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1. INTRODUCTION

For a graph G, let VðGÞ;EðGÞ; nðGÞ, and eðGÞ denote its vertex set, edge set,

number of vertices, and number of edges, respectively. We define the open

neighborhood NðxÞ of a vertex x 2 VðGÞ to be the set of the vertices adjacent to x,

and the closed neighborhood to be N½x� :¼ NðxÞ [ fxg. We define the degree

� 2005 Wiley Periodicals, Inc.
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degðxÞ of x to be the number of its neighbors, degðxÞ :¼j NðxÞ j. We denote the

minimum degree of G by �ðGÞ ¼ minfdegðxÞ: x 2 VðGÞg.

If A;B � VðGÞ, we define G½A;B� to be the subgraph with vertex set A [ B and

edge set EðG½A;B�Þ consisting of the edges of G between A and B, that is,

EðG½A;B�Þ ¼ fab 2 EðGÞ : a 2 A; b 2 Bg: If A ¼ B, then we abbreviate the

subgraph G½A;A� as G½A� and its edge set EðG½A;A�Þ as EðG½A�Þ. Also,

jEðG½A;B�Þj ¼ eðG½A;B�Þ and jEðG½A�Þj ¼ eðG½A�Þ or sometimes just eðAÞ. The

distance dða; bÞ :¼ dGða; bÞ between two vertices a and b of the graph G is

defined to be the length of a shortest ða; bÞ-path; if there is no connecting path

then we define dða; bÞ to be infinite. We define the farthest distance between A;B
to be dðA;BÞ :¼ maxfdða; bÞ: a 2 A, b 2 Bg. The diameter diamðGÞ of a graph G

is the maximum distance over all pairs of vertices, diamðGÞ ¼ dðVðGÞ;VðGÞÞ.
A graph is vertex-diameter-k-critical if for each vertex x, diamðG� xÞ >

diamðGÞ :¼ k: The study of diameter-critical graphs is one of the oldest subjects

of extremal graph theory, initiated by Erdős and Rényi [17] with T. Sós [18],

Murty and Vijayan [27], Murty [24–26], and Ore [28] in the 1960s. Most of the

research dealt with minimal graphs with given diameter and maximum degree,

e.g., Erdős and Rényi [17], Bollobás [4,5] with Eldridge [6] and with Erdős [7],

and edge-critical graphs. For example, Ore [28], Plesnı́k [30], Murty and Simon

(see [12]) conjectured that the maximum number of edges in an edge-diameter-2-

critical graph on n vertices is bn2=4c. Plesnı́k [30], Caccetta and Häggkvist [12],

and Fan [19] obtained upper bounds, and the conjecture was proved for n > n0

in [20]. Extremal problems concerning diameter and connectivity were studied in

a series of papers of Caccetta [9–11] with Huang [13]. Stability and vulnerability

questions, especially their connections with communication networks were

studied by Chung [14] and Chung and Garey [15]. Erdős and Howorka [16] asked

for the maximum number of edges in a distance-critical graph on n vertices.

Vertex-critical graphs have been studied by Gliviak [21] with Plesnı́k [22] and

Boals et al. [2].

The aim of this paper is to determine the minimum number of edges in vertex-

diameter-2-critical graphs on n vertices for n � 23. Huang and Yeo [23] proved

that this minimum is between ð5n� 12Þ=2 and ð5n� 29Þ=2. Ando and Egawa [1]

proved the lower bound ð5n� 17Þ=2 for n � 23. When n is odd, Huang and

Yeo [23] and Ando and Egawa [1] both found vertex-diameter-2-critical graphs

with ð5n� 17Þ=2 edges shown later in Figure 3 (with m ¼ 0). We prove the

following.

Theorem 1.1. Suppose G is a vertex-diameter-2-critical graph with

n ¼ nðGÞ � 23. Then

eðGÞ � ð5n� 17Þ=2 if n is odd;
ð5n=2Þ � 7 if n is even:

�
ð1:1Þ

In next section, we present several graphs achieving these bounds, they are

called extremal graphs. To prove the lower bound it is sufficient to show that if a
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vertex-diameter-2-critical graph G on n ¼ nðGÞ � 23 vertices has at most

ð5n=2Þ � 8 edges, then it has at least ð5n� 17Þ=2 edges, and n is odd. For

completeness, we include the odd case and reprove Ando and Egawa’s result [1].

This makes this paper only a few lines longer.

2. EXTREMAL GRAPHS

In this section, we present some extremal vertex-diameter-2-critical graphs

achieving the bounds of Theorem 1.1. We believe that these examples give all

extremal graphs, at least for n � 23. For smaller n’s, as it was pointed out in [1]

and [23], there are graphs with fewer edges. For example for n ¼ 10, the Petersen

graph gives eðGÞ ¼ ð5n� 20Þ=2.

Example 2.1. Suppose that k � 0 and let n ¼ 14 þ 2k. We shall define the

vertex-diameter-2-critical graph Gn on n vertices. Arrange the vertices of Gn into

six subsets, C ¼ fv; u;wg, S ¼ fs0; s1; s2g, A ¼ fa0; a1; a2g, B ¼ fb0; b1; b2g,

X ¼ fx0; x1; . . . ; xkg, and Y ¼ fy0; y1; . . . ; ykg.

For the edge set of Gn, we join u to every vertex in S and X; w to every vertex

in S and in Y; v to all the vertices but S and C; we join ai and bi to si for

0 � i � 2; we join a1 and a2 to a0; we join b1 and b2 to b0; and we join s1 to s2.

Finally, we make a matching between X and Y by joining xi to yi for 0 � i � k.

Gn is shown in Figure 1. We see that eðGnÞ ¼ 28 þ 5k ¼ ð5n=2Þ � 7. To show

that Gn is vertex-diameter-2-critical, it is sufficient to check that u, v, a0, a1, s0,

s1, x0 are critical. Deleting these vertices results in each of the distances dðs0; x0Þ,
dða0; x0Þ, dðs0; a1Þ, dðs1; a0Þ, dðu; a0Þ, dða1; s2Þ, dðu; y0Þ being greater than 2.

Example 2.2. Suppose that k � 0 and m � 0 and let n ¼ 9 þ 2k þ 2m. We

shall define the vertex-diameter-2-critical graph Gn
k on n vertices. Arrange
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the vertices of Gn
k into five subsets, C ¼ fv; u;w; s; tg, A ¼ fa0; a1; . . . ; amg,

B ¼ fb0; b1; . . . ; bmg, X ¼ fx0; x1; . . . ; xkg, and Y ¼ fy0; y1; . . . ; ykg.

For the edge set of Gn
k , we join u to every vertex in X and in fs; tg; w to every

vertex in Y and in fs; tg; v to all the vertices but C; we join every vertex of A to s,

and every vertex of B to t. Finally, we make a matching between X and Y by

joining xi to yi for 0 � i � k; and a matching between A and B by joining ai to bi
for 0 � i � m:

Gn
k is shown in Figure 2. We see that eðGn

kÞ ¼ 14 þ 5k þ 5m ¼ ð5n� 17Þ=2.

To show that Gn
k is vertex-diameter-2-critical, it is sufficient to check that u, v, x0

are critical. Deleting u, v, x0 results in each of dðs; x0Þ, dða0; x0Þ, dðu; y0Þ being

greater than 2.

Example 2.3. Suppose that k � 0, and m ¼ 0 or 1 and let n ¼ 7 þ 2k þ 2m.

We shall define the vertex-diameter-2-critical graph Hn
k on n vertices. Arrange

the vertices of Hn
k into five subsets, C ¼ fv; u;wg, X ¼ fx0; x1; . . . ; xkg, Y ¼

fy0; y1; . . . ; ykg, A, and B, where

A ¼ fa0g and B ¼ fb0g if m ¼ 0;
A ¼ fa0; a1g and B ¼ fb0; b1g if m ¼ 1:

�

For the edge set of Hn
k , we join u to every vertex in X and in B; w to every vertex

in Y and in B; v to every vertex in X, in Y and in A; and we join b1 to b0 if m ¼ 1.

Finally, we make a matching between X and Y by joining xi to yi for 0 � i � k;

and a matching between A and B by joining ai to bi for 0 � i � m.

Hn
k is shown in Figure 3. We see that eðHn

k Þ ¼ 