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Abstract

Let H be a 4-uniform hypergraph on an n-element vertex set V containing no 4-book of 3 pages,
i.e., a hypergraph of 4 quadruples with vertices {1, 2, . . . , 7} and edges {1234, 1235, 1236, 4567}.
Then for n > n0

e(H)�
( �n/2�

2

) ( �n/2�
2

)
.

Moreover, here equality is possible only if V (H) can be partitioned into two sets A and B so that each
quadruple of H intersects A (and B) in exactly two vertices.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Extremal graph theory is one of the most developed areas in graph theory, strongly
connected to several other fields. As we move from ordinary graphs to multigraphs or
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digraphs, the problems become much more involved and for hypergraphs they become
almost intractable. We know only very few asymptotic or exact results in Turán hypergraph
problems. The aim of this note is to increase the number of non-trivial exact results.

The basic problem is as follows. Given a class of k-uniform hypergraphs L determine
ex(n, L), the maximum number of edges of a k-uniform hypergraph of n vertices without
any subgraph isomorphic to a member of L.

We shall consider here the case of what we call “booklike hypergraphs”: for given k
we shall consider k-uniform hypergraphs (later we shall restrict ourselves to 4-uniform
hypergraphs), and for fixed k, p and i (k�p+ i and p�1, i�0) we shall denote by Bk(p, i)

the k-uniform hypergraph with p +1 k-edges, with vertex set {x1, . . . , xk−1, y1, . . . , yk−i},
where the first p k-tuples are of form {x1, . . . , xk−1, y�} for 1���p, and the last edge is
of form {x1, . . . , xi} ∪ {y1, . . . , yk−i}.

Several booklike hypergraphs were investigated before. Katona asked and Bollobás [1]
proved that if a 3-uniform hypergraph H contains no three triplets A, B, C for which

A�B ⊆ C (where � denotes the symmetric difference), then e(H)� n3

27 . In fact, he proved

ex(n, {B3(2, 0), B3(2, 1)}) =
⌊

n + 2

3

⌋ ⌊
n + 1

3

⌋ ⌊
n

3

⌋
.

This was extended by Frankl and Füredi [5]. They proved that forn > 3000, ex(n, {B3(2, 0)})
= ex(n, {B3(2, 0), B3(2, 1)}). (Keevash and Mubayi [11] reduced the threshold 3000 to 33.)
Mubayi and Rödl [12] showed that limn→∞ ex(n, B3(3, 0))/

(
n
3

)
� 1

2 and conjectured that
the limit density is 4

9 . This was proved by Füredi et al. [9,10]. Put

s(n, k) := ex(n, {Bk(2, 0), . . . ,Bk(2, k − 2)}).
De Caen asked to determine or estimate s(n, k). Sidorenko [14] solved the case k = 4 (in
a slightly different form). His results were extended by Frankl and Füredi [7] for k = 5, 6.

They proved that if n > n0, then s(n, 4) = n4

44 , s(n, 5) = 6
114 n5, and s(n, 6) = 11

125 n6

whenever 4, 11 or 12 divides n (respectively). Pikhurko [13] proved that ex(n, B4(2, 0)) =
s(n, 4) for all large n.

Using some results of Erdős [4] or Brown and Simonovits [3] one immediately sees that
the extremal numbers for a forbidden k-uniform hypergraph F and its blown up versions
F(t) differ only by o(nk). This immediately implies that all the above results extend to the
blown-up versions and that in many cases excluding many hypergraphs can be replaced by
excluding just one of the hypergraphs, e.g.,

s(n, k) = ex(n, Bk(2, 0)) + o(nk).

2. New results on 4-books

Here we shall consider 4-uniform hypergraphs. Let F6 be a hypergraph with vertex set
{1, 2, . . . , 6} and edge set E(F6) := {1234, 1235, 1236, 1456}. Define F7 with V (F7) :=
{1, 2, . . . , 7} and E(F7) := {1234, 1235, 1236, 4567}. Using the notation of the previous
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section we haveF6 = B4(3, 1) andF7 = B4(3, 0). Define the (2, 2)-partitioned hypergraph
H2,2(A, B) as follows. V (H) = A ∪ B with A ∩ B = ∅ and

E(H) := {E : |E| = 4 and |E ∩ A| = |E ∩ B| = 2}.
Then e(H2,2(A, B)) = (|A|

2

)(|B|
2

)
and one can easily see that this hypergraph does not

contain an F7, nor F6. Taking |A| = �n/2�, |B| = �n/2� one obtains the hypergraph Hn.
The next theorem states that Hn is the largest F7-free n-vertex hypergraph.

