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The present paper connects sharpenings of Sauer’s bound on forbidden configurations with color critical hypergraphs.
We define a matrix to be simple if it is a (0,1)-matrix with no repeated columns. Let F be a k × l (0,1)-matrix (the
forbidden configuration). Assume A is an m × n simple matrix which has no submatrix which is a row and column
permutation of F . We define forb(m, F ) as the best possible upper bound on n, for such a matrix A, which depends
on m and F . It is known that forb(m, F ) = O(mk) for any F , and Sauer’s bond states that forb(m, F ) = O(mk−1)
fore simple F . We give sufficient condition for non-simple F to have the same bound using linear algebra methods
to prove a generalization of a result of Lovász on color critical hypergraphs.
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1 Introduction
A k-uniform hypergraph (V, E) is 3-color critical if it is not 2-colorable, but for all E ∈ E the hypergraph
(V, E \ {E}) is 2-colorable. Lovász [12] proved in 1976, that

|E| ≤
(

n

k − 1

)
for a 3-color critical k-uniform hypergraph. Here we prove the following that can be considered as gener-
alization of Lovász’ result.

Theorem 1 Let E ⊆
(
[m]
k

)
be a k-uniform set system on an underlying set X of m elements. Let us fix an

ordering E1, E2, . . . Et of E and a prescribed partition Ai ∪ Bi = Ei (Ai ∩ Bi = ∅) for each member
of E . Assume that for all i = 1, 2, . . . , t there exists a partition Ci ∪ Di = X (Ci ∩ Di = ∅), such that
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Ei ∩ Ci = Ai and Ei ∩ Di = Bi, but Ej ∩ Ci 6= Aj and Ej ∩ Ci 6= Bj for all j < i. (That is, the ith
partition cuts the ith set as it is prescribed, but does not cut any earlier set properly.) Then

t ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ . . . +

(
m

0

)
. (1)

Theorem 1 was motivated by the following sharpening of Sauer’s bound for forbidden configurations. Let
F be a k × l 0-1 matrix, then forb(m,F ) denotes maximum n such that there exists an m × n simple
matrix A such that no column and/or row permutation of F is a submatrix of A. Furthermore, let Kk

denote the k × 2k simple 0-1 matrix consisting of all possible columns.

Theorem 2 Let F be contained in FB = [Kk | t · (Kk − B)] for an k × (k + 1) matrix B consisting of
one column of each possible column sum. Then forb(m,F ) = O(mk−1).

We explain the the connection between Theorem 1 and Theorem 2.
The study of forbidden configurations is a problem in extremal set theory. The language we use here is

matrix theory which conveniently encodes the problems. We define a simple matrix as a (0,1)-matrix with
no repeated columns. Such a matrix can be thought of a set of subsets of {1, 2, . . . ,m} with the columns
encoding the subsets and the rows indexing the elements. Assume we are give a k× l (0,1)-matrix F . We
say that a matrix A has no configuration F if no submatrix of A is a row and column permutation of F
and so F is referred to as a forbidden configuration (sometimes called trace). A variety of combinatorial
objects can be defined by forbidden configurations. For a simple m × n matrix A which is assumed
to have no configuration F , we seek an upper bound on n which will depend on m,F . We denote the
best possible upper bound as forb(m,F ). Many results have been obtained about forb(m,F ) including
[2],[3],[5].

At this point all values known for forb(m,F ) are of the form Θ(me) for some integer e. We completed
the classification for 2×l matrices F in [2] and for 3×l matrices F in [6]. We also put forward a conjecture
on what properties of F drive the exponent e. Roughly speaking, we proposed a set of constructions and
guessed that these constructions are sufficient to deduce the exponent e in the expression Θ(me).

We use the notation Kk to denote the k × 2k simple matrix of all possible columns on k rows. The
basic result for forb(m,F ) is as follows.

Theorem 3 [Sauer [13], Perles and Shelah [14], Vapnik and Chervonenkis [15]] We have that forb(m,Kk)
is Θ(mk−1).

In fact Theorem 3 is usually stated with forb(m,Kk) =
(

m
k−1

)
+

(
m

k−2

)
+ · · ·+

(
m
0

)
but the asymptotic

growth of Θ(mk−1) was what interested Vapnik and Chervonenkis.
One easy observation is that if we let Ac denote the 0-1-complement of A then forb(m,F c) = forb(m,F ).

Another observation is that if F ′ is a submatrix of F , then forb(m,F ) ≥ forb(m,F ′). We let Ks
k denote

the k ×
(
k
s

)
simple matrix of all possible columns of column sum s.

