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Let %(n, < 4) denote the subsets of [n] := {1,2,...,n} of at most 4 elements. Suppose that
& is a set system with the property that every member of % can be written as a union
of (at most) two members of Z. (Such an Z is called a 2-base of %.) Here we answer a
question of Erdds proving that

|Z| > 14+n+ <;) - gnJ

and this bound is best possible for n > 8.

1. 2-bases

The n-element set {1,2,...,n} is denoted by [n]. The family of all subsets of [n] is called the
Boolean lattice and is denoted by %(n). Its kth level is #(n,k) := {B : B = [n] : |B| =k},
and #(n, < k) := Upgi<k#(n, i). The set system & is called a 2-base of .o if every member
A € o/ can be obtained as a union of two members of %, in other words A = F; U F>,
Fi,F, € #. Note that we allow F; = F, and we do not insist that the 2-base is a subset
of the set system.
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The interest is in how small a base one can find. Let f(.«/) := min{|Z| : # is a 2-base
of o/}. This is known exactly in very few cases, even when the set system is a natural
one. For example, it is not known even for the power-set itself (the discrete cube). In
1993 Erdds [2] proposed the problem of determining f(#(n)) and also the problem of
determining the minimum size of a 2-base of the small sets, f(#(n, < k)). We also use
fr(n) for f(%(n, < k)). Erdés conjectured that

f(B(n)) = 22 4221 g,

and that the extremal family consists of all subsets of V; and V5 where Vi UV, = [n] is
a partition of [n] into two almost equal parts. A lower bound f(#(n)) > (1 + o(1))20+1)/2
is obvious from the fact that

N
|&f|<(2 +17)

which holds for any 2-base & of .«/.

The aim in this paper is to answer this question for the family %#(n, < 4). The question
of the smallest base for #(n,< k) is trivial for k < 2, and for k = 3 it turns out to be
a question about graphs whose answer follows immediately from Turan’s theorem. So
the case k = 4 is the first nontrivial case. It boils down to an interesting question about
3-graphs (3-regular hypergraphs), and it might be somewhat surprising that it is possible
to give an exact answer.

Let fa(n) :=1+n+ (g) — h(n). The main result of this paper can be summarized in the
following table:

n 012 3 456 7 n=8

hn) 0 0 1 2 4 5 7 8 |in]
Theorem 1.1. For n > 38, f4(n) =1+n+ (5) — [3n].

Let gr(n) .= f(#(n,4)), the size of a minimum 2-base for the k-tuples. We will deduce
from Theorem 1.1 that g4(n) + n+ 1 = f4(n) for n > 5.

Theorem 1.2. We have g4(5) =4, g4(6) =8, g4(7) = 13 and for n > 8, ga(n) = () — L%n]

In the following section we discuss fi(n) in the (easy) case k < 3. Then give constructions
for f4(n) separating the cases n < 7 and n > 8 and thus providing lower bounds for h(n).
In Section 2 the structure of minimal bases of %(n, < 4) is investigated, namely those with
minimum deficiency with at least 2, and then (the upper bounds for) the values of h(n) in
the above table is proved in Section 3. In Section 4 the uniform case (the case of g4) is
considered, and in Section 5 we close with a few remarks on the case k > 4.

1.1. The case Z(n,< 3)
For k > 1 every 2-base of %(n,< k) must contain the ) and all singletons. This easily
leads to

fom)=1, fim)=14+n, fr(n)=1+n
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Suppose that & is a 2-base of #(n, < k), 1 <k < n, such that |7 | = fr(n) and Y 5 |F|
is minimal. Such bases are called minimal. Then

HpeF, Bn1)cF

(ii) for every F € # we have |[F| <k —1.

Indeed one need only observe that for F € #, |F| =k, x € F one can replace F by
= F\ {x}, e, # \ {F}U{F'} is also a 2- base.

Construction 1.3. Consider a 2-partition Vi UV, of [n] with |n/2] < |Vi| < V2] < [n/2]
and let & be all the subsets of Vi and V, of size at most 2. Every triple from [n] meets a
Vi in at least 2 elements so it also contains a 2-element member of . Hence F is a 2-base

of B(n, < 3).
Claim 14. f3(n)=14+n-+ (LnQZJ) + ([néZ]).

