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Let B(n,� 4) denote the subsets of [n] := {1, 2, . . . , n} of at most 4 elements. Suppose that

F is a set system with the property that every member of B can be written as a union

of (at most) two members of F. (Such an F is called a 2-base of B.) Here we answer a

question of Erdős proving that

|F| � 1 + n +

(
n

2

)
−

⌊ 4

3
n
⌋
,

and this bound is best possible for n � 8.

1. 2-bases

The n-element set {1, 2, . . . , n} is denoted by [n]. The family of all subsets of [n] is called the

Boolean lattice and is denoted by B(n). Its kth level is B(n, k) := {B : B ⊂ [n] : |B| = k},
and B(n,� k) := ∪0�i�kB(n, i). The set system F is called a 2-base of A if every member

A ∈ A can be obtained as a union of two members of F, in other words A = F1 ∪ F2,

F1, F2 ∈ F. Note that we allow F1 = F2 and we do not insist that the 2-base is a subset

of the set system.
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132 Z. Füredi and G. O. H. Katona

The interest is in how small a base one can find. Let f(A) := min{|F| : F is a 2-base

of A}. This is known exactly in very few cases, even when the set system is a natural

one. For example, it is not known even for the power-set itself (the discrete cube). In

1993 Erdős [2] proposed the problem of determining f(B(n)) and also the problem of

determining the minimum size of a 2-base of the small sets, f(B(n,� k)). We also use

fk(n) for f(B(n,� k)). Erdős conjectured that

f(B(n)) = 2�n/2� + 2�n/2� − 1,

and that the extremal family consists of all subsets of V1 and V2 where V1 ∪ V2 = [n] is

a partition of [n] into two almost equal parts. A lower bound f(B(n)) � (1 + o(1))2(n+1)/2

is obvious from the fact that

|A| �
(

|F|
2

)
+ |F|,

which holds for any 2-base F of A.

The aim in this paper is to answer this question for the family B(n,� 4). The question

of the smallest base for B(n,� k) is trivial for k � 2, and for k = 3 it turns out to be

a question about graphs whose answer follows immediately from Turán’s theorem. So

the case k = 4 is the first nontrivial case. It boils down to an interesting question about

3-graphs (3-regular hypergraphs), and it might be somewhat surprising that it is possible

to give an exact answer.

Let f4(n) := 1 + n +
(
n
2

)
− h(n). The main result of this paper can be summarized in the

following table:

n 0 1 2 3 4 5 6 7 n � 8

h(n) 0 0 1 2 4 5 7 8 � 4
3
n�

Theorem 1.1. For n � 8, f4(n) = 1 + n +
(
n
2

)
− � 4

3
n�.

Let gk(n) := f(B(n, 4)), the size of a minimum 2-base for the k-tuples. We will deduce

from Theorem 1.1 that g4(n) + n + 1 = f4(n) for n � 5.

Theorem 1.2. We have g4(5) = 4, g4(6) = 8, g4(7) = 13 and for n � 8, g4(n) =
(
n
2

)
− � 4

3
n�.

In the following section we discuss fk(n) in the (easy) case k � 3. Then give constructions

for f4(n) separating the cases n � 7 and n � 8 and thus providing lower bounds for h(n).

In Section 2 the structure of minimal bases of B(n,� 4) is investigated, namely those with

minimum deficiency with at least 2, and then (the upper bounds for) the values of h(n) in

the above table is proved in Section 3. In Section 4 the uniform case (the case of g4) is

considered, and in Section 5 we close with a few remarks on the case k > 4.

1.1. The case B(n, � 3)

For k � 1 every 2-base of B(n,� k) must contain the ∅ and all singletons. This easily

leads to

f0(n) = 1, f1(n) = 1 + n, f2(n) = 1 + n.

https://doi.org/10.1017/S0963548305007248 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548305007248


2-Bases of Quadruples 133

Suppose that F is a 2-base of B(n,� k), 1 < k � n, such that |F| = fk(n) and
∑

F∈F |F |
is minimal. Such bases are called minimal. Then

(i) ∅ ∈ F, B(n, 1) ⊂ F,

(ii) for every F ∈ F we have |F | � k − 1.

