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Abstract: The kth moment of the degree sequence d1 � d2 � . . .dn of a
graph G is �k (G) ¼ 1

n

P
dk
i . We give asymptotically sharp bounds for �k (G)

when G is in a monotone family. We use these results for the case k ¼ 2 to
improve a result of Pach, Spencer, and Tóth [15]. We answer a question of
Erdős [9] by determining the maximum variance �2(G) � �2

1(G) of the
degree sequence when G is a triangle-free n-vertex graph.
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1. INTRODUCTION

A family of graphs is monotone if it is closed under taking subgraphs. Many basic

families of graphs are monotone: forests, k-colorable graphs, graphs of girth � g,

graphs that can be embedded in a fixed surface, and H-free graphs, that is, graphs

that do not contain a fixed subgraph H. In this paper, we study properties of the

degree sequence of monotone families of graphs.

P. Erdős [9] proved in 1970 that the degree sequence ðdegðx1Þ; . . . ; degðxnÞÞ of

every Kp-free graph G with vertices fx1; . . . ; xng can be majorized by a ðp � 1Þ-
partite graph H. This means that VðHÞ ¼ VðGÞ, degHðxÞ � degGðxÞ for every

vertex, and H is ðp � 1Þ-colorable. This gives a nice short proof for Turán’s

theorem. In general, it reduces the problem of determining

max

jVðGÞj ¼ n; G is Kp-free

X
1�i�n

FðdegGðxiÞÞ ð1Þ

for a nondecreasing function F to a much simpler optimization problem on

partitions of n into p � 1 positive integers (see [4; 7]). Erdó́s also observed that

this is not necessarily true for general functions F, or graph parameters that

depend on the degree sequence in more complicated ways. As a first point of

attack, he proposed the following question:

‘‘Let GðnÞ be a triangle-free graph with vertices x1; . . . ; xn. What is the

maximum possible variance of the sequence of degrees vðx1Þ; . . . ; vðxnÞ, and

which graphs achieve that maximum?’’ We completely solve this problem of

Erdó́s in Section 5, by showing that for n > 3, the maximum is achieved only by

the unbalanced complete bipartite graph(s) whose number of edges is as close to

n2=8 as possible.

Another natural problem is to study the equivalent of (1) for monotone families

other than Kp-free graphs. In Section 3, we give a simple bound for a general

monotone family in the case when F is nondecreasing. This bound is essentially

optimal for such important special cases as the kth moments of the degree

sequence. Finally, in Section 4, we apply the results for the second moment we

obtained in Section 3 to slightly improve a result on crossing numbers by Pach,

Spencer, and Tóth [15].

2. DEFINITIONS

Throughout this paper, G denotes a monotone family of graphs. For any graph

parameter F, we can now define

Fðn;GÞ ¼ max

jVðGÞj ¼ n; G 2 G
FðGÞ:
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The Turán graph, TpðnÞ, is the complete p-partite graph in which all parts are

as equal in size as possible. Thus, with the notation eðGÞ ¼ jEðGÞj, Turán’s

theorem says that

eðn; fKp-free graphsgÞ ¼ eðTp�1ðnÞÞ; achieved only by Tp�1ðnÞ:

The degree sequence of a general graph G with vertex set fv1; . . . ; vng is the

nonincreasing sequence d1 � d2 � � � � � dn, where di ¼ degGðviÞ. For every

function F : Rþ ! Rþ, we define its average value over the degree sequence of

such a graph as

FðGÞ ¼ 1

n

Xn

i¼1

FðdiÞ:

For example, for �kðxÞ ¼ xk, we obtain the kth moment (of the degree sequence)

of G,

�kðGÞ ¼ 1

n

Xn

i¼1

dk
i :

Thus the average degree of G is �1 ¼ �1ðGÞ ¼ 2eðGÞ
n

and the variance of G is

�2ðGÞ ¼ 1

n

Xn

i¼1

ðdi � �1Þ2 ¼ �2ðGÞ � �2
1:

Hence the problem in (1) corresponds to determining Fðn; fKp-free graphsgÞ and

the question of Erdős corresponds to determining �2ðn; fK3-free graphsgÞ.
In [4; 7], the problem of determining �kðn; fKp-free graphsgÞ exactly is studied,

and �kðn; fH-free graphsgÞ is determined approxiamtely for H nonbipartite. We

will be more concerned with the case when eðn;GÞ ¼ oðn2Þ, corresponding to the

case when H is bipartite.