Proof of Claim 1.4. Suppose that & is a minimal 2-base of %(n, < 3) satlsfylng (i) and

(ii). Split it into subfamilies according to the sizes of its members, # = F(U F | U F,
where #; == % N %(n,i). Then &, is a graph (i.e., a 2-graph) with the property that every

triple contains an edge, so its complement J#; is triangle-free (#, := %#(n,2) \ #,). Then
Turan’s theorem [7] implies that |5 < [n?/4], hence

n n?
|97:|«/’f0|+971+|972|>1+n+<2>_{4J, -

1.2. Constructions for Z(n,< 4) if n <7

Let # be a minimal 2-base of #(n, < 4) satisfying (i) and (ii). Let #; := % N%(n,i);
then # = ZoUZ 1 UF,UF; where Fo = {0}, #, = %(n,1). Use the notation #, =
A(n,2) \ F,. Then

|.97|=1+n+<;) — | H#s| + | F 5] :=1+n+<;)—h(n).

Since #(n, < 2) is a 2-base of #(n, < 4) we have h(n) > 0.
Let us summarize the properties of %, U % ;:

for every triple T < [n] either T contains a pair from %, (1.1)

or T € F; (1.2)

for every quadruple Q < [n] either Q contains a triple from % 3 (1.3)
or Q is a union of two edges from ;. (1.4)

Construction 1.5. For n > 4 let #, be a Hamilton cycle, | % 3| = 0.
It is easy to show that this family %, satisfies (1.1) and (1.4) so (together with %#(n, < 1))
it is a 2-base. This construction shows that h(n) > n (for > 4), and one can see that this

is the best possible for n =4 and n = 5.

Claim 1.6. h(0) = h(1) =0, h(2) = 1, h(3) = 2, h(4) = 4 and h(5) =
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The proof of this (and the following two claims concerning n = 6 and 7) is a short,
finite process. For completeness we sketch them in Section 3.

Construction 1.7. For n = 6 let 73 be two disjoint triples Fy, F, and let &, be the six pairs
contained in either Fy or F,.

Another construction of the same size can be obtained by considering a Hamilton cycle
F, = {12, 23, 34, 45, 56, 16} with two triples 73 := {135,246}.

Claim 1.8. 7(6) =

Construction 1.9. For n =7 label the seven elements by two coordinates, V := {v(1,1),
v(1,2), v(1,3), v(2,1), v(2,2), v(3,1)}. Let F, be the ten pairs v(a, Bv(o, ') with o % of
and B+ ', and let F 3 be formed by the three triples having a constant coordinate, i.e.,
{v(1,1),v(1,2),v(1, 3)}, {0(2,1 ,0(2,2),v(2,3)} and {v(1,1),v(2,1),0(3,1)}. (This is a trun-
cated version of Construction 1.13 for n =9.)

Claim 1.10. k(7)) =

Construction 1.11. Let ny, ny be nonnegative integers, V' U V2 a partition of [n] with |V| =
ni, ' a minimal 2-base on V;. Define F as F' U F? together with all pairs joining V!
and V2.

It is easy to see that this construction satisfies (1.1)—(1.4): it is a 2-base. Indeed, it is
sufficient to check a triple T and a quadruple Q meeting both V| and V,. Then T contains
a pair joining V! and V?; thus it satisfies (1.1). If QN V! = |0 N V? =2, then it is a
union of two crossing pairs. Finally, if Q = {a,b,c,d} and Q N V! = {a,b, ¢}, then since
F1is a 2-base, Q N V! satisfies either (1.1) or (1.2). In the first case Q N V! it contains a
pair, say ab from Z!; then {a,b} U {c,d} is a partition of Q satisfying (1.4). In the second
case QN V! € Z1, so Q satisfies (1.3). We obtained the following.

Claim 1.12. For ny, ny nonnegative integers h(n; + ny) > h(ny) + h(n). ]

1.3. Constructions for n > 8

Construction 1.13. Suppose that F5 is a triple system on [n] of girth at least 4, i.e., |F' N
F”| lfor F . F" € #5, F|,F,,F; € #3 and F]ﬁFQ%Q) F1OF37EQ) F20F37é(blmply
Fi N F> N F3 = 0. Suppose further that every degree of 7 3 is at most two, i.e., every singleton
is contained in at most two triples. Define S5 as the pairs covered by the members of F 3

This construction (together with #(n, < 1)) forms a 2-base. Indeed, if a triple T < [n]
contalns no edge from Z, then it belongs to Z 3, so either (1.1) or (1.2) holds. Moreover, if
= {a,b,c,d} = [n] is a quadruple and contains no triple from %3, then the induced graph
Jf2|Q contains no trlangle. So Z,]Q contains two disjoint edges (and thus fulfils (1.4))
unless #,|Q has a vertex of degree 3, say, ab,ac,ad € # ;. Since the degree of %3 at the
vertex a is at most two and the edges of s, are obtained from the triples of %3 we get
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that there exists a triple T € %3 with a € T < Q. We have proved that Construction 1.13
indeed defines a 2-base.