Indeed, one need only observe that for F ∈ F, |F | = k, x ∈ F one can replace F by

F ′ := F \ {x}, i.e., F \ {F} ∪ {F ′} is also a 2-base.

Construction 1.3. Consider a 2-partition V1 ∪ V2 of [n] with �n/2� � |V1| � |V2| � �n/2�
and let F be all the subsets of V1 and V2 of size at most 2. Every triple from [n] meets a

Vi in at least 2 elements so it also contains a 2-element member of F. Hence F is a 2-base

of B(n,� 3).

Claim 1.4. f3(n) = 1 + n +
(�n/2�

2

)
+

(�n/2�
2

)
.

Proof of Claim 1.4. Suppose that F is a minimal 2-base of B(n,� 3) satisfying (i) and

(ii). Split it into subfamilies according to the sizes of its members, F = F0 ∪ F1 ∪ F2

where Fi := F ∩ B(n, i). Then F2 is a graph (i.e., a 2-graph) with the property that every

triple contains an edge, so its complement H2 is triangle-free (H2 := B(n, 2) \ F2). Then

Turán’s theorem [7] implies that |H2| � �n2/4�, hence

|F| = |F0| + |F1| + |F2| � 1 + n +

(
n

2

)
−

⌊
n2

4

⌋
.

1.2. Constructions for B(n, � 4) if n � 7

Let F be a minimal 2-base of B(n,� 4) satisfying (i) and (ii). Let Fi := F ∩ B(n, i);

then F = F0 ∪ F1 ∪ F2 ∪ F3 where F0 = {∅}, F1 = B(n, 1). Use the notation H2 :=

B(n, 2) \ F2. Then

|F| = 1 + n +

(
n

2

)
− |H2| + |F3| := 1 + n +

(
n

2

)
− h(n).

Since B(n,� 2) is a 2-base of B(n,� 4) we have h(n) � 0.

Let us summarize the properties of F2 ∪ F3:

for every triple T ⊂ [n] either T contains a pair from F2 (1.1)

or T ∈ F3, (1.2)

for every quadruple Q ⊂ [n] either Q contains a triple from F3 (1.3)

or Q is a union of two edges from F2. (1.4)

Construction 1.5. For n � 4 let H2 be a Hamilton cycle, |F3| = 0.

It is easy to show that this family F2 satisfies (1.1) and (1.4) so (together with B(n,� 1))

it is a 2-base. This construction shows that h(n) � n (for � 4), and one can see that this

is the best possible for n = 4 and n = 5.

Claim 1.6. h(0) = h(1) = 0, h(2) = 1, h(3) = 2, h(4) = 4 and h(5) = 5.
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134 Z. Füredi and G. O. H. Katona

The proof of this (and the following two claims concerning n = 6 and 7) is a short,

finite process. For completeness we sketch them in Section 3.

Construction 1.7. For n = 6 let F3 be two disjoint triples F1, F2 and let F2 be the six pairs

contained in either F1 or F2.

Another construction of the same size can be obtained by considering a Hamilton cycle

F2 := {12, 23, 34, 45, 56, 16} with two triples F3 := {135, 246}.

Claim 1.8. h(6) = 7.

Construction 1.9. For n = 7 label the seven elements by two coordinates, V := {v(1, 1),

v(1, 2), v(1, 3), v(2, 1), v(2, 2), v(3, 1)}. Let F2 be the ten pairs v(α, β)v(α′, β′) with α �= α′

and β �= β′, and let F3 be formed by the three triples having a constant coordinate, i.e.,

{v(1, 1), v(1, 2), v(1, 3)}, {v(2, 1), v(2, 2), v(2, 3)} and {v(1, 1), v(2, 1), v(3, 1)}. (This is a trun-

cated version of Construction 1.13 for n = 9.)

Claim 1.10. h(7) = 8.

Construction 1.11. Let n1, n2 be nonnegative integers, V 1 ∪ V 2 a partition of [n] with |V i| =

ni, Fi a minimal 2-base on Vi. Define F as F1 ∪ F2 together with all pairs joining V 1

and V 2.