We use the notation [A|B] to denote the matrix obtained from concatenating the two matrices A and
B. We use the notation k · A to denote the matrix [A|A| · · · |A] consisting of k copies of A concatenated
together. We give precedence to the operation · (multiplication) over concatenation so that for example
[2 ·A|B] is the matrix consisting of the concatenation of B with the concatenation of two copies of A.

According to an earlier unpublished result of Füredi [10] forb(m,F ) = O(mk) for arbitrary k× l con-
figuration F . The goal of this paper is to give sufficient conditions that ensure forb(m,F ) = O(mk−1).
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2 The boundary between mk−1 and mk

Theorem 3 implies that simple configurations all have forb(m,F ) = O(mk−1), thus we investigate f ’s
with multiple columns. First, we show that which configurations F have forb(m,F ) = Ω(mk) using the
direct product construction. Let A(k, 2) be defined as a minimal matrix with the property that any pair of

rows has
[
1
1

]
has both with 1’s in some column and such that deleting a column of A(k, 2) would violate

this property.

Lemma 4 Let F be a k × l configuration. forb(m,F ) = Ω(mk) if F contains 2 ·Kl
k for 2 ≤ l ≤ k − 2

and l = 0, k or if F contains [2 ·K1
k |A(k, 2)].

Proof: We find that forb(m,F ) is Ω(mk) if F contains 2 · Kl
k for 0 ≤ l ≤ k and l 6= 1, k − 1. This

follows since 2 ·Kl
k is not contained in the k-fold product of l K1

m/k’s and k − l K
(m/k)−1
m/k ’s and so may

deduce forb(m, 2 · Kl
k) is Ω(mk). To verify this for 2 ≤ l ≤ k − 2, we note that any pair of rows of

Kl
k has

[
1 0
1 0

]
and so if we have a submatrix that is a row and column permutation of Kl

k, we can only

choose one row from either K1
m/k or from K

(m/k)−1
m/k . The verification for K0

k or Kk
k is easier.

For l = 1 (the case l = k − 1 is the (0,1)-complement) we can no longer assert that any pair of rows of

Kl
k has

[
1 0
1 0

]
merely

[
0
0

]
and so can choose two rows from the copy of K1

m/k, one row from each of

k− 2 of the K
(m/k)−1
m/k terms and generate a copy of 2 ·K1

k . (Theorem 5.1 of [6] shows that forb(m,K1
k)

is Θ(mk−1)). This is fixed by considering a minimal matrix A(k, 2) with the property that any pair of

rows has
[
1
1

]
has both with 1’s in some column and such that deleting a column of A(k, 2) would violate

this. As above, we have that if F contains [2 ·K1
k |A(k, 2)], then forb(m,F ) is Ω(mk). 2

Lemma 4 leaves two possibilities if we want forb(m, f) be bounded away from mk. Either F is
contained in a matrix FB = [Kk | t · (Kk − B)] for an k × (k + 1) matrix B consisting of one column
of each possible column sum or F is contained in a matrix [K0

k | t · C] where C is a k-rowed simple
matrix consisting of all columns which do not have 1’s in both rows 1 and 2 and also with at least one
1. Note, that these are not mutually exclusive cases. Our main result Theorem 2 is that in the first case
forb(m,F ) = O(mk−1).
Proof of Theorem 2: Let A be an m × n simple 0-1 matrix, and B be a k × (k + 1) matrix consisting
of one column of each possible column sum. Suppose that A does not have FB = [Kk | t · (Kk − B)]
as configuration. This implies that on a given k-tuple L of rows either Kk is missing, or if all possible
columns of size k occur on L, then t · (Kk − B) must be missing. This latter means, that for some
0 ≤ s ≤ k, two columns of column sum s occur at most t − 1 times on L, respectively. Let K be the set
of k-tuples of rows where the latter happens. Using Lemma 5 a set of columns of size O(mk−1) can be
removed from A to obtain A′, so that for all L ∈ K a column (in fact two) is missing on L in A′. However,
this implies that Kk is not a configuration in A′, thus by Theorem 3 A′ has at most O(mk−1) columns. 2

Let K be a system of k-tuples of rows such that ∀K ∈ K there are two (k × 1) columns, αK 6= βK

specified. We say that a column x of A violates (K, αK), if x|K = αK , similarly, x violates (K, βK), if
x|K = βK .
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Lemma 5 Assume, that for every K ∈ K there are at most t− 1 columns of A that violate (K, αK), and
at most t − 1 columns of A violate (K, βK). Then there exists a subset X of columns of A, such that
|X| = O(mk−1) and no column of A−X violates any of (K, αK) or (K, βK).