For n=3k, k>3 we obtain h(3k) > 4k as follows. Let [n] ={aj,as,...,a} VU
{b1,ba,...,bx} U{ci,ca,...,cx}. Define F3 as all triples of the form a;b;c; and a;biiicita
(indices are taken modulo k). This satisfies the constraint of Construction 1.13. Since
|| = 3|F 5], we get h(n) > 2|.F 3| = 4k.

If we leave out from the above construction the 2 triples of %3 and the 4 pairs of #;
containing the element 3k we obtain that h(3k — 1) > 4k — 2. Thus we already have the
cases n = 3k and n = 3k — 1 in the following claim.

Claim 1.14. h(n) > L%n] for n > 8.

10 11 12

13 14 15

Figure 1.

Proof. We only need a construction for n =3k + 1, k > 3 to show h(3k + 1) > 4k + 1.
It is enough to show h(10) > 13, h(13) > 17 and h(16) > 21; then the general case follows
from h(9) > 12 using Claim 1.12.

Define the six triples of %3 as {1,2,3}, {4,5,6}, {7,8,9}, {1,4,7}, {2,5,8} and {3,6,10}
and ', as the 18 pairs covered by these triples and {9, 10}. The graph ', has only these
6 triangles, so (1.1)—(1.2) hold, and it is not difficult to check the four-tuples, too.

The other cases are similar: for n = 13 we can define 75 = {1,2,3}, {4,5,6}, {7,8,9},
{10,11,12} and {1,4,10}, {2,5,7}, {6,8,11}, {3,9,13} and #°, consists of these triangles
and the pair {12,13}.

Finally, for n =16 we define 73 as {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}, {13,14,15}
and {1,4,13}, {2,5,7}, {6,8,10}, {9,11,14}, and {3,12,16}. Again #, consists of the
triangles obtained from 3 and the edge {15,16}. |

2. Bases with deficiency at least 2

The aim of this paper is to prove Theorem 1.1, so suppose that & is a minimal 2-base of
A(n,< 4) and that F, U # 5 satisfies (1.1)—(1.4).
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Lemma 2.1. If abc € 73, then either {ab,bc,ca}l = F, or {ab,bc,ca} = H».

Proof. Suppose, on the contrary, that ab € #,, ac ¢ #,. Replace abc by ac in F.
Since Y p. 5 |F| is minimal the family #' := % \ {abc} U {ac} is not a 2-base. What can
go wrong? Since we added a new pair, conditions (1.1) and (1.2) still hold. The only
condition we can violate is (1.3)—(1.4). We removed abc, so there exists an Q = abcd not
a union of two members of #'. So abcd does not contain any triple from #’ and also
bd, cd ¢ #'. Consider bcd. We have bed ¢ F so (1.1) implies that bc € #,. Consider acd.
Since ac, cd, and acd ¢ & again (1.1) implies that ad € & ,. However, then Q = ad U bc, a
contradiction. L]

Use the notation degz_(x) for the degree of the vertex x in the graph #, and deg;(x)
for the degree of x in & 3. The difference deg; (x) — degs(x) is called the deficiency of the
vertex x € V. From now on in this section we suppose that

deg; (x) — degz(x) > 2 forevery x € [n]. (2.1)

Let N(x) denote the neighbourhood of x in #,, N(x) := {y : xy € #>}, deg; (x) = |[N(x)|.

Let 7 (x) denote the set of triples T from 3 with x € T = N(x) U {x}, and let t(x) :=

|7 (x)|. Suppose that D = max,c[, deg; (x), and a has maximum degree in . Consider
= {a} UN(a), |[A] = D + 1: let t := t(a). Then (2.1) implies ¢,t(x) < D — 2.

2.1. Eliminating the case D > 5
Claim 2.2. (2.1) implies that D < 4.

Proof. Consider the (2) four-tuples of 4 containing x:let # := {Q :a € Q = A4,|Q| = 4}.
Note that none of these can satisfy (1.4), so each of them contains a member of 3
Classify them into two groups as follows:

931 = {abcd : b,c,d € A and there existsa T € #3 witha € T = {a,b,c,d}},
= {abcd : abcd = A, abe,abd, acd ¢ F 3}.