It is easy to see that this construction satisfies (1.1)–(1.4): it is a 2-base. Indeed, it is

sufficient to check a triple T and a quadruple Q meeting both V1 and V2. Then T contains

a pair joining V 1 and V 2; thus it satisfies (1.1). If |Q ∩ V 1| = |Q ∩ V 2| = 2, then it is a

union of two crossing pairs. Finally, if Q = {a, b, c, d} and Q ∩ V 1 = {a, b, c}, then since

F1 is a 2-base, Q ∩ V 1 satisfies either (1.1) or (1.2). In the first case Q ∩ V 1 it contains a

pair, say ab from F1; then {a, b} ∪ {c, d} is a partition of Q satisfying (1.4). In the second

case Q ∩ V 1 ∈ F1, so Q satisfies (1.3). We obtained the following.

Claim 1.12. For n1, n2 nonnegative integers h(n1 + n2) � h(n1) + h(n2).

1.3. Constructions for n � 8

Construction 1.13. Suppose that F3 is a triple system on [n] of girth at least 4, i.e., |F ′ ∩
F ′′| � 1 for F ′, F ′′ ∈ F3, F1, F2, F3 ∈ F3 and F1 ∩ F2 �= ∅, F1 ∩ F3 �= ∅, F2 ∩ F3 �= ∅ imply

F1 ∩ F2 ∩ F3 �= ∅. Suppose further that every degree of F3 is at most two, i.e., every singleton

is contained in at most two triples. Define H2 as the pairs covered by the members of F3.

This construction (together with B(n,� 1)) forms a 2-base. Indeed, if a triple T ⊂ [n]

contains no edge from F2, then it belongs to F3, so either (1.1) or (1.2) holds. Moreover, if

Q = {a, b, c, d} ⊂ [n] is a quadruple and contains no triple from F3, then the induced graph

H2|Q contains no triangle. So F2|Q contains two disjoint edges (and thus fulfils (1.4))

unless H2|Q has a vertex of degree 3, say, ab, ac, ad ∈ H2. Since the degree of F3 at the

vertex a is at most two and the edges of H2 are obtained from the triples of F3 we get
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that there exists a triple T ∈ F3 with a ∈ T ⊂ Q. We have proved that Construction 1.13

indeed defines a 2-base.

For n = 3k, k � 3 we obtain h(3k) � 4k as follows. Let [n] = {a1, a2, . . . , ak} ∪
{b1, b2, . . . , bk} ∪ {c1, c2, . . . , ck}. Define F3 as all triples of the form aibici and aibi+1ci+2

(indices are taken modulo k). This satisfies the constraint of Construction 1.13. Since

|H2| = 3|F3|, we get h(n) � 2|F3| = 4k.

If we leave out from the above construction the 2 triples of F3 and the 4 pairs of H2

containing the element 3k we obtain that h(3k − 1) � 4k − 2. Thus we already have the

cases n = 3k and n = 3k − 1 in the following claim.

Claim 1.14. h(n) � � 4
3
n� for n � 8.

1 2
3

4 5

6

7 8

9 10

1 2 3

4 5 6

7 8 9

10 11 12

13

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

Figure 1.

Proof. We only need a construction for n = 3k + 1, k � 3 to show h(3k + 1) � 4k + 1.

It is enough to show h(10) � 13, h(13) � 17 and h(16) � 21; then the general case follows

from h(9) � 12 using Claim 1.12.

Define the six triples of F3 as {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8} and {3, 6, 10}
and H2 as the 18 pairs covered by these triples and {9, 10}. The graph H2 has only these

6 triangles, so (1.1)–(1.2) hold, and it is not difficult to check the four-tuples, too.

The other cases are similar: for n = 13 we can define F3 := {1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{10, 11, 12} and {1, 4, 10}, {2, 5, 7}, {6, 8, 11}, {3, 9, 13} and H2 consists of these triangles

and the pair {12, 13}.
Finally, for n = 16 we define F3 as {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}

and {1, 4, 13}, {2, 5, 7}, {6, 8, 10}, {9, 11, 14}, and {3, 12, 16}. Again H2 consists of the

triangles obtained from F3 and the edge {15, 16}.

