2-Bases of Quadruples

ZOLTÁN FÜREDI^{1†} and GYULA O. H. KATONA^{2‡}

¹Rényi Institute of Mathematics of the Hungarian Academy of Sciences, Budapest, PO Box 127, Hungary-1364 and

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA

(e-mail: furedi@renyi.hu, z-furedi@math.uiuc.edu)

²Rényi Institute of Mathematics of the Hungarian Academy of Sciences,

Budapest, PO Box 127, Hungary-1364

(e-mail: ohkatona@renyi.hu)

Received 18 October 2004; revised 6 July 2005

For Béla Bollobás on his 60th birthday

Let $\mathcal{B}(n, \leq 4)$ denote the subsets of $[n] := \{1, 2, ..., n\}$ of at most 4 elements. Suppose that \mathscr{F} is a set system with the property that every member of \mathscr{B} can be written as a union of (at most) two members of \mathscr{F} . (Such an \mathscr{F} is called a 2-base of \mathscr{B} .) Here we answer a question of Erdős proving that

$$|\mathscr{F}| \geqslant 1 + n + \binom{n}{2} - \lfloor \frac{4}{3}n \rfloor,$$

and this bound is best possible for $n \ge 8$.

1. 2-bases

The *n*-element set $\{1, 2, ..., n\}$ is denoted by [n]. The family of all subsets of [n] is called the Boolean lattice and is denoted by $\mathcal{B}(n)$. Its kth level is $\mathcal{B}(n,k) := \{B : B \subset [n] : |B| = k\}$, and $\mathcal{B}(n, \leq k) := \bigcup_{0 \leq i \leq k} \mathcal{B}(n,i)$. The set system \mathscr{F} is called a 2-base of \mathscr{A} if every member $A \in \mathscr{A}$ can be obtained as a union of two members of \mathscr{F} , in other words $A = F_1 \cup F_2$, $F_1, F_2 \in \mathscr{F}$. Note that we allow $F_1 = F_2$ and we do not insist that the 2-base is a subset of the set system.

[†] Research supported in part by Hungarian National Science Foundation grant OTKA T 032452, T 037846 and by National Science Foundation grant DMS 0140692.

[‡] Research supported by Hungarian National Science Foundation grants OTKA T 037846, T 038210, T 034702.

The interest is in how small a base one can find. Let $f(\mathcal{A}) := \min\{|\mathcal{F}| : \mathcal{F} \text{ is a 2-base of } \mathcal{A}\}$. This is known exactly in very few cases, even when the set system is a natural one. For example, it is not known even for the power-set itself (the discrete cube). In 1993 Erdős [2] proposed the problem of determining $f(\mathcal{B}(n))$ and also the problem of determining the minimum size of a 2-base of the small sets, $f(\mathcal{B}(n, \leq k))$. We also use $f_k(n)$ for $f(\mathcal{B}(n, \leq k))$. Erdős conjectured that

$$f(\mathcal{B}(n)) = 2^{\lfloor n/2 \rfloor} + 2^{\lceil n/2 \rceil} - 1,$$

and that the extremal family consists of all subsets of V_1 and V_2 where $V_1 \cup V_2 = [n]$ is a partition of [n] into two almost equal parts. A lower bound $f(\mathcal{B}(n)) \ge (1 + o(1))2^{(n+1)/2}$ is obvious from the fact that

$$|\mathscr{A}| \leqslant {|\mathscr{F}| \choose 2} + |\mathscr{F}|,$$

which holds for any 2-base \mathcal{F} of \mathcal{A} .

The aim in this paper is to answer this question for the family $\mathcal{B}(n, \leq 4)$. The question of the smallest base for $\mathcal{B}(n, \leq k)$ is trivial for $k \leq 2$, and for k = 3 it turns out to be a question about graphs whose answer follows immediately from Turán's theorem. So the case k = 4 is the first nontrivial case. It boils down to an interesting question about 3-graphs (3-regular hypergraphs), and it might be somewhat surprising that it is possible to give an exact answer.

Let $f_4(n) := 1 + n + \binom{n}{2} - h(n)$. The main result of this paper can be summarized in the following table:

$$\frac{n \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad n \geqslant 8}{h(n) \quad 0 \quad 0 \quad 1 \quad 2 \quad 4 \quad 5 \quad 7 \quad 8 \quad \lfloor \frac{4}{3}n \rfloor}$$

Theorem 1.1. For $n \ge 8$, $f_4(n) = 1 + n + \binom{n}{2} - \lfloor \frac{4}{3}n \rfloor$.

Let $g_k(n) := f(\mathcal{B}(n,4))$, the size of a minimum 2-base for the k-tuples. We will deduce from Theorem 1.1 that $g_4(n) + n + 1 = f_4(n)$ for $n \ge 5$.

Theorem 1.2. We have
$$g_4(5) = 4$$
, $g_4(6) = 8$, $g_4(7) = 13$ and for $n \ge 8$, $g_4(n) = \binom{n}{2} - \lfloor \frac{4}{3}n \rfloor$.