An important observation is that the number of edges of a graph in a

(nontrivial) monotone family is bounded from above by a nontrivial function of

the number of its vertices. If f is any real-valued function, which is defined for the

natural numbers, then we say that G is f -dense if every n-vertex graph G 2 G
satisfies

eðGÞ
n2=2

� f ðnÞ:

So Turán’s theorem, for example, implies that Kp-free graphs are ð1 � 1
p�1

Þ-dense.

3. DEGREE VARIATION IN MONOTONE FAMILIES

We start by proving a simple bound on the large degrees of a monotone family:
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Lemma 3.1. Let G be an n-vertex graph in an f -dense monotone family of

graphs. If the degree sequence of G is d1 � d2 � � � � � dn, then di � 2nf ð2iÞ,
whenever 1 � i � n=2:

Proof. Suppose that VðGÞ ¼ fv1; v2; . . . ; vng where dðvjÞ ¼ dj. Fix 1 �
i � n=2 and let A ¼ fv1; v2; . . . ; vig. Randomly pick a set of i additional vertices

B � VðGÞ � A. Let X count the number of edges induced by A [ B. On the one

hand, EX � ð2iÞ2

2
f ð2iÞ. On the other hand, EX �

Pi
j¼1 dji=n, since every edge

induced by A is induced by A [ B with probability 1 � i=n þ i=n , and every every

edge incident to exactly one vertex in A is induced by A [ B with probability

i=ðn � iÞ � i=n. Thus

2i2f ð2iÞ � EX �
Xi

j¼1

dji=n � dii
2=n:

&

Lemma 3.1 enables us to prove the following general bound.

Theorem 3.2. If F is nondecreasing, and the monotone family G is f -dense, then

nFðn;GÞ � 2
Xn=2

i¼1

Fð2n f ð2iÞÞ:

If f is a nonincreasing function on Rþ, then furthermore

nFðn;GÞ � 2Fð2n f ð2ÞÞ þ
Z n

2

Fð2n f ðxÞÞ dx:

Proof. Let G 2 G be an n-vertex graph achieving Fðn;GÞ. Now

nFðn;GÞ ¼
Xn

i¼1

FðdiÞ � 2
Xn=2

i¼1

FðdiÞ � 2
Xn=2

i¼1

Fð2n f ð2iÞÞ

¼ 2Fð2n f ð2ÞÞ þ 2
Xn=2

i¼2

Fð2n f ð2iÞÞ:

If f ðxÞ is nonincreasing, then so is Fð2nf ð2tÞÞ and with the substitution 2t ¼ x, we

obtain,

2
Xn=2

i¼2

Fð2n f ð2iÞÞ � 2

Z n=2

1

Fð2n f ð2tÞÞ dt ¼
Z n

2

Fð2n f ðxÞÞ dx: &

To see that the bounds in Theorem 3.2 can be quite sharp, we use them to

estimate the kth moment of most monotone families.
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Theorem 3.3. Suppose G is a monotone family of graphs with unbounded

maximum degree such that the maximum number of edges of an n-vertex graph in

G is �ðn2��Þ, for fixed 0 � � � 1.

1. If k� < 1, then �kðn;GÞ ¼ �ðnk�k�Þ.
2. If k� ¼ 1, then �ðnk�1Þ � �kðn;GÞ � Oðnk�1 log nÞ.
3. If k� > 1, then �kðn;GÞ ¼ �ðnk�1Þ.