Theorem 1. Let n > n0. Then ex(n, F7) = (�n/2�
2

)(�n/2�
2

)
and the only extremal hypergraph

is Hn.

For an arbitrary hypergraph H and a subset X ⊂ V (H), let NH(X) denote the neighbor-
hood of X, NH(X) := {E \ X : X ⊂ E ∈ E(H)}. The size of N(X) is called the degree
of X in the hypergraph H and is denoted by degH(X). For vertices x, y ∈ V (H), we write
NH(x, y) for NH({x, y}), etc. The min-degree is degmin(H) := min{degH(x)| x ∈ V (H)}.



Note / Journal of Combinatorial Theory, Series A 113 (2006) 882–891 885

Theorem 2. There exists a ϑ > 0 such that the following holds. If H is an n-vertex 4-
hypergraph with

degmin(H)� (1 − ϑ)
n3

16
(1)

(and n > n0) then either H contains an F7 or its vertices can be partitioned into two
classes, A and A so that each edge of H intersects each class in two vertices.

Theorem 3. For every ε > 0 there exist a � = �(ε) > 0 and an n1 = n1(ε) such that the
following holds. If H is an n-vertex 4-hypergraph containing no F7 with

e(H)� (1 − �)
n4

64

and n > n1 then its vertices can be partitioned into two classes, A and A so that by deleting
and adding at most εn4 edges from H one gets H2,2(A, A). That is

E(H)$E(H2,2(A, A)) < εn4.

The strongest result here is Theorem 2, its proof is presented in Section 3. For simplicity
we suppose that ϑ = 1/2500 and n0 = 200, 000, although a careful calculation can show
that ϑ = 0.00148 > 1/700 and n0 = 50, 000 also works. In Section 4 we explain how the
main theorem implies Theorem 1. Theorem 3 is easily implied by Theorem 2 too; the proof
is similar of those in [10] and is omitted.

3. Proof of Theorem 2

Consider an F7-free 4-uniform hypergraph H with the n-element vertex set V , and edge
set E(H) ⊂ (

V
4

)
. Suppose that H satisfies the min-degree condition (1) with ϑ = 1/2500,

n�n0 = 200, 000. We have to show that it can be (2, 2)-partitioned.

3.1. A 3-partition of V (H)

Take an A which is the largest neighborhood of a triple x1, x2, x3: A := N(x1, x2, x3),
� := |A|. H is F7-free, therefore

F ∈ E(H), |F ∩ A|�3 imply that F ∩ {x1, x2, x3} �= ∅. (2)

Choose now two distinct vertices,a1, a2 ∈ A and a third one,x �∈ A for which |N(a1, a2, x)\
A| takes its maximum. Denote this maximum by B,

|B| := max
a1,a2∈A,x �∈A

|N(a1, a2, x) ∩ A|, � := |B|.

Finally, set C := V \ (A ∪ B), � := |C|. We have n = � + � + �.
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Let H3 be the subgraph of H consisting of the edges containing a triple with degree at
most 3: E(H3) := {F ∈ E(H) : degH(X)�3 for some |X| = 3, X ⊂ F }. Obviously,

e(H3)�3

(
n

3

)
. (3)

Let H4 be the hypergraph with edge set E(H) \ E(H3). The following claim is implied
by (2).