Each Q € %, contains a member of % 3|N(a), hence
|%2| < |7 3|N(a)l.
Each member of 7 (a) is contained in D — 2 four-tuples from %, hence
|21 < t(D —2). (22)

Here the sum of the left-hand sides is (13)) The sum of the right-hand sides can be
estimated by the degrees of %3 on A. Using deg;(x) < D —2 we obtain

D
(3> = %1 + %] <D —2) 4+ |73|N(a)| = «(D —3) + |73]4]

<tD—3)+ % 3" degs(x) < (D —3) + %(t +D(D —2)). (2.3)

x€A
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Hence
3D —38

T
Since t < D —2 we get D < 6. In the case of t < D — 3 (2.4) implies D < 4. So two cases
are left in the proof of the claim, namely (D, t) = (6,4) and (5, 3).

In the case of D =6, t =4 the right-hand side of (2.2) can be improved by 2, since
there are at least 2 coincidences when estimating the cardinality of %;. So |4,| < 14,
and we can decrease the right-hand sides of (2.3) and (2.4) by 2, and that leads to the
contradiction 12 < 4 x ? - 2.

In the case of D =5, t = 3 we use two things. The first one is implied by Lemma 2.1
and (1.1).

(C1) If abc € F (a) then bc € #5; if abc & T (a) and b,c € N(a) then bc € #,. Thus
F5|N(a) has exactly (12)) —t edges.

(C2) If degs(x) > 3, then t(x) = 3. Indeed, (2.1) implies deg, (x) > degsz(x) +2 > 5.

Consequently deg, (x) = 5 = D, x has maximum degree, D, and then the previous consid-

erations for a are valid for x, too, i.e., (2.4) implies that t(x) = 3 is the only possibility.

Now we are ready to show that, in fact, (D,t) = (5, 3) is impossible. Suppose, on the
contrary, that there is such a construction and let N(a) = {b,c,d, e, f}. Consider the 3-edge
graph G := {xy : axy € #3}. There are 4 non-isomorphic possibilities for G:

(o) G is a triangle, {bc, cd, bd},

(B) G is a path of length 3, {bc,cd, de},

(y) G is a star, {bc, bd, be},

(0) G has 2 components, {bc,cd, ef }.

In each case we will find one or more x € N(a) with t(x) = 3. Then the triples containing
x cover no pair from %, and this will lead to a contradiction.

For (a), by (1.3) we have bef,cef,def € # 3. Hence deg;(f) > 3. Then (C2) implies that
t(f) = 3 and then Lemma 2.1 gives that {b,c,d,e} = N(f), ef ¢ F#,. However, ef € #, by
(C1), a contradiction.

The other cases can be handled in the same way. For () we have bdf,bef,cef €
F 3, hence degs(f) > 3. Then t(f) =3 and {b,c,d,e} = N(f), ef ¢ F». For (y) we have
cdf,cef,def € 73, hence degs(f) > 3. Then ¢(f) = 3 and {c,d,e} = N(f), ef ¢ F». For (9)
we have bde,bdf € 73, hence deg;(b) > 3. Then t(b) = 3 and {c,d,e,f} = N(b), bf & F».
This final contradiction completes the proof of the case (D,t) = (5,3) and Claim 2.2. []

éD(D —2)(D-3)<t (2.4)

2.2. The case D < 4
From now on in this section we suppose that D < 4.

Claim 2.3. (2.1) and deg; (a) =4 imply that t(a) = degz(a) =2 and the two triples con-
taining the element a meet only in a, e.g., N(a) = bede and F (a) = {abc, ade}.

Proof. Suppose first that t(a) = 0. Then all the four triples of the form xyz, x,y,z € N(a)

belong to & 3. Hence deg;(b) > 3, contradicting D > deg,(x) > 2 + deg;(x). If t(a) = 1, say
abc € I (a), then bde, cde € F 5 is implied by (1.3). Hence degs(e) > 2, so deg; (e) = 4. Since
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(1.1) implies that be, ce, de € F, we get that N(e) N {b,c,d} = 0, so t(e) = 0. However, we
have seen that deg; (e) =D =4 implies t(e) > 0.