In the following section we discuss $f_k(n)$ in the (easy) case $k \le 3$. Then give constructions for $f_4(n)$ separating the cases $n \le 7$ and $n \ge 8$ and thus providing lower bounds for h(n). In Section 2 the structure of minimal bases of $\mathcal{B}(n, \le 4)$ is investigated, namely those with minimum deficiency with at least 2, and then (the upper bounds for) the values of h(n) in the above table is proved in Section 3. In Section 4 the uniform case (the case of g_4) is considered, and in Section 5 we close with a few remarks on the case k > 4.

1.1. The case $\mathcal{B}(n, \leq 3)$

For $k \ge 1$ every 2-base of $\mathcal{B}(n, \le k)$ must contain the \emptyset and all singletons. This easily leads to

$$f_0(n) = 1$$
, $f_1(n) = 1 + n$, $f_2(n) = 1 + n$.

Suppose that \mathscr{F} is a 2-base of $\mathscr{B}(n, \leq k)$, $1 < k \leq n$, such that $|\mathscr{F}| = f_k(n)$ and $\sum_{F \in \mathscr{F}} |F|$ is minimal. Such bases are called *minimal*. Then

- (i) $\emptyset \in \mathcal{F}$, $\mathcal{B}(n,1) \subset \mathcal{F}$,
- (ii) for every $F \in \mathscr{F}$ we have $|F| \leq k 1$.

Indeed, one need only observe that for $F \in \mathcal{F}$, |F| = k, $x \in F$ one can replace F by $F' := F \setminus \{x\}$, i.e., $\mathcal{F} \setminus \{F\} \cup \{F'\}$ is also a 2-base.

Construction 1.3. Consider a 2-partition $V_1 \cup V_2$ of [n] with $\lfloor n/2 \rfloor \leqslant |V_1| \leqslant |V_2| \leqslant \lceil n/2 \rceil$ and let \mathscr{F} be all the subsets of V_1 and V_2 of size at most 2. Every triple from [n] meets a V_i in at least 2 elements so it also contains a 2-element member of \mathscr{F} . Hence \mathscr{F} is a 2-base of $\mathscr{B}(n,\leqslant 3)$.

Claim 1.4.
$$f_3(n) = 1 + n + {\lfloor n/2 \rfloor \choose 2} + {\lceil n/2 \rceil \choose 2}.$$

Proof of Claim 1.4. Suppose that \mathscr{F} is a minimal 2-base of $\mathscr{B}(n, \leq 3)$ satisfying (i) and (ii). Split it into subfamilies according to the sizes of its members, $\mathscr{F} = \mathscr{F}_0 \cup \mathscr{F}_1 \cup \mathscr{F}_2$ where $\mathscr{F}_i := \mathscr{F} \cap \mathscr{B}(n,i)$. Then \mathscr{F}_2 is a graph (*i.e.*, a 2-graph) with the property that every triple contains an edge, so its complement \mathscr{H}_2 is triangle-free ($\mathscr{H}_2 := \mathscr{B}(n,2) \setminus \mathscr{F}_2$). Then Turán's theorem [7] implies that $|\mathscr{H}_2| \leq \lfloor n^2/4 \rfloor$, hence

$$|\mathscr{F}| = |\mathscr{F}_0| + |\mathscr{F}_1| + |\mathscr{F}_2| \geqslant 1 + n + \binom{n}{2} - \left\lfloor \frac{n^2}{4} \right\rfloor.$$

1.2. Constructions for $\mathcal{B}(n, \leq 4)$ if $n \leq 7$

Let \mathscr{F} be a minimal 2-base of $\mathscr{B}(n, \leq 4)$ satisfying (i) and (ii). Let $\mathscr{F}_i := \mathscr{F} \cap \mathscr{B}(n, i)$; then $\mathscr{F} = \mathscr{F}_0 \cup \mathscr{F}_1 \cup \mathscr{F}_2 \cup \mathscr{F}_3$ where $\mathscr{F}_0 = \{\emptyset\}$, $\mathscr{F}_1 = \mathscr{B}(n, 1)$. Use the notation $\mathscr{H}_2 := \mathscr{B}(n, 2) \setminus \mathscr{F}_2$. Then

$$|\mathscr{F}| = 1 + n + \binom{n}{2} - |\mathscr{H}_2| + |\mathscr{F}_3| := 1 + n + \binom{n}{2} - h(n).$$

Since $\mathcal{B}(n, \leq 2)$ is a 2-base of $\mathcal{B}(n, \leq 4)$ we have $h(n) \geq 0$.

Let us summarize the properties of $\mathcal{F}_2 \cup \mathcal{F}_3$:

for every triple
$$T \subset [n]$$
 either T contains a pair from \mathscr{F}_2 (1.1)

or
$$T \in \mathcal{F}_3$$
, (1.2)

for every quadruple
$$Q \subset [n]$$
 either Q contains a triple from \mathcal{F}_3 (1.3)

or
$$Q$$
 is a union of two edges from \mathcal{F}_2 . (1.4)

Construction 1.5. For $n \ge 4$ let \mathcal{H}_2 be a Hamilton cycle, $|\mathcal{F}_3| = 0$.