Claim 4. For any edge F ∈ E(H4) we have

|A ∩ F |�2 and |B ∩ F |�2. (4)

Denote the number of edges of H intersecting A in i vertices by �i . Again (2) implies
that �4 = 0, and all edges meeting A in 3 vertices belong to E(H3), and

�3 �3

(
�

3

)
. (5)

3.2. An outline of the proof

The rest of the proof looks as follows.
In Section 3.3 we will use the min-degree condition to argue that |C| is very small while

both |A| and |B| are close to n/2. Since all edges of H4 disjoint from C belong to H2,2(A, B)

while e(H4) is close to the maximum size of an H2,2-hypergraph on n vertices, it must be
the case that almost all edges of H2,2(A, B) belong to H, see (13).

Double counting gives pairwise distinct a1, a2, a3, a4 ∈ A and b1, b2 ∈ B such that

B0 = NH(a1, a2, b1) ∩ NH(a3, a4, b2) (6)

has about n/2 elements. Moreover, an easy case analysis shows that any set B0 defined as
in (6) is 2-independent, that is, any edge of H (including the edges of H3) intersects B0 in
at most 2 vertices. The analogous argument gives us a large 2-independent A0 ⊆ A, see
Claim 6.

Finally, in Section 3.5 we observe that the min-degree condition forces that each vertex
outside of A0 ∪B0 can be added to this partition without violating the 2-independence prop-
erty. This implies that H admits a (2, 2)-partition, completing the proof
of Theorem 2.

3.3. Estimating the degrees in A

The following identity will be our starting point. (It is implied by �4 = 0.)

∑
x∈A

deg(x) = �1 + 2�2 + 3�3. (7)
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We will give upper bounds for various linear combinations of the �i’s. First, since every
|N(a, x, y)|��, one has

3�1 + 2�2 =
∑

a∈A, x,y∈A

|N(a, x, y)|��

(
n − �

2

)
· �. (8)

Next, we use that |N(a, a′, y) ∩ A|�� holds for every a, a′ ∈ A, y ∈ A.

2�2 =
∑

a,a′∈A, y∈A

|N(a, a′, y) ∩ A|�
(

�

2

)
(n − �) · �. (9)

Consider the linear combination of (5), (8), and (9) with coefficients 3/�, 1/(3�) and
2/(3�), respectively. Then on the left-hand side we get (�1 + 2�2 + 3�3)/�. So (7) gives

1

�

∑
a∈A

deg(a) � 9

6
(� − 1)(� − 2) + 1

6
�(n − �)(n − � − 1) + 2

6
(� − 1)(n − �) · �

<
1

6

(
9n2 + 1

4
n2(n − � − 1) + 2

4
n2�

)
= n2

24
(35 + n − � + 2�).

Comparing this upper bound for the minimum degree to the lower bound (1), we obtain

(1 − ϑ)
n3

16
�degmin(H)� min

a∈A
degH(a) <

n2

24
(35 + n − � + 2�) . (10)

Multiplying by 24/n2, rearranging, and using ��� we obtain that

n

2
− 3

2
ϑn − 35 < −� + 2�����. (11)

We obtain

Claim 5. For n > 70/ϑ one has 1
2n − 2ϑn����� 1

2n + 2ϑn. Thus, � < 4ϑn.

3.4. Large independent sets

By (4), for every edge F ∈ E(H4) with F ⊂ A ∪ B one has |A ∩ F | = |B ∩ F | = 2.
Our next aim is to show that almost all edges of this type belong to H. Let R be the family
of 4-subsets missing from H2,2(A, B), i.e.,

R := {G : |G| = 4, |A ∩ G| = |B ∩ G| = 2 and G /∈ E(H)}.
Claim 5 and (3) imply that

e(H) � e(H2,2(A, B)) − |R| +
∑
x∈C

deg(x) + e(H3)

�
(

�

2

)(
�

2

)
− |R| + �

(
n

3

)
+ 3

(
n

3

)
. (12)
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The lower bound (1) implies

e(H) = 1

4

∑
x∈V

degH(x) >
1

4
n (1 − ϑ)

n3

16
.

Comparing this to (12) one gets

|R| <

(
�

2

)(
�

2

)
+ (n − � − �)

(
n

3

)
+ 3

(
n

3

)
− (1 − ϑ)

n4

64
.