2. Bases with deficiency at least 2

The aim of this paper is to prove Theorem 1.1, so suppose that F is a minimal 2-base of

B(n,� 4) and that F2 ∪ F3 satisfies (1.1)–(1.4).
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Lemma 2.1. If abc ∈ F3, then either {ab, bc, ca} ⊂ F2 or {ab, bc, ca} ⊂ H2.

Proof. Suppose, on the contrary, that ab ∈ F2, ac /∈ F2. Replace abc by ac in F.

Since
∑

F∈F |F | is minimal the family F′ := F \ {abc} ∪ {ac} is not a 2-base. What can

go wrong? Since we added a new pair, conditions (1.1) and (1.2) still hold. The only

condition we can violate is (1.3)–(1.4). We removed abc, so there exists an Q = abcd not

a union of two members of F′. So abcd does not contain any triple from F′ and also

bd, cd /∈ F′. Consider bcd. We have bcd /∈ F so (1.1) implies that bc ∈ F2. Consider acd.

Since ac, cd, and acd /∈ F again (1.1) implies that ad ∈ F2. However, then Q = ad ∪ bc, a

contradiction.

Use the notation deg−
2 (x) for the degree of the vertex x in the graph H2 and deg3(x)

for the degree of x in F3. The difference deg−
2 (x) − deg3(x) is called the deficiency of the

vertex x ∈ V . From now on in this section we suppose that

deg−
2 (x) − deg3(x) � 2 for every x ∈ [n]. (2.1)

Let N(x) denote the neighbourhood of x in H2, N(x) := {y : xy ∈ H2}, deg−
2 (x) = |N(x)|.

Let T(x) denote the set of triples T from F3 with x ∈ T ⊂ N(x) ∪ {x}, and let t(x) :=

|T(x)|. Suppose that D = maxx∈[n] deg−
2 (x), and a has maximum degree in H2. Consider

A = {a} ∪ N(a), |A| = D + 1: let t := t(a). Then (2.1) implies t, t(x) � D − 2.

2.1. Eliminating the case D � 5

Claim 2.2. (2.1) implies that D � 4.

Proof. Consider the
(
D
3

)
four-tuples of A containing x: let B := {Q : a ∈ Q ⊂ A, |Q| = 4}.

Note that none of these can satisfy (1.4), so each of them contains a member of F3.

Classify them into two groups as follows:

B1 := {abcd : b, c, d ∈ A and there exists a T ∈ F3 with a ∈ T ⊂ {a, b, c, d}},
B2 := {abcd : abcd ⊂ A, abc, abd, acd /∈ F3}.

Each Q ∈ B2 contains a member of F3|N(a), hence

|B2| � |F3|N(a)|.

Each member of T(a) is contained in D − 2 four-tuples from B1, hence

|B1| � t(D − 2). (2.2)

Here the sum of the left-hand sides is
(
D
3

)
. The sum of the right-hand sides can be

estimated by the degrees of F3 on A. Using deg3(x) � D − 2 we obtain(
D

3

)
= |B1| + |B2| � t(D − 2) + |F3|N(a)| = t(D − 3) + |F3|A|

� t(D − 3) +
1

3

∑
x∈A

deg3(x) � t(D − 3) +
1

3
(t + D(D − 2)). (2.3)
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Hence

1

6
D(D − 2)(D − 3) � t

3D − 8

3
. (2.4)

Since t � D − 2 we get D � 6. In the case of t � D − 3 (2.4) implies D � 4. So two cases

are left in the proof of the claim, namely (D, t) = (6, 4) and (5, 3).

In the case of D = 6, t = 4 the right-hand side of (2.2) can be improved by 2, since

there are at least 2 coincidences when estimating the cardinality of B1. So |B1| � 14,

and we can decrease the right-hand sides of (2.3) and (2.4) by 2, and that leads to the

contradiction 12 � 4 × 10
3

− 2.

In the case of D = 5, t = 3 we use two things. The first one is implied by Lemma 2.1

and (1.1).

(C1) If abc ∈ T(a) then bc ∈ H2; if abc /∈ T(a) and b, c ∈ N(a) then bc ∈ F2. Thus

F2|N(a) has exactly
(
D
2

)
− t edges.

(C2) If deg3(x) � 3, then t(x) = 3. Indeed, (2.1) implies deg−
2 (x) � deg3(x) + 2 � 5.