It is easy to show that this family \mathscr{F}_2 satisfies (1.1) and (1.4) so (together with $\mathscr{B}(n, \leq 1)$) it is a 2-base. This construction shows that $h(n) \geq n$ (for ≥ 4), and one can see that this is the best possible for n = 4 and n = 5.

Claim 1.6.
$$h(0) = h(1) = 0$$
, $h(2) = 1$, $h(3) = 2$, $h(4) = 4$ and $h(5) = 5$.

The proof of this (and the following two claims concerning n = 6 and 7) is a short, finite process. For completeness we sketch them in Section 3.

Construction 1.7. For n = 6 let \mathcal{F}_3 be two disjoint triples F_1 , F_2 and let \mathcal{F}_2 be the six pairs contained in either F_1 or F_2 .

Another construction of the same size can be obtained by considering a Hamilton cycle $\mathscr{F}_2 := \{12, 23, 34, 45, 56, 16\}$ with two triples $\mathscr{F}_3 := \{135, 246\}$.

Claim 1.8. h(6) = 7.

Construction 1.9. For n=7 label the seven elements by two coordinates, $V:=\{v(1,1),v(1,2),v(1,3),v(2,1),v(2,2),v(3,1)\}$. Let \mathscr{F}_2 be the ten pairs $v(\alpha,\beta)v(\alpha',\beta')$ with $\alpha\neq\alpha'$ and $\beta\neq\beta'$, and let \mathscr{F}_3 be formed by the three triples having a constant coordinate, i.e., $\{v(1,1),v(1,2),v(1,3)\},\{v(2,1),v(2,2),v(2,3)\}$ and $\{v(1,1),v(2,1),v(3,1)\}$. (This is a truncated version of Construction 1.13 for n=9.)

Claim 1.10. h(7) = 8.

Construction 1.11. Let n_1 , n_2 be nonnegative integers, $V^1 \cup V^2$ a partition of [n] with $|V^i| = n_i$, \mathcal{F}^i a minimal 2-base on V_i . Define \mathcal{F} as $\mathcal{F}^1 \cup \mathcal{F}^2$ together with all pairs joining V^1 and V^2 .

It is easy to see that this construction satisfies (1.1)–(1.4): it is a 2-base. Indeed, it is sufficient to check a triple T and a quadruple Q meeting both V_1 and V_2 . Then T contains a pair joining V^1 and V^2 ; thus it satisfies (1.1). If $|Q \cap V^1| = |Q \cap V^2| = 2$, then it is a union of two crossing pairs. Finally, if $Q = \{a, b, c, d\}$ and $Q \cap V^1 = \{a, b, c\}$, then since \mathscr{F}^1 is a 2-base, $Q \cap V^1$ satisfies either (1.1) or (1.2). In the first case $Q \cap V^1$ it contains a pair, say ab from \mathscr{F}^1 ; then $\{a, b\} \cup \{c, d\}$ is a partition of Q satisfying (1.4). In the second case $Q \cap V^1 \in \mathscr{F}^1$, so Q satisfies (1.3). We obtained the following.

Claim 1.12. For n_1 , n_2 nonnegative integers $h(n_1 + n_2) \ge h(n_1) + h(n_2)$.

1.3. Constructions for $n \ge 8$

Construction 1.13. Suppose that \mathscr{F}_3 is a triple system on [n] of girth at least 4, i.e., $|F' \cap F''| \le 1$ for $F', F'' \in \mathscr{F}_3$, $F_1, F_2, F_3 \in \mathscr{F}_3$ and $F_1 \cap F_2 \neq \emptyset$, $F_1 \cap F_3 \neq \emptyset$, $F_2 \cap F_3 \neq \emptyset$ imply $F_1 \cap F_2 \cap F_3 \neq \emptyset$. Suppose further that every degree of \mathscr{F}_3 is at most two, i.e., every singleton is contained in at most two triples. Define \mathscr{H}_2 as the pairs covered by the members of \mathscr{F}_3 .

This construction (together with $\mathcal{B}(n, \leq 1)$) forms a 2-base. Indeed, if a triple $T \subset [n]$ contains no edge from \mathcal{F}_2 , then it belongs to \mathcal{F}_3 , so either (1.1) or (1.2) holds. Moreover, if $Q = \{a, b, c, d\} \subset [n]$ is a quadruple and contains no triple from \mathcal{F}_3 , then the induced graph $\mathcal{H}_2|Q$ contains no triangle. So $\mathcal{F}_2|Q$ contains two disjoint edges (and thus fulfils (1.4)) unless $\mathcal{H}_2|Q$ has a vertex of degree 3, say, $ab, ac, ad \in \mathcal{H}_2$. Since the degree of \mathcal{F}_3 at the vertex a is at most two and the edges of \mathcal{H}_2 are obtained from the triples of \mathcal{F}_3 we get

that there exists a triple $T \in \mathcal{F}_3$ with $a \in T \subset Q$. We have proved that Construction 1.13 indeed defines a 2-base.