For variables �, �, ��0 with � + � + � = n satisfying Claim 5, the right-hand side is
maximal when � is maximal. One gets

|R| <
1

4

(n

2
− 2ϑn

)4 + 4ϑn
n3

6
+ 3

n3

6
− 1

64
n4 + ϑ

64
n4 <

ϑ

2
n4. (13)

Claim 6. There exist an A0 ⊂ A and a B0 ⊂ B such that

(i) 1
2n−40ϑn < |A0|, |B0| < 1

2n+40ϑn, and thus for C0 := V \(A0 ∪B0), |C0| < 80ϑn;
(ii) |F ∩ A0|�2, and |F ∩ B0|�2 hold for every F ∈ E(H).

Hence F ⊂ (A0 ∪ B0), F ∈ E(H) imply |F ∩ A0| = |F ∩ B0| = 2.

Proof. Recall that a setX ⊂ V (H) is called 2-independent ifF ∈ E(H) implies |F∩X|�2.
Let B0 be a 2-independent subset of B of maximum size, and let �0 := |B0|. We will show
�0 > � − 38ϑn.

Consider two disjoint triples T1 := {a1, a2, b1}, T2 := {a3, a4, b2} with ai ∈ A, bj ∈ B.
Our main observation is that (2) implies that the set N(T1)∩N(T2) is 2-independent. Indeed,
in case of |F ∩ N(T1) ∩ N(T2)|�3, either F and three triples through T1 or F and three
triples through T2 form an F7. Hence the set N(T1)∩N(T2)∩B is 2-independent, too. We
get |N(T1) ∩ N(T2) ∩ B|��0. Hence

|N(T1) ∩ B| + |N(T2) ∩ B|�� + �0.

Sum up this inequality for all possible pairs of triples (T1, T2)∑
T1

∑
T2

(|N(a1, a2, b1) ∩ B| + |N(a3, a4, b2) ∩ B|)

�
(

�

2

)
�

(
� − 2

2

)
(� − 1)(� + �0).

Here the left-hand side equals to

2

⎛
⎝ ∑

a1a2∈A b1∈B

|N(a1, a2, b1) ∩ B|
⎞
⎠ (

� − 2

2

)
(� − 1),
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moreover, ∑
a1a2∈A b1∈B

|N(a1, a2, b1) ∩ B| = 2|E(H2,2(A, B)) ∩ E(H)|

�2

((
�

2

)(
�

2

)
− |R|

)
.

One obtains

4

((
�

2

)(
�

2

)
− |R|

)
�

(
�

2

)
�(� + �0).

Then

� − 2 − 4|R|(�
2

)
�

��0.

Finally, (13) and Claim 5 imply the desired lower bound for �0.
The proof of the existence of a 2-independent A0 ⊂ A with �0 = |A0| > � − 38ϑn is

similar. �

3.5. The bipartition

The sets X and Y have the (2, 2)-property (with respect the hypergraph H) if X, Y ⊂
V (H), X ∩ Y = ∅, and for any F ∈ E(H) we have |X ∩ F |�2, |Y ∩ F |�2. Let A′ ⊃ A0,
B ′ ⊃ B0 be maximal with respect to the (2, 2)-property, and let �′ := |A′| and �′ := |B ′|,
C′ := V \ (A′ ∪ B ′), �′ := |C′|. We claim that C′ = ∅. This will complete the proof of
Theorem 2.

Suppose, on the contrary, that there exists a y ∈ C′, so y cannot be joined to A′ or to B ′
without violating the (2, 2)-property. This means that there exist an F1 = {a1, a2, y1, y}
and an F2 = {b1, b2, y2, y} ∈ E(H) with a1, a2 ∈ A′, b1, b2 ∈ B ′. We give an upper bound
for the degree of y.