Consequently deg−
2 (x) = 5 = D, x has maximum degree, D, and then the previous consid-

erations for a are valid for x, too, i.e., (2.4) implies that t(x) = 3 is the only possibility.

Now we are ready to show that, in fact, (D, t) = (5, 3) is impossible. Suppose, on the

contrary, that there is such a construction and let N(a) = {b, c, d, e, f}. Consider the 3-edge

graph G := {xy : axy ∈ F3}. There are 4 non-isomorphic possibilities for G:

(α) G is a triangle, {bc, cd, bd},
(β) G is a path of length 3, {bc, cd, de},
(γ) G is a star, {bc, bd, be},
(δ) G has 2 components, {bc, cd, ef}.
In each case we will find one or more x ∈ N(a) with t(x) = 3. Then the triples containing

x cover no pair from F2 and this will lead to a contradiction.

For (α), by (1.3) we have bef, cef, def ∈ F3. Hence deg3(f) � 3. Then (C2) implies that

t(f) = 3 and then Lemma 2.1 gives that {b, c, d, e} ⊂ N(f), ef /∈ F2. However, ef ∈ F2 by

(C1), a contradiction.

The other cases can be handled in the same way. For (β) we have bdf, bef, cef ∈
F3, hence deg3(f) � 3. Then t(f) = 3 and {b, c, d, e} ⊂ N(f), ef /∈ F2. For (γ) we have

cdf, cef, def ∈ F3, hence deg3(f) � 3. Then t(f) = 3 and {c, d, e} ⊂ N(f), ef /∈ F2. For (δ)

we have bde, bdf ∈ F3, hence deg3(b) � 3. Then t(b) = 3 and {c, d, e, f} ⊂ N(b), bf /∈ F2.

This final contradiction completes the proof of the case (D, t) = (5, 3) and Claim 2.2.

2.2. The case D � 4

From now on in this section we suppose that D � 4.

Claim 2.3. (2.1) and deg−
2 (a) = 4 imply that t(a) = deg3(a) = 2 and the two triples con-

taining the element a meet only in a, e.g., N(a) = bcde and T(a) = {abc, ade}.

Proof. Suppose first that t(a) = 0. Then all the four triples of the form xyz, x, y, z ∈ N(a)

belong to F3. Hence deg3(b) � 3, contradicting D � deg2(x) � 2 + deg3(x). If t(a) = 1, say

abc ∈ T(a), then bde, cde ∈ F3 is implied by (1.3). Hence deg3(e) � 2, so deg−
2 (e) = 4. Since
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(1.1) implies that be, ce, de ∈ F2 we get that N(e) ∩ {b, c, d} = ∅, so t(e) = 0. However, we

have seen that deg−
2 (e) = D = 4 implies t(e) > 0.

So we get t(a) � 2, i.e., by t(x) � D − 2 we have t(a) = 2. The only case left to exclude

is when the triples in T(a) meet in two elements, say T(a) = {abc, acd}. Then bde ∈ F3,

so deg3(b) � 2. Hence we get deg−
2 (b) = 4, this implies t(b) = 2 and {c, d, e} ⊂ N(b). We

get ab, ae, be ∈ H2, abe /∈ F3, contradicting (1.1).

Claim 2.4. (2.1) and deg−
2 (x) = 3 imply that deg3(x) = 1.

Proof. Suppose, on the contrary, that deg3(x) = 0. Consider N(x) = abc, we have

ab, bc, ca ∈ F2 by (1.1) and abc ∈ F3 by (1.3). Then ab ∈ F2 implies that abc /∈ T(a)

Therefore t(a) cannot be D − 2 = 2. So Claim 2.3 gives that deg−
2 (a) �= 4. Since deg3(a) � 1

we get that deg−
2 (a) = 3. Consider N(a) = xyz. Note that y, z /∈ {x, a, b, c}. Then xyz ∈ F3

by (1.3). This contradicts deg3(x) = 0, so we have deg3(x) � 1. On the other hand, (2.1)

implies deg3(x) � 1.

Claim 2.5. (2.1) implies that h(F) � 4
3
n.