So we get t(a) > 2, i.e, by t(x) < D — 2 we have t(a) = 2 The only case left to exclude
is when the triples in 7 (a) meet in two elements, say 7 (a) = {abc, acd} Then bde € 73,
so deg;(b) > 2. Hence we get deg, (b) = 4, this implies t(b) =2 and {c,d,e} = N(b). We
get ab, ae,be € J 5, abe ¢ F 3, contradicting (1.1). ]

Claim 2.4. (2.1) and deg, (x) = 3 imply that degs(x) = 1.

Proof. Suppose on the contrary, that deg;(x) =0. Consider N(x) = abc, we have
ab,bc,ca € #, by (1.1) and abc € 5 by (1.3). Then ab € %, implies that abc ¢ 7 (a)
Therefore t(a) cannot be D — 2 = 2. So Claim 2.3 gives that deg; (a) # 4. Since degs(a) > 1
we get that deg; (a) = 3. Consider N(a) = xyz. Note that y,z ¢ {x,a,b,c}. Then xyz € F;
by (1.3). This contradicts deg;(x) = 0, so we have degs;(x) > 1. On the other hand, (2.1)
implies deg;(x) < 1. L]

Claim 2.5. (2.1) implies that h(¥) < %

Proof. For x € [n] define ¢(x) := %deg;(x) — %deg3(x). We are going to prove that
¢(x) < 4/3 for every x. This implies the claim as follows:

~

WF) =10 =1 73] = Y o(x) < 3n. (25

x€[n]

w

Using the previous three claims one can split [n] into three parts, [n ] PUQUR, where
P :={x :deg; (x) =4, degs(x) =2}, Q := {x :deg; (x) = 3, degs(x) =1}, and R :=
deg; (x) = 2, deg;(x) = 0}. For each case we have ¢ < 4/3. D

Note that h(F) = %n in Claim 2.5 is only possible for Construction 1.13, especially

P =1[n] and Q =R =0. (2.6)

3. Proof of the main result
Let & be a minimal 2-base for %(n, < 4). Then
b+ () = = 171 = 700 () + 1+ 0 1 = degy () + degs(v)
>1+n+ <;) — h(n — 1) — (deg; (x) — degs(x)) (3.1)
gives that the deficiency of every vertex is at least h(n) — h(n — 1).
Proof of Theorem 1.1. We use induction on n to show that h(n) < 3n This is certainly

true for n < 2. Suppose that h(n — 1) < 4(n — 1) and consider h(n). If h(n) < h(n—1)+ 1,
then we are done. If h(n) > h(n — 1) + 2, then, as we have seen in (3.1), there exists
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a minimal 2-base & on [n] with deficiency at least 2. Then Claim 2.5 gives h(n) =
hWF) < %n. U]

Proofs of Claims 1.6, 1.8 and 1.10. The case n < 4 is trivial. Suppose that 5 < n < 7 and
let # be a minimal 2-base on n vertices.

The case n =5 is easy. h(%) > 6 implies |7 | + |F 3| < 4. If |F,| =4, then there is a
unique way to satisfy (1.1) (namely, &, is a union of an edge and a triangle) and then
(1.4) is violated. If | # ;| = 3, then there are at least 2 triples not containing any member of
F, s0 (1.2) gives |F 3| > 2. If | F,| < 2, then they satisfy (1.1) with at most 3|% ;| triples.
Hence, (1.2) gives |# 3| > 10 — 3|%,|. Then |F | + |7 3| exceeds 4, a final contradiction.

If the minimum deficiency of % is (at most) 1 then (3.1) gives h(n) < h(n — 1) + 1, and
we are done. From now on suppose that the deficiency of % is at least 2, i.e., (2.1) holds.

For n =6 Claim 2.5 gives that h(Z) < % x 6 = 8. By (2.6) h(%) = 8 is only possible
if P =[n], i.e, #, is a 4-regular graph, and Z 3 consists of four triples. Then 7, is a
matching, say, #, = {aiaz,b1bs, cic2}. Then (1.2) implies that all the eight triples of the
form a;bjc, should belong to 73, a contradiction. We have obtained h(#) = h(6) <

For n =7 Theorem 1.1 implies h(F) < |7 x %J = 9. We claim that h(7) = 8. Suppose,
on the contrary, that h(%) = 9. Consider the partition of [n] = P U Q U R defined in the
proof of Claim 2.5. For R # () (2.5) gives |R| = 1, |P| = 6, Q = (). Then #»|P is a 4-regular
graph, not joined to R, so deg; (R) = 2 is impossible. Finally, if R = 0, |Q| =2 and |P| =5
then we get | % 3| = 4. The four members of & 3 can pairwise meet in at most 1 vertex (by
Claims 2.3 and 2.4) and have girth 4. But such an %3 does not exist on 7 vertices.