For n = 3k, $k \ge 3$ we obtain $h(3k) \ge 4k$ as follows. Let $[n] = \{a_1, a_2, \dots, a_k\} \cup \{b_1, b_2, \dots, b_k\} \cup \{c_1, c_2, \dots, c_k\}$. Define \mathscr{F}_3 as all triples of the form $a_i b_i c_i$ and $a_i b_{i+1} c_{i+2}$ (indices are taken modulo k). This satisfies the constraint of Construction 1.13. Since $|\mathscr{H}_2| = 3|\mathscr{F}_3|$, we get $h(n) \ge 2|\mathscr{F}_3| = 4k$.

If we leave out from the above construction the 2 triples of \mathcal{F}_3 and the 4 pairs of \mathcal{H}_2 containing the element 3k we obtain that $h(3k-1) \ge 4k-2$. Thus we already have the cases n=3k and n=3k-1 in the following claim.

Claim 1.14. $h(n) \geqslant \lfloor \frac{4}{3}n \rfloor$ for $n \geqslant 8$.

Figure 1.

Proof. We only need a construction for n = 3k + 1, $k \ge 3$ to show $h(3k + 1) \ge 4k + 1$. It is enough to show $h(10) \ge 13$, $h(13) \ge 17$ and $h(16) \ge 21$; then the general case follows from $h(9) \ge 12$ using Claim 1.12.

Define the six triples of \mathcal{F}_3 as $\{1,2,3\}$, $\{4,5,6\}$, $\{7,8,9\}$, $\{1,4,7\}$, $\{2,5,8\}$ and $\{3,6,10\}$ and \mathcal{H}_2 as the 18 pairs covered by these triples and $\{9,10\}$. The graph \mathcal{H}_2 has only these 6 triangles, so (1.1)–(1.2) hold, and it is not difficult to check the four-tuples, too.

The other cases are similar: for n = 13 we can define $\mathscr{F}_3 := \{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}, \{10, 11, 12\}$ and $\{1, 4, 10\}, \{2, 5, 7\}, \{6, 8, 11\}, \{3, 9, 13\}$ and \mathscr{H}_2 consists of these triangles and the pair $\{12, 13\}$.

Finally, for n = 16 we define \mathscr{F}_3 as $\{1, 2, 3\}$, $\{4, 5, 6\}$, $\{7, 8, 9\}$, $\{10, 11, 12\}$, $\{13, 14, 15\}$ and $\{1, 4, 13\}$, $\{2, 5, 7\}$, $\{6, 8, 10\}$, $\{9, 11, 14\}$, and $\{3, 12, 16\}$. Again \mathscr{H}_2 consists of the triangles obtained from \mathscr{F}_3 and the edge $\{15, 16\}$.

2. Bases with deficiency at least 2

The aim of this paper is to prove Theorem 1.1, so suppose that \mathscr{F} is a minimal 2-base of $\mathscr{B}(n, \leq 4)$ and that $\mathscr{F}_2 \cup \mathscr{F}_3$ satisfies (1.1)–(1.4).

Lemma 2.1. If $abc \in \mathcal{F}_3$, then either $\{ab, bc, ca\} \subset \mathcal{F}_2$ or $\{ab, bc, ca\} \subset \mathcal{H}_2$.

Proof. Suppose, on the contrary, that $ab \in \mathcal{F}_2$, $ac \notin \mathcal{F}_2$. Replace abc by ac in \mathcal{F} . Since $\sum_{F \in \mathcal{F}} |F|$ is minimal the family $\mathcal{F}' := \mathcal{F} \setminus \{abc\} \cup \{ac\}$ is not a 2-base. What can go wrong? Since we added a new pair, conditions (1.1) and (1.2) still hold. The only condition we can violate is (1.3)–(1.4). We removed abc, so there exists an Q = abcd not a union of two members of \mathcal{F}' . So abcd does not contain any triple from \mathcal{F}' and also bd, $cd \notin \mathcal{F}'$. Consider bcd. We have $bcd \notin \mathcal{F}$ so (1.1) implies that $bc \in \mathcal{F}_2$. Consider acd. Since ac, cd, and $acd \notin \mathcal{F}$ again (1.1) implies that $ad \in \mathcal{F}_2$. However, then $Q = ad \cup bc$, a contradiction.

Use the notation $\deg_2^-(x)$ for the degree of the vertex x in the graph \mathcal{H}_2 and $\deg_3(x)$ for the degree of x in \mathcal{F}_3 . The difference $\deg_2^-(x) - \deg_3(x)$ is called the *deficiency* of the vertex $x \in V$. From now on in this section we suppose that

$$\deg_2^-(x) - \deg_3(x) \geqslant 2 \text{ for every } x \in [n]. \tag{2.1}$$

Let N(x) denote the neighbourhood of x in \mathcal{H}_2 , $N(x) := \{y : xy \in \mathcal{H}_2\}$, $\deg_2^-(x) = |N(x)|$. Let $\mathcal{F}(x)$ denote the set of triples T from \mathcal{F}_3 with $x \in T \subset N(x) \cup \{x\}$, and let $t(x) := |\mathcal{F}(x)|$. Suppose that $D = \max_{x \in [n]} \deg_2^-(x)$, and a has maximum degree in \mathcal{H}_2 . Consider $A = \{a\} \cup N(a)$, |A| = D + 1: let t := t(a). Then (2.1) implies $t, t(x) \leq D - 2$.