Proof: It can be assumed without loss of generality that for all K ∈ K αK = α and βK = β independent
of K. Indeed, there are 2k × 2k possible αK , βK pairs, that is a constant number of them .Thus, K can
be partitioned into a constant number of parts, so that in each part αK = α and βK = β holds. We apply
induction on k using the simplification given above. k = 1 is obvious.

Consider now k × 1 columns α 6= β. Assume first, that α 6= β. That is, there is a coordinate where α
and β agree, say both have 1 as their `th coordinate. The case of a common 0 coordinate is similar. For
the ith row of A we count how many columns have violation so that for some K ∈ K the `th coordinate in
K is exactly row i. Let Ki,` be the set of these k-tuples from K. Columns that have violation on k-tuples
from Ki,` have 1 in the ith row, let Ai,1 denote matrix formed by the set of columns that have 1 in row
i. If row i is removed from Ai,1, the remaining matrix A′

i,1 is still simple. Let K′
i,` denote the set of

(k − 1)-tuples obtained from k-tuples of Ki,` by removing their `th coordinate, i, furthermore let α′ (β′,
respectively) denote the (k−1)× 1 column obtained from α (β) by removing the `th coordinate, 1. Note,
that α′ 6= β′. A column of A has a violation on K ∈ Ki,` iff its counterpart in A′

i,1 has a violation on the
corresponding K ′ ∈ K′

i,`. The number of those columns is at most cmk−2 by the inductive hypothesis.
Since K = ∪m

i=1Ki,`, we obtain that the number of columns of A having violation on some K ∈ K is at
most m · cmk−2.

Let us assume now, that α = β. A subset J ⊆ K is called independent if there exists an ordering
J1, J2, . . . Jg of the elements of J such that for every Ji ∈ J there exists an m × 1 0-1 column that
violates Ji and does not violate any Jj ∈ J for j < i. Let us call a maximal independent subset B of
K a basis of K. If a column of A has a violation on K ∈ K, then it has a violation on some B ∈ B, as
well. Indeed, either K ∈ B holds, or if K 6∈ B, then by the maximality of B, K cannot be added to it as a
|B|+ 1st element in the order, so the column having violation on K must have a violation on B ∈ B, for
some B. By Theorem 1 for a basis B we have

|B| ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ . . . +

(
m

0

)
,

since a column violating a k-tuple Bi from B, but none of Bj for j < i, gives an appropriate partition of

the set of rows. Thus, there could be at most (2t − 2)
[(

m
k−1

)
+

(
m

k−2

)
+ . . . +

(
m
0

)]
columns violating

some K ∈ K. 2

Proof of Theorem 1: We define a polynomial pi(x) ∈ R[x1, x2, . . . , xm] for each Ei as follows.

pi(x1, x2, . . . , xm) =
∏

a∈Ai

(1− xa)
∏

b∈Bi

xb + (−1)k+1
∏

a∈Ai

xa

∏
b∈Bi

(1− xb) (2)

Polynomials defined by (2) are multilinear of degree at most k − 1, since the product
∏

e∈Ei
xe cancels

by the coefficient (−1)k+1. Thus, they are from the space generated by monomials of type
∏r

j=1 xij , for
r = 0, 1, . . . k − 1. The dimension of this space over R is

(
m

k−1

)
+

(
m

k−2

)
+ . . . +

(
m
0

)
.
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We shall prove that polynomials p1(x), p2(x), . . . pt(x) are linearly independent over R, which implies
(1). Assume that

t∑
i=1

λipi(x) = 0 (3)

is a linear combination of the pi(x)’s that is the zero polynomial. Consider the partition Ct ∪ Dt = X ,
and substitute xc = 0 if c ∈ Ct and xd = 1 if d ∈ Dt into (3). Then pt(x) = 1, but it is easy
to see that pk(x) = 0 for k < t. This implies that λt = 0. Now assume by induction on j, that
λt = λt−1 = . . . = λt−j+1 = 0. Take the partition Ct−j ∪ Dt−j = X and substitute into (3) xc = 0
if c ∈ Ct−j and xd = 1 if d ∈ Dt−j . Then, as before, pt−j(x) = 1, but pk(x) = 0 for k < t − j.
This implies λt−j = 0, as well. Thus, all coefficients in (3) must be 0, hence the polynomials are linearly
independent. 2
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[9] P. ERDŐS, A.H. STONE, On the Structure of Linear Graphs, Bull. Amer. Math. Soc. 52(1946),
1089-1091.

[10] Z. FÜREDI, personal communication.
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