Proof. For x ∈ [n] define ϕ(x) := 1
2
deg−

2 (x) − 1
3
deg3(x). We are going to prove that

ϕ(x) � 4/3 for every x. This implies the claim as follows:

h(F) = |H2| − |F3| =
∑
x∈[n]

ϕ(x) � 4

3
n. (2.5)

Using the previous three claims one can split [n] into three parts, [n] = P ∪ Q ∪ R, where

P := {x : deg−
2 (x) = 4, deg3(x) = 2}, Q := {x : deg−

2 (x) = 3, deg3(x) = 1}, and R := {x :

deg−
2 (x) = 2, deg3(x) = 0}. For each case we have ϕ � 4/3.

Note that h(F) = 4
3
n in Claim 2.5 is only possible for Construction 1.13, especially

P = [n] and Q = R = ∅. (2.6)

3. Proof of the main result

Let F be a minimal 2-base for B(n,� 4). Then

1 + n +

(
n

2

)
− h(n) = |F| = |F|([n] \ {x})| + 1 + (n − 1 − deg−

2 (x)) + deg3(x)

� 1 + n +

(
n

2

)
− h(n − 1) − (deg−

2 (x) − deg3(x)) (3.1)

gives that the deficiency of every vertex is at least h(n) − h(n − 1).

Proof of Theorem 1.1. We use induction on n to show that h(n) � 4
3
n. This is certainly

true for n � 2. Suppose that h(n − 1) � 4
3
(n − 1) and consider h(n). If h(n) � h(n − 1) + 1,

then we are done. If h(n) � h(n − 1) + 2, then, as we have seen in (3.1), there exists

https://doi.org/10.1017/S0963548305007248 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548305007248


2-Bases of Quadruples 139

a minimal 2-base F on [n] with deficiency at least 2. Then Claim 2.5 gives h(n) =

h(F) � 4
3
n.

Proofs of Claims 1.6, 1.8 and 1.10. The case n � 4 is trivial. Suppose that 5 � n � 7 and

let F be a minimal 2-base on n vertices.

The case n = 5 is easy. h(F) � 6 implies |F2| + |F3| � 4. If |F2| = 4, then there is a

unique way to satisfy (1.1) (namely, F2 is a union of an edge and a triangle) and then

(1.4) is violated. If |F2| = 3, then there are at least 2 triples not containing any member of

F2, so (1.2) gives |F3| � 2. If |F2| � 2, then they satisfy (1.1) with at most 3|F2| triples.

Hence, (1.2) gives |F3| � 10 − 3|F2|. Then |F2| + |F3| exceeds 4, a final contradiction.

If the minimum deficiency of F is (at most) 1 then (3.1) gives h(n) � h(n − 1) + 1, and

we are done. From now on suppose that the deficiency of F is at least 2, i.e., (2.1) holds.

For n = 6 Claim 2.5 gives that h(F) � 4
3

× 6 = 8. By (2.6) h(F) = 8 is only possible

if P = [n], i.e., H2 is a 4-regular graph, and F3 consists of four triples. Then F2 is a

matching, say, F2 = {a1a2, b1b2, c1c2}. Then (1.2) implies that all the eight triples of the

form aibjck should belong to F3, a contradiction. We have obtained h(F) = h(6) � 7.

For n = 7 Theorem 1.1 implies h(F) � �7 × 4
3
� = 9. We claim that h(7) = 8. Suppose,

on the contrary, that h(F) = 9. Consider the partition of [n] = P ∪ Q ∪ R defined in the

proof of Claim 2.5. For R �= ∅ (2.5) gives |R| = 1, |P | = 6, Q = ∅. Then H2|P is a 4-regular

graph, not joined to R, so deg−
2 (R) = 2 is impossible. Finally, if R = ∅, |Q| = 2 and |P | = 5

then we get |F3| = 4. The four members of F3 can pairwise meet in at most 1 vertex (by

Claims 2.3 and 2.4) and have girth 4. But such an F3 does not exist on 7 vertices.

So we have obtained the exact value of h(n) for every n.