2.1. Eliminating the case $D \ge 5$

Claim 2.2. (2.1) implies that $D \leq 4$.

Proof. Consider the $\binom{D}{3}$ four-tuples of A containing x: let $\mathscr{B} := \{Q : a \in Q \subset A, |Q| = 4\}$. Note that none of these can satisfy (1.4), so each of them contains a member of \mathscr{F}_3 . Classify them into two groups as follows:

 $\mathcal{B}_1 := \{abcd : b, c, d \in A \text{ and there exists a } T \in \mathcal{F}_3 \text{ with } a \in T \subset \{a, b, c, d\}\},\$ $\mathcal{B}_2 := \{abcd : abcd \subset A, abc, abd, acd \notin \mathcal{F}_3\}.$

Each $Q \in \mathcal{B}_2$ contains a member of $\mathcal{F}_3|N(a)$, hence

$$|\mathscr{B}_2| \leqslant |\mathscr{F}_3|N(a)|.$$

Each member of $\mathcal{F}(a)$ is contained in D-2 four-tuples from \mathcal{B}_1 , hence

$$|\mathcal{B}_1| \leqslant t(D-2). \tag{2.2}$$

Here the sum of the left-hand sides is $\binom{D}{3}$. The sum of the right-hand sides can be estimated by the degrees of \mathscr{F}_3 on A. Using $\deg_3(x) \leq D-2$ we obtain

$$\binom{D}{3} = |\mathscr{B}_1| + |\mathscr{B}_2| \leqslant t(D-2) + |\mathscr{F}_3|N(a)| = t(D-3) + |\mathscr{F}_3|A|
\leqslant t(D-3) + \frac{1}{3} \sum_{x \in A} \deg_3(x) \leqslant t(D-3) + \frac{1}{3} (t + D(D-2)).$$
(2.3)

Hence

$$\frac{1}{6}D(D-2)(D-3) \leqslant t\frac{3D-8}{3}. (2.4)$$

Since $t \le D-2$ we get $D \le 6$. In the case of $t \le D-3$ (2.4) implies $D \le 4$. So two cases are left in the proof of the claim, namely (D,t)=(6,4) and (5,3).

In the case of D=6, t=4 the right-hand side of (2.2) can be improved by 2, since there are at least 2 coincidences when estimating the cardinality of \mathcal{B}_1 . So $|\mathcal{B}_1| \le 14$, and we can decrease the right-hand sides of (2.3) and (2.4) by 2, and that leads to the contradiction $12 \le 4 \times \frac{10}{3} - 2$.

In the case of D = 5, t = 3 we use two things. The first one is implied by Lemma 2.1 and (1.1).

- (C1) If $abc \in \mathcal{F}(a)$ then $bc \in \mathcal{H}_2$; if $abc \notin \mathcal{F}(a)$ and $b,c \in N(a)$ then $bc \in \mathcal{F}_2$. Thus $\mathcal{F}_2|N(a)$ has exactly $\binom{D}{2} t$ edges.
- (C2) If $\deg_3(x) \ge 3$, then t(x) = 3. Indeed, (2.1) implies $\deg_2(x) \ge \deg_3(x) + 2 \ge 5$.

Consequently $\deg_2^-(x) = 5 = D$, x has maximum degree, D, and then the previous considerations for a are valid for x, too, i.e., (2.4) implies that t(x) = 3 is the only possibility.

Now we are ready to show that, in fact, (D, t) = (5, 3) is impossible. Suppose, on the contrary, that there is such a construction and let $N(a) = \{b, c, d, e, f\}$. Consider the 3-edge graph $G := \{xy : axy \in \mathcal{F}_3\}$. There are 4 non-isomorphic possibilities for G:

- (α) G is a triangle, $\{bc, cd, bd\}$,
- (β) G is a path of length 3, $\{bc, cd, de\}$,
- (γ) G is a star, $\{bc, bd, be\}$,
- (δ) G has 2 components, {bc, cd, ef }.

In each case we will find one or more $x \in N(a)$ with t(x) = 3. Then the triples containing x cover no pair from \mathcal{F}_2 and this will lead to a contradiction.

For (α) , by (1.3) we have $bef, cef, def \in \mathscr{F}_3$. Hence $\deg_3(f) \geqslant 3$. Then (C2) implies that t(f) = 3 and then Lemma 2.1 gives that $\{b, c, d, e\} \subset N(f)$, $ef \notin \mathscr{F}_2$. However, $ef \in \mathscr{F}_2$ by (C1), a contradiction.