Proof. Since G must be cn��-dense for some c > 0 it follows from

Theorem 3.2 that

n�kðn;GÞ � 2ð2nc2��Þk þ
Z n

2

ð2ncx��Þk
dx ¼ 21þk�k�ðcnÞk þ ð2ncÞk

Z n

2

x�k� dx:

If k� ¼ 1, then this yields

n�kðn;GÞ � 2kðcnÞk þ ð2cnÞkðlog n � log 2Þ � Cnk log n;

as desired. Otherwise, we obtain

n�kðn;GÞ � 21þk�k�ðcnÞk þ ð2cnÞk

1 � k�
ðn1�k� � 21�k�Þ

¼ k�

k� � 1
21þk�k�ðcnÞk þ ð2cÞk

1 � k�
n1þk�k�:

For k� < 1, the first expression is negative and can be dropped to obtain the

desired bound. When k� > 1, the second expression is negative, and we proceed

similarly.

For the lower bounds in cases 2 and 3, observe that since G contains graphs

whose maximum degrees go to infinity it must, by monotonicity, contain every

star K1;n�1. Hence n � 1 � n=2 implies

�kðn;GÞ � �kðK1; n�1Þ ¼ 1
n
ððn � 1Þk þ 1k þ 1k þ � � � þ 1kÞ � nk�1=2k:

Finally, observe that G contains a graph G on n vertices with e ¼ eðGÞ �
cn2��. Thus

�kðn;GÞ � �kðGÞ ¼ 1

n

Xn

i¼1

dk
i � 1

n

Xn

i¼1

2e

n

� �k

� ð2cÞk
nk�k�:

This establishes the last lower bound. &

Remark 3.4. One way of reading Theorem 3.3.1 is that the monotonicity of G
ensures that for k < 1=�, the kth moments are like those of cn1��-regular graphs.

In other words, the degree sequences of dense graphs in monotone families are in

some sense quite regular.
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Conjecture 3.5. In Theorem 3:3:2, the lower bound gives the right answer.

For example, let G be the family of all graphs that do not contain a 4-cycle. The

maximum number of edges of a 4-cycle free graph on n vertices is �ðn3=2Þ, so we

consider the case when � ¼ 1=2 and k ¼ 2. Observe that
P

d2
i is the number of

walks of length 2 in G. Since in a C4-free graph, there is at most one such walk

between any two different vertices, we conclude that n�2ðn;GÞ ¼
P

d2
i � 2 n

2

� �
þ

2eðGÞ ¼ �ðn2Þ.

A. Sum of Squares in General Graphs

It is crucial in Theorem 3.3 that G is monotone as is illustrated by the host of

results for general graphs collected in this subsection.

There has been considerable research investigating the maximum of the sum of

the squares of the degrees n�2 for general n-vertex graph on e edges. Frequently,

these results are formulated as the maximum number of paths of length 2,P
di

2

� �
¼ n

2
�2 � e. This problem was investigated, and basically solved, for

bipartite graphs by Ahlswede and Katona [2] and by Aharoni [1] in the form of

maximum norms of 0-1 matrices.

Recently de Caen [6] gave a short proof that n�2ðGÞ ¼
P

d2
i �

e 2e=n � 1 þ n � 2ð Þ, but for e ¼ cn2��, this yields only that �2ðGÞ � c0n2��.

For further results related to de Caen’s bound, see Das [8], Li and Pan [10],

Olpp [12], Peled, Petreschi, and Sterbini [13], and for the graphs with maximum

�2 for n; e fixed, see Byer [5].

Bey [3] gives a generalization of de Caen’s bound to hypergraphs. A general

bound on �k can be found in Székely, Clark, and Entringer [16].

4. CROSSING NUMBERS FOR MONOTONE FAMILIES

Pach, Spencer, and Tóth [15] proved the following result for monotone families,

thus answering a question of Simonovits:

Theorem 4.1. Consider a monotone family G of graphs, which is Oðn��1Þ-dense

for some 0 < � � 1. There are constants c; c0 > 0 such that the crossing number

of any graph G 2 G with n vertices and e � cn log2n edges is at least

c0
e2þ1=�

n1þ1=�
:

Moreover, if there are n-vertex graphs in G with �ðn1þ�Þ edges, then this bound is

asymptotically optimal up to a constant factor.

