempted to optimize the constants in the terms of lower
order in all of our bounds.
• Another interesting question, which might shed light on the asymptotic behavior of

ex(n, C6), is to determine whether or not there are infinitely many n such that

ex(n, n, C6)�cn4/3 − o(n4/3)

for some constant c > 1. One way of proving this would be to find infinitely many
n/2 by n bipartite graphs of girth at least eight, and with at least 1

2cn4/3 − o(n4/3)

edges; then the bipartite construction in Section 2 can be applied to give an n × n

bipartite graph with cn4/3 − o(n4/3) edges. Note that any bipartite graph of girth at
least eight and with parts of sizes n/2 and n has at most 2−2/3n4/3 +O(n) edges,
by Theorem 1.2.
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