The other cases can be handled in the same way. For (β) we have $bdf, bef, cef \in \mathscr{F}_3$, hence $\deg_3(f) \geqslant 3$. Then t(f) = 3 and $\{b, c, d, e\} \subset N(f)$, $ef \notin \mathscr{F}_2$. For (γ) we have $cdf, cef, def \in \mathscr{F}_3$, hence $\deg_3(f) \geqslant 3$. Then t(f) = 3 and $\{c, d, e\} \subset N(f)$, $ef \notin \mathscr{F}_2$. For (δ) we have $bde, bdf \in \mathscr{F}_3$, hence $\deg_3(b) \geqslant 3$. Then t(b) = 3 and $\{c, d, e, f\} \subset N(b)$, $bf \notin \mathscr{F}_2$. This final contradiction completes the proof of the case (D, t) = (5, 3) and Claim 2.2. \square

2.2. The case $D \leq 4$

From now on in this section we suppose that $D \leq 4$.

Claim 2.3. (2.1) and $\deg_2^-(a) = 4$ imply that $t(a) = \deg_3(a) = 2$ and the two triples containing the element a meet only in a, e.g., N(a) = bcde and $\mathcal{T}(a) = \{abc, ade\}$.

Proof. Suppose first that t(a) = 0. Then all the four triples of the form xyz, x, y, $z \in N(a)$ belong to \mathscr{F}_3 . Hence $\deg_3(b) \ge 3$, contradicting $D \ge \deg_2(x) \ge 2 + \deg_3(x)$. If t(a) = 1, say $abc \in \mathscr{F}(a)$, then bde, $cde \in \mathscr{F}_3$ is implied by (1.3). Hence $\deg_3(e) \ge 2$, so $\deg_2^-(e) = 4$. Since

(1.1) implies that be, ce, $de \in \mathcal{F}_2$ we get that $N(e) \cap \{b, c, d\} = \emptyset$, so t(e) = 0. However, we have seen that $\deg_2^-(e) = D = 4$ implies t(e) > 0.

So we get $t(a) \ge 2$, *i.e.*, by $t(x) \le D - 2$ we have t(a) = 2. The only case left to exclude is when the triples in $\mathcal{F}(a)$ meet in two elements, say $\mathcal{F}(a) = \{abc, acd\}$. Then $bde \in \mathcal{F}_3$, so $\deg_3(b) \ge 2$. Hence we get $\deg_2^-(b) = 4$, this implies t(b) = 2 and $\{c, d, e\} \subset N(b)$. We get $ab, ae, be \in \mathcal{H}_2$, $abe \notin \mathcal{F}_3$, contradicting (1.1).

Claim 2.4. (2.1) and $\deg_2^-(x) = 3$ imply that $\deg_3(x) = 1$.

Proof. Suppose, on the contrary, that $\deg_3(x) = 0$. Consider N(x) = abc, we have $ab, bc, ca \in \mathscr{F}_2$ by (1.1) and $abc \in \mathscr{F}_3$ by (1.3). Then $ab \in \mathscr{F}_2$ implies that $abc \notin \mathscr{T}(a)$ Therefore t(a) cannot be D-2=2. So Claim 2.3 gives that $\deg_2^-(a) \neq 4$. Since $\deg_3(a) \geqslant 1$ we get that $\deg_2^-(a) = 3$. Consider N(a) = xyz. Note that $y, z \notin \{x, a, b, c\}$. Then $xyz \in \mathscr{F}_3$ by (1.3). This contradicts $\deg_3(x) = 0$, so we have $\deg_3(x) \geqslant 1$. On the other hand, (2.1) implies $\deg_3(x) \leqslant 1$.

Claim 2.5. (2.1) implies that $h(\mathcal{F}) \leq \frac{4}{3}n$.

Proof. For $x \in [n]$ define $\varphi(x) := \frac{1}{2} \deg_2^-(x) - \frac{1}{3} \deg_3(x)$. We are going to prove that $\varphi(x) \le 4/3$ for every x. This implies the claim as follows:

$$h(\mathscr{F}) = |\mathscr{H}_2| - |\mathscr{F}_3| = \sum_{x \in [n]} \varphi(x) \leqslant \frac{4}{3}n. \tag{2.5}$$

Using the previous three claims one can split [n] into three parts, $[n] = P \cup Q \cup R$, where $P := \{x : \deg_2^-(x) = 4, \deg_3(x) = 2\}, \ Q := \{x : \deg_2^-(x) = 3, \deg_3(x) = 1\}, \ \text{and} \ R := \{x : \deg_2^-(x) = 2, \deg_3(x) = 0\}.$ For each case we have $\varphi \le 4/3$.

Note that $h(\mathcal{F}) = \frac{4}{3}n$ in Claim 2.5 is only possible for Construction 1.13, especially

$$P = [n] \text{ and } Q = R = \emptyset. \tag{2.6}$$

3. Proof of the main result

Let \mathcal{F} be a minimal 2-base for $\mathcal{B}(n, \leq 4)$. Then

$$1 + n + \binom{n}{2} - h(n) = |\mathcal{F}| = |\mathcal{F}|([n] \setminus \{x\})| + 1 + (n - 1 - \deg_2^-(x)) + \deg_3(x)$$

$$\geqslant 1 + n + \binom{n}{2} - h(n - 1) - (\deg_2^-(x) - \deg_3(x)) \tag{3.1}$$

gives that the deficiency of every vertex is at least h(n) - h(n-1).