Pach, Spencer, and Tóth conjectured that this bound holds even for graphs with

e � cn edges for a suitable constant c > 0. Using the results from Section 3, we

make some progress on their conjecture.
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The bisection width, bðGÞ, of an n-vertex graph G is the minimum number of

edges with exactly one endpoint in W , taken over all W � VðGÞ such that

n=3 � jW j � 2n=3. The following result of Pach, Shahroki, and Szegedy [14] is

the main tool in the proof of Theorem 4.1:

Theorem 4.2. If G is a graph on n vertices, then

bðGÞ � 10
ffiffiffiffiffiffiffiffiffiffiffi
crðGÞ

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�2ðGÞ

p
:

The proof of the following result is only a slight modification of the proof of

Theorem 4.1.

Theorem 4.3. Consider a monotone family G of graphs which is Oðn��1Þ-dense

for some 0 < � < 1=2. There are constants c; c0 > 0 such that the crossing

number of any graph G 2 G with n vertices and e � cn log n edges is at least

c0
e2þ1=�

n1þ1=�
:

Proof. Suppose G is a monotone An��1-dense family for some A > 0 and

0 < � < 1=2. Suppose that G 2 G has n vertices and e � cn log n edges (for a c

yet to be determined). Aiming for a contradiction, we assume furthermore that

crðGÞ < c0ðe2þ1=�Þ=ðn1þ1=�Þ, for suitable c0.
We break G into smaller pieces according to the following procedure:

DECOMPOSITION ALGORITHM

Step 0. Let G0 ¼ G;G0
1 ¼ G;M0 ¼ 1;m0 ¼ 1.

Suppose we already have executed Step i, and the resulting graph Gi, consists

of Mi components Gi
1;G

i
2; . . . ;Gi

Mi
, each of at most ð2=3Þi

n vertices. Assume,

without loss of generality, that the first mi components of Gi have at least

ð2=3Þiþ1
n vertices and the remaining components have fewer. That is, for

1 � j � mi, we have

ð2=3Þiþ1
n � nðGi

jÞ � ð2=3Þi
n,

so that

mi � ð3=2Þiþ1: ð2Þ

Step iþ 1. If

2

3

� �i

<
1

A1=�
� e1=�

n1þ1=�
,

then STOP.
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Else for 1 � j � mi delete bðGi
jÞ edges from Gi

j so that Gi
j falls into two

components, each of at most ð2=3ÞnðGi
jÞ vertices. Let Giþ1 denote the resulting

graph on n vertices. Clearly, each component of Giþ1 has at most ð2=3Þiþ1
n

vertices.

Suppose that the DECOMPOSITION ALGORITHM terminates in Step k þ 1.

If k > 0, then

2

3

� �k

<
1

A1=�
� e1=�

n1þ1=�
� 2

3

� �k�1

: ð3Þ

We will first show that Gk contains less than e=2 edges: The number of vertices

of each component of Gk satisfies

nðGk
j Þ �

2

3

� �k

n <
1

A1=�
� e1=�

n1þ1=�
n ¼ e

An

� �1=�

:

Since G is from a monotone An��1-dense family, it follows that

eðGk
j Þ � A

n1þ�ðGk
j Þ

2
< nðGk

j Þ
e

2n
:

Thus it follows, as desired, that

eðGkÞ ¼
XMk

j¼1

eðGk
j Þ <

e

2n

XMk

j¼1

nðGk
j Þ ¼

e

2
:

To obtain a contradiction, it now suffices to show that we deleted at most e=2

edges of G to obtain Gk. Using the fact that, for any nonnegative reals

a1; a2; . . . ; am

Xm

j¼1

ffiffiffi
a

p
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Xm

j¼1

aj

vuut ;

and (2) we obtain that, for any 0 � i < k,

Xmi

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
crðGi

jÞ
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

Xmi

j¼1

crðGi
jÞ

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

� �iþ1
s ffiffiffiffiffiffiffiffiffiffiffi

crðGÞ
p

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

� �iþ1
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0
e2þ1=�

n1þ1=�

r
:

Using (3) we also obtain

Xk�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

� �iþ1
s

¼
Xk

i¼1

ffiffiffi
3

2

r i

¼

ffiffi
3
2

q kþ1

�
ffiffi
3
2

q
ffiffi
3
2

q
� 1

< 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

� �k�1
s

� 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=� n1þ1=�

e1=�

r
:
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Setting ni
j ¼ jVðGi

jÞj, k ¼ 2, and � ¼ 1 � � > 1=2, it now follows from

Theorem 3.3.3 that

Xmi

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni

j �2ðGi
jÞ

q
�

Xmi

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni

j �2ðni
j;GÞ

q
�

Xmi

j¼1

c00ni
j � c00n:

Using Theorem 4.2, we see that the total number of edges deleted during the

procedure is

Xk�1

i¼0

Xmi

j¼1

bðGi
jÞ � 10

Xk�1

i¼0

Xmi

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
crðGi

jÞ
q

þ 2
Xk�1

i¼0

Xmi

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni

j �2ðGi
jÞ

q

� 10
Xk�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

� �iþ1
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0
e2þ1=�

n1þ1=�

r
þ 2

Xk�1

i¼0

c00n

< 70
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=�c0e2

p
þ 2kc00n

and this expression is at most e=2 for e � cn log n provided that c is sufficiently

large and c0 sufficiently small. &

A similar argument can be used to show that when � ¼ 1=2, then it is sufficient

to require e � cn log3=2 n for c sufficiently large. We also note that the sharpness

of our bounds in Theorem 3.3 suggests that the techniques in [15] alone will not

suffice to settle their conjecture.

5. THE VARIANCE OF TRIANGLE-FREE GRAPHS

We now let G denote the family of triangle-free graphs and let �2ðnÞ ¼ �2ðn;GÞ
denote the maximum variance �2ðGÞ of the degree sequence of any triangle-free

graph G on n vertices. Hence the question of Erdős mentioned in the introduction

is to determine �2ðnÞ and find all n-vertex G 2 G such that �2ðGÞ ¼ �2ðnÞ. We do

not give an explicit formula for �2ðnÞ, but instead describe the extremal graphs.

We start our investigation by computing �2ðGÞ when G is complete bipartite:

�2ðKk;n�kÞ ¼
1

n

Xn

i¼1

d2
i ¼ 1

n
ðkðn � kÞ2 þ ðn � kÞk2Þ ¼ kðn � kÞ ¼ e;

�1ðKk;n�kÞ ¼
1

n

Xn

i¼1

di ¼
2e

n
;

�2ðKk;n�kÞ ¼ �2 � �2
1 ¼ e � 4e2

n2
¼ n2

16
� 4

n2

n2

8
� e

� �2

: ð4Þ
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Next, observe that for every positive integer n, one can choose k such that

n2

8
� kðn � kÞ

����
���� < 0:38n: ð5Þ

For example, for n � 10, one can define k as the closest integer to

nð2 �
ffiffiffi
2

p
Þ=4 � 0:1464 . . . n, and for 3 � n � 10 let k ¼ 1. Thus (4) and (5)

imply

�2ðn;GÞ � max
1 � k < n

�2ðKk;n�kÞ >
n2

16
� 0:58: ð6Þ

Let Bn denote the set of complete bipartite graphs Kk;n�k for which e ¼ kðn � kÞ
is closest to n2=8. Bn usually consists of a single graph, but an elementary number

theoretical argument shows that there are also infinitely many cases when

Bn ¼ fKk;n�k;Kkþ1;n�k�1g. Indeed, the equation n2=8 � kðn � kÞ ¼ ðk þ 1Þ
ðn � k � 1Þ � n2=8 leads to the Pell-type equation

ð2k þ 1Þ2 � 2
n

2
� ð2k þ 1Þ

� �2

¼ 1,

and all of its integer solutions can be obtained by a simple recurrence, see, e.g.,

the textbook [11] (page 352). The first few cases are ðn; k; k þ 1Þ ¼ ð2; 0; 1Þ;
ð10; 1; 2Þ; ð58; 8; 9Þ; ð338; 49; 50Þ; ð1970; 288; 289Þ . . .
Theorem 5.1. If G is a triangle-free graph on n vertices, then �2ðGÞ � �2ðnÞ.
When n > 3 equality holds only for the (unbalanced complete bipartite) graphs

G 2 Bn.