So we have obtained the exact value of h(n) for every n. U]

4. 2-bases for quadruples

Here we prove Theorem 1.2. Suppose that & is an extremal 2-base for #(n,4), i.e
|7 | = g4(n), such that |F (| + |F 4| is minimal. The case n = 5 is a short finite process, the
unique 2-base with 4 members {12, 34, 135, 245}.

In the case n = 6 the 6 pairs of a hexagon and the 2 disjoint triples of the second example
in Construction 1.7 shows g4(6) < 8. Consider a minimal 2-base #. If deg,(x) > 3, then

| 7] = degz(x) + [ Z (] \ {x})] = deg7(x) + ga(n — 1) (4.1)

implies |7 | > 3 + 4. The impossibility of this case with |%| = 7 follows easily from the
uniqueness of the 2-base on 5 elements. Moreover, it is easy to check that a hypergraph
of 7 edges on 6 elements with maximum degree 2 cannot be a 2-base, so g4(6) > 8. From
now on we may suppose that n > 7.

The upper bounds for g4(n) follows by leaving out the singletons and the empty set
from Constructions 1.9 and 1.13 in Section 1. To prove a lower bound we proceed as in
Section 2. The main idea of the proof is that we first investigate the minimal 2-bases with
a maximum degree condition

deg,(x) <n—3 (4.2)

for all x € [n].
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We claim that (4.2) implies that #4 = (. Indeed, suppose, on the contrary, that Q € Z .
If Q contains any proper subset F € #, x € F < Q, Q # F, then one can replace Q by
0\ {x} to obtain another 2-base with smaller |7 | + |Z4]. So we may suppose that such
a proper subset does not exist. Consider Q \ {x} U {y} for some x € Q, y € [n] \ Q. This is
a union of (at most) two sets A, B € . Both of them contain y. We obtain that the sets
{F:yeFcQuU{y}, |F| > 1} cover Q, and some vertex of Q is covered at least twice.
Hence there exists an x € Q covered by these sets more than n —4 times while y runs
through [n] \ Q. Taking Q itself, we get that deg,(x) > n — 3, contradicting (4.2).

Use the notation of the previous section, e.g., D := maxdeg, (x) and deg; (a) = D. We
claim that (4.2) implies that

D <4

In the proof of this one cannot use Lemma 2.1, either (1.1) or (1.2); however, (2.2)—(2.4)
still hold, implying D < 6. Furthermore, ab, ac,ad ¢ % ,, and abc, abd, acd ¢ F 3 imply not
only bed € # 3 but a € # . Thus, in the case %, #+ 0 (e.g., for D > 4), one gets a € F 1.
Then (4.2) gives t(a) < deg; (a) —3 =D — 3. So (2.4) gives D < 4.

Using the same idea one can see that Claim 2.3 remains true. The following analogue
of Claim 2.4 is obviously true: deg; (x) = 3 implies deg;(x) + degs(x) = 1.

As in Claim 2.5 we show that (4.2) implies

7| > (g) _ gn. (4.3)
Indeed, for x € [n] define ¢(x) := § deg; (x) — § degs(x) — deg;(x). As before we have that
(4.2) implies that ¢(x) < 4/3 for every x, completing the proof of (4.3) for this case.

Finally, for hypergraphs with maximum degree at least n — 2 one can use induction on
n. Inequality (4.1) implies that (4.3) always holds.

The case n = 7 can be finished as in the proof of Claim 2.5, by considering a partition
of [n] into three parts, [n] = P UQUR, where now Q := {x :deg;(x) =3, deg;(x)+
deg;(x) = 1}. The details are omitted. ]

5. More hypergraphs

Let T(n,k,r) denote the minimum size of a hypergraph & < %(n,r) such that every
k-subset of [n] contains a member of %#. The determination of T'(n,k,r) is proposed by
Turan [8], who solved the case r = 2 (the case of graphs — see [7]) and has a longstanding
conjecture T'(n,4,3) = (3 +o(1)) (3). For a survey on this see Sidorenko [6].

One can prove for every odd integer k that our fi(n) equals (1 + o(1))T (n, k, (k + 1)/2),
but the even case is more involved and apparently leads to a new Turan-type problem.
The authors intend to return to this topic in a future work.
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