Proof of Theorem 1.1. We use induction on n to show that $h(n) \le \frac{4}{3}n$. This is certainly true for $n \le 2$. Suppose that $h(n-1) \le \frac{4}{3}(n-1)$ and consider h(n). If $h(n) \le h(n-1) + 1$, then we are done. If $h(n) \ge h(n-1) + 2$, then, as we have seen in (3.1), there exists

a minimal 2-base \mathscr{F} on [n] with deficiency at least 2. Then Claim 2.5 gives $h(n) = h(\mathscr{F}) \leqslant \frac{4}{3}n$.

Proofs of Claims 1.6, 1.8 and 1.10. The case $n \le 4$ is trivial. Suppose that $5 \le n \le 7$ and let \mathscr{F} be a minimal 2-base on n vertices.

The case n=5 is easy. $h(\mathscr{F})\geqslant 6$ implies $|\mathscr{F}_2|+|\mathscr{F}_3|\leqslant 4$. If $|\mathscr{F}_2|=4$, then there is a unique way to satisfy (1.1) (namely, \mathscr{F}_2 is a union of an edge and a triangle) and then (1.4) is violated. If $|\mathscr{F}_2|=3$, then there are at least 2 triples not containing any member of \mathscr{F}_2 , so (1.2) gives $|\mathscr{F}_3|\geqslant 2$. If $|\mathscr{F}_2|\leqslant 2$, then they satisfy (1.1) with at most $3|\mathscr{F}_2|$ triples. Hence, (1.2) gives $|\mathscr{F}_3|\geqslant 10-3|\mathscr{F}_2|$. Then $|\mathscr{F}_2|+|\mathscr{F}_3|$ exceeds 4, a final contradiction.

If the minimum deficiency of \mathscr{F} is (at most) 1 then (3.1) gives $h(n) \leq h(n-1) + 1$, and we are done. From now on suppose that the deficiency of \mathscr{F} is at least 2, *i.e.*, (2.1) holds.

For n = 6 Claim 2.5 gives that $h(\mathcal{F}) \leq \frac{4}{3} \times 6 = 8$. By (2.6) $h(\mathcal{F}) = 8$ is only possible if P = [n], i.e., \mathcal{H}_2 is a 4-regular graph, and \mathcal{F}_3 consists of four triples. Then \mathcal{F}_2 is a matching, say, $\mathcal{F}_2 = \{a_1a_2, b_1b_2, c_1c_2\}$. Then (1.2) implies that all the eight triples of the form $a_ib_jc_k$ should belong to \mathcal{F}_3 , a contradiction. We have obtained $h(\mathcal{F}) = h(6) \leq 7$.

For n=7 Theorem 1.1 implies $h(\mathcal{F}) \leq \lfloor 7 \times \frac{4}{3} \rfloor = 9$. We claim that h(7)=8. Suppose, on the contrary, that $h(\mathcal{F})=9$. Consider the partition of $[n]=P\cup Q\cup R$ defined in the proof of Claim 2.5. For $R\neq\emptyset$ (2.5) gives |R|=1, |P|=6, $Q=\emptyset$. Then $\mathcal{H}_2|P$ is a 4-regular graph, not joined to R, so $\deg_2^-(R)=2$ is impossible. Finally, if $R=\emptyset$, |Q|=2 and |P|=5 then we get $|\mathcal{F}_3|=4$. The four members of \mathcal{F}_3 can pairwise meet in at most 1 vertex (by Claims 2.3 and 2.4) and have girth 4. But such an \mathcal{F}_3 does not exist on 7 vertices.

So we have obtained the exact value of h(n) for every n.

4. 2-bases for quadruples

Here we prove Theorem 1.2. Suppose that \mathscr{F} is an extremal 2-base for $\mathscr{B}(n,4)$, *i.e.*, $|\mathscr{F}| = g_4(n)$, such that $|\mathscr{F}_1| + |\mathscr{F}_4|$ is minimal. The case n = 5 is a short finite process, the unique 2-base with 4 members $\{12, 34, 135, 245\}$.

In the case n=6 the 6 pairs of a hexagon and the 2 disjoint triples of the second example in Construction 1.7 shows $g_4(6) \le 8$. Consider a minimal 2-base \mathscr{F} . If $\deg_{\mathscr{F}}(x) \ge 3$, then

$$|\mathscr{F}| = \deg_{\mathscr{F}}(x) + |\mathscr{F}|([n] \setminus \{x\})| \geqslant \deg_{\mathscr{F}}(x) + g_4(n-1) \tag{4.1}$$

implies $|\mathscr{F}| \ge 3+4$. The impossibility of this case with $|\mathscr{F}| = 7$ follows easily from the uniqueness of the 2-base on 5 elements. Moreover, it is easy to check that a hypergraph of 7 edges on 6 elements with maximum degree 2 cannot be a 2-base, so $g_4(6) \ge 8$. From now on we may suppose that $n \ge 7$.

The upper bounds for $g_4(n)$ follows by leaving out the singletons and the empty set from Constructions 1.9 and 1.13 in Section 1. To prove a lower bound we proceed as in Section 2. The main idea of the proof is that we first investigate the minimal 2-bases with a maximum degree condition

$$\deg_{\mathscr{Z}}(x) \leqslant n - 3 \tag{4.2}$$

for all $x \in [n]$.

We claim that (4.2) implies that $\mathscr{F}_4 = \emptyset$. Indeed, suppose, on the contrary, that $Q \in \mathscr{F}_4$. If Q contains any proper subset $F \in \mathscr{F}$, $x \in F \subset Q$, $Q \neq F$, then one can replace Q by $Q \setminus \{x\}$ to obtain another 2-base with smaller $|\mathscr{F}_1| + |\mathscr{F}_4|$. So we may suppose that such a proper subset does not exist. Consider $Q \setminus \{x\} \cup \{y\}$ for some $x \in Q$, $y \in [n] \setminus Q$. This is a union of (at most) two sets $A, B \in \mathscr{F}$. Both of them contain y. We obtain that the sets $\{F : y \in F \subset Q \cup \{y\}, |F| > 1\}$ cover Q, and some vertex of Q is covered at least twice. Hence there exists an $x \in Q$ covered by these sets more than n-4 times while y runs through $[n] \setminus Q$. Taking Q itself, we get that $\deg_{\mathscr{F}}(x) > n-3$, contradicting (4.2).

Use the notation of the previous section, e.g., $D := \max \deg_2^-(x)$ and $\deg_2^-(a) = D$. We claim that (4.2) implies that

$$D \leq 4$$
.

In the proof of this one cannot use Lemma 2.1, either (1.1) or (1.2); however, (2.2)–(2.4) still hold, implying $D \le 6$. Furthermore, $ab, ac, ad \notin \mathcal{F}_2$, and $abc, abd, acd \notin \mathcal{F}_3$ imply not only $bcd \in \mathcal{F}_3$ but $a \in \mathcal{F}_1$. Thus, in the case $\mathcal{B}_2 \neq \emptyset$ (e.g., for D > 4), one gets $a \in \mathcal{F}_1$. Then (4.2) gives $t(a) \le \deg_2^-(a) - 3 = D - 3$. So (2.4) gives $D \le 4$.

Using the same idea one can see that Claim 2.3 remains true. The following analogue of Claim 2.4 is obviously true: $\deg_2^-(x) = 3$ implies $\deg_1(x) + \deg_3(x) = 1$.

As in Claim 2.5 we show that (4.2) implies

$$|\mathscr{F}| \geqslant \binom{n}{2} - \frac{4}{3}n. \tag{4.3}$$

Indeed, for $x \in [n]$ define $\varphi(x) := \frac{1}{2} \deg_2^-(x) - \frac{1}{3} \deg_3(x) - \deg_1(x)$. As before we have that (4.2) implies that $\varphi(x) \le 4/3$ for every x, completing the proof of (4.3) for this case.

Finally, for hypergraphs with maximum degree at least n-2 one can use induction on n. Inequality (4.1) implies that (4.3) always holds.

The case n = 7 can be finished as in the proof of Claim 2.5, by considering a partition of [n] into three parts, $[n] = P \cup Q \cup R$, where now $Q := \{x : \deg_2^-(x) = 3, \deg_1(x) + \deg_3(x) = 1\}$. The details are omitted.

5. More hypergraphs

Let T(n,k,r) denote the minimum size of a hypergraph $\mathscr{F} \subseteq \mathscr{B}(n,r)$ such that every k-subset of [n] contains a member of \mathscr{F} . The determination of T(n,k,r) is proposed by Turán [8], who solved the case r=2 (the case of graphs – see [7]) and has a longstanding conjecture $T(n,4,3)=\left(\frac{4}{9}+o(1)\right)\binom{n}{3}$. For a survey on this see Sidorenko [6].

One can prove for every odd integer k that our $f_k(n)$ equals (1 + o(1))T(n, k, (k + 1)/2), but the even case is more involved and apparently leads to a new Turán-type problem. The authors intend to return to this topic in a future work.

References

- [1] Bollobás, B. (1978) Extremal Graph Theory, Academic Press, London.
- [2] Erdős, P. personal communication.

- [3] Füredi, Z. (1991) Turán type problems. In *Surveys in Combinatorics*, 1991 (A. D. Keedwell, ed.), Cambridge University Press, pp. 253–300.
- [4] Katona, G., Nemetz, T. and Simonovits, M. (1964) A new proof of a theorem of P. Turán and some remarks on a generalization of it (in Hungarian). *Mat. Lapok* **15** 228–238.
- [5] Mubayi, D. and Rödl, V. (2002) On the Turán number of triple systems. J. Combin. Theory Ser. B 100 135–152.
- [6] Sidorenko, A. F. (1995) What we know and what we do not know about Turán numbers. *Graphs Combin.* 11 179–199.
- [7] Turán, P. (1941) On an extremal problem in graph theory (in Hungarian). *Math. Fiz. Lapok* 48 436–452.
- [8] Turán, P. (1961) Research problems. MTA Mat. Kutató Int. Közl. 6 417-423.