For an arbitrary vertex x let deg(x, C′) be the number of edges containing x and meeting
C′ in a point distinct from x. Similarly, deg(x, A′B ′) and deg(x, A′A′B ′) means the number
of edges of H through x meeting A′ and B ′ in additional vertices, or meeting A′ in at least
additional 2 vertices, respectively. Since A′ and B ′ are 2-independent sets we have

deg(y) = deg(y, A′A′B ′) + deg(y, A′B ′B ′) + deg(y, C′),
deg(b1) = deg(b1, A

′A′B ′) + deg(b1, C
′),

deg(b2) = deg(b2, A
′A′B ′) + deg(b2, C

′),
deg(a1) = deg(a1, A

′B ′B ′) + deg(a1, C
′),

deg(a2) = deg(a2, A
′B ′B ′) + deg(a2, C

′).
Consider a triple a, a′ ∈ A, b ∈ B and three quadruples containing it, namely {a, a′, b, b1},
{a, a′, b, b2} and {a, a′, b, y}. If {a, a′, b} ∩ {b1, b2, y2} = ∅, then these three quadruples
together with F2 would form an F7. Hence we get

deg(y, A′A′B ′) + deg(b1, A
′A′B ′) + deg(b2, A

′A′B ′)�2

(
�′

2

)
�′ +

(
n

2

)
.
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Similarly

deg(y, A′B ′B ′) + deg(a1, A
′B ′B ′) + deg(a2, A

′B ′B ′)�2

(
�′

2

)
�′ +

(
n

2

)
.

Using these inequalities, the lower bound (1), and the obvious upper bound deg(x, C′) <

|C′|(n
2

)
, the sum of the five rows gives

5(1 − ϑ)
n3

16
�

∑
x∈{a1,a2,b1,b2,y}

deg(x)�2

(
�′

2

)
�′ + 2

(
�′

2

)
�′ + 2

(
n

2

)
+ 5|C′|

(
n

2

)
.

This and Claim 6 (i) lead to a contradiction for ϑ�1/2500, n > n0.

4. The extremal hypergraph

Here we prove Theorem 1. Suppose that H is an n-vertex F7-free hypergraph of maximum
size, n > n0, where n0 is the bound from Theorem 2. Then e(H)�e(Hn), i.e.,

e(H)�e(Hn)� 1
64 (n4 − 4n3 + 2n2 + 4n − 3). (14)

To prove Theorem 1, it is enough to show that H is isomorphic to Hn.

4.1. Symmetrization: a lower bound on degrees

As before, H3 denotes the subgraph of H consisting of the edges containing a triple with
degree at most 3, and H4 is the hypergraph with edge set E(H)\E(H3). Then (3) holds. The
degrees of H3 and H4 are abbreviated as deg3 and deg4, respectively. An important property
of H4 is that it does not contain any homomorphic image of F7, or to say it in a simpler
way, H4 does not contain F6. This implies that the hypergraph obtained by duplicating the
vertices of H4 is also F7-free (and F6-free). We apply this fact as follows.

Claim 7. Suppose that x, y ∈ V . Then deg(y)�deg4(x) − deg(x, y).

Proof. Remove all edges of H containing y. Replace each edge of H4 containing x and not
containing y by two quadruples, namely F ∈ E(H4), x ∈ F , y /∈ F , is replaced by itself
and by F \ {x} ∪ {y}. There are at least deg4(x) − deg(x, y) such edges. If the resulting
hypergraph, H′ contained an F7, then in the original H4 we would have an F6 or F7, a
contradiction. Indeed, we have to check only the case of F7. All the pairs of vertices in
F7−y are covered by an edge, so we have to check only the trivial case when y is the singular
vertex “7” of F7. Finally, since H′ is F7-free and e(H) is maximal, we have e(H′)�e(H)

proving the claim. �

Add up these inequalities for every x ∈ V (including x = y). We obtain

n deg(y)�
∑
x∈V

deg4(x) −
∑

x∈V \{y}
deg(x, y) = 4e(H4) − 3 deg(y).
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Rearranging and using the lower bound (14) for e(H) and the trivial upper bound (3) for
e(H3) one gets

deg(y) � 4e(H) − 4e(H3)

n + 3
� 1

16
(n3 − 39n2 + 215n − 705) + 132

n + 3

� 1

16
(n3 − 39n2). (15)

This implies that the lower bound condition (1) holds for H, hence Theorem 2 can be
applied. We get that the vertex set of H has a 2-partition such that E(H) ⊆ E(H2,2(A, A)).
Then trivially, |E(H)|�e(Hn). �
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