4. 2-bases for quadruples

Here we prove Theorem 1.2. Suppose that F is an extremal 2-base for B(n, 4), i.e.,

|F| = g4(n), such that |F1| + |F4| is minimal. The case n = 5 is a short finite process, the

unique 2-base with 4 members {12, 34, 135, 245}.
In the case n = 6 the 6 pairs of a hexagon and the 2 disjoint triples of the second example

in Construction 1.7 shows g4(6) � 8. Consider a minimal 2-base F. If degF(x) � 3, then

|F| = degF(x) + |F|([n] \ {x})| � degF(x) + g4(n − 1) (4.1)

implies |F| � 3 + 4. The impossibility of this case with |F| = 7 follows easily from the

uniqueness of the 2-base on 5 elements. Moreover, it is easy to check that a hypergraph

of 7 edges on 6 elements with maximum degree 2 cannot be a 2-base, so g4(6) � 8. From

now on we may suppose that n � 7.

The upper bounds for g4(n) follows by leaving out the singletons and the empty set

from Constructions 1.9 and 1.13 in Section 1. To prove a lower bound we proceed as in

Section 2. The main idea of the proof is that we first investigate the minimal 2-bases with

a maximum degree condition

degF(x) � n − 3 (4.2)

for all x ∈ [n].
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We claim that (4.2) implies that F4 = ∅. Indeed, suppose, on the contrary, that Q ∈ F4.

If Q contains any proper subset F ∈ F, x ∈ F ⊂ Q, Q �= F , then one can replace Q by

Q \ {x} to obtain another 2-base with smaller |F1| + |F4|. So we may suppose that such

a proper subset does not exist. Consider Q \ {x} ∪ {y} for some x ∈ Q, y ∈ [n] \ Q. This is

a union of (at most) two sets A,B ∈ F. Both of them contain y. We obtain that the sets

{F : y ∈ F ⊂ Q ∪ {y}, |F | > 1} cover Q, and some vertex of Q is covered at least twice.

Hence there exists an x ∈ Q covered by these sets more than n − 4 times while y runs

through [n] \ Q. Taking Q itself, we get that degF(x) > n − 3, contradicting (4.2).

Use the notation of the previous section, e.g., D := max deg−
2 (x) and deg−

2 (a) = D. We

claim that (4.2) implies that

D � 4.

In the proof of this one cannot use Lemma 2.1, either (1.1) or (1.2); however, (2.2)–(2.4)

still hold, implying D � 6. Furthermore, ab, ac, ad /∈ F2, and abc, abd, acd /∈ F3 imply not

only bcd ∈ F3 but a ∈ F1. Thus, in the case B2 �= ∅ (e.g., for D > 4), one gets a ∈ F1.

Then (4.2) gives t(a) � deg−
2 (a) − 3 = D − 3. So (2.4) gives D � 4.

Using the same idea one can see that Claim 2.3 remains true. The following analogue

of Claim 2.4 is obviously true: deg−
2 (x) = 3 implies deg1(x) + deg3(x) = 1.

As in Claim 2.5 we show that (4.2) implies

|F| �
(
n

2

)
− 4

3
n. (4.3)

Indeed, for x ∈ [n] define ϕ(x) := 1
2
deg−

2 (x) − 1
3
deg3(x) − deg1(x). As before we have that

(4.2) implies that ϕ(x) � 4/3 for every x, completing the proof of (4.3) for this case.

Finally, for hypergraphs with maximum degree at least n − 2 one can use induction on

n. Inequality (4.1) implies that (4.3) always holds.

The case n = 7 can be finished as in the proof of Claim 2.5, by considering a partition

of [n] into three parts, [n] = P ∪ Q ∪ R, where now Q := {x : deg−
2 (x) = 3, deg1(x) +

deg3(x) = 1}. The details are omitted.

5. More hypergraphs

Let T (n, k, r) denote the minimum size of a hypergraph F ⊆ B(n, r) such that every

k-subset of [n] contains a member of F. The determination of T (n, k, r) is proposed by

Turán [8], who solved the case r = 2 (the case of graphs – see [7]) and has a longstanding

conjecture T (n, 4, 3) =
(

4
9

+ o(1)
)(

n
3

)
. For a survey on this see Sidorenko [6].

One can prove for every odd integer k that our fk(n) equals (1 + o(1))T (n, k, (k + 1)/2),

but the even case is more involved and apparently leads to a new Turán-type problem.

The authors intend to return to this topic in a future work.
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