Proof. Suppose that G is a triangle-free n-vertex graph with �2ðGÞ ¼ �2ðnÞ.
By the preceding observations, it is sufficient to show that G is a complete

bipartite graph. Let d1 � � � � � dn be the degree sequence of G, where

degGðviÞ ¼ di.

First, we give an upper bound for �2 ¼ �2ðGÞ: Consider an edge connecting

the vertices vi and vj. Since G is triangle-free, the neighborhoods NðviÞ and NðvjÞ
are disjoint, and thus di þ dj � n. Adding this inequality for all edges, we obtain

n�2 ¼
P

d2
i � ne, where e ¼ jEðGÞj. Thus �2 � e and �1 ¼ 2e=n yield

�2ðGÞ ¼ �2 � �2
1 � e � 4e2

n2
¼ n2

16
� 4

n2

n2

8
� e

� �2

: ð7Þ

Let Kk;n�k 2 Bn. Since �2ðKk;n�kÞ � �2ðnÞ ¼ �2ðGÞ, we get from (4), (7), and (5)

that

n2

8
� eðGÞ

����
���� � n2

8
� kðn � kÞ

����
���� < 0:38n: ð8Þ
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Define the deficiency of the edge vivj by "i j ¼ n � di � dj � 0. Adding the

equation di þ dj ¼ n � "i j for all edges, we obtain n�2 ¼ ne �
P

"i j and thus the

following improvement of (7)

�2ðGÞ ¼ �2 � �2
1 ¼ e � 1

n

X
vivj an edge

"ij

0
@

1
A� 4e2

n2

¼ n2

16
� 1

n

X
"ij

� �
� 4

n2

n2

8
� e

� �2

� n2

16
� 1

n

X
"ij: ð9Þ

Equations (9) and (6) give X
vivj an edge

"ij < 0:58n: ð10Þ

Call an edge vivj saturated if "ij ¼ 0. Since for every nonsaturated edges vivj,

we have "ij � 1, it follows from (8) and (10) that there are at least

ðn2=8 � 0:38nÞ � 0:58n saturated edges. This is positive for n > 7, so in this case,

there is at least one saturated edge, say vivj, with degrees di ¼ ‘ and dj ¼ n � ‘.
Since G is triangle-free, NðviÞ and NðvjÞ are independent sets. Thus G is

bipartite with parts NðviÞ and NðvjÞ. Every vertex in NðvjÞ has degree at most ‘.
If all vertices in NðvjÞ have degree exactly ‘, then G is a complete bipartite graph,

and we are done. Otherwise, let A denote the set of vertices in NðvjÞ of degrees

exactly ‘, and let A0 :¼ NðvjÞn A. Since vi 2 A, we have that A and A0 are

nonempty.

Similarly, if G is not the complete bipartite graph Kð‘; n � ‘Þ, then we have

B 6¼ ;, B0 6¼ ;, where B :¼ fy 2 NðviÞ : degðyÞ ¼ n � ‘g and B0 :¼ NðviÞn B.

Since the vertices of A are joined to all vertices of B0 and the vertices of B are

joined to all vertices of A0, the induced bipartite graphs G½A;B0� and G½B;A0� are

connected and cover all vertices of G. Thus they have at least n � 2 edges. None

of these edges are saturated, so that (10) yields n � 2 < 0:58n. This is a

contradiction for n > 4.

For 4 � n � 7, there are only a few graphs to check. In these cases, stars give

the maximum variance, thus finishing the proof of the theorem: When n ¼ 5; 6; 7,

inequality (5) can be improved to jn2=8 � ðn � 1Þj < 0:18n, which gives an upper

bound of 0:14n in (10), so that all edges of G are saturated. Similarly, for n ¼ 4, at

most 1 edge is unsaturated and thus we only need to consider K1;3, K2;2 and

graphs with at most one edge.

The cases n � 3 are obvious: there are two extrema, the one-edge graph and its

complement. Thus we can determine �2ðnÞ for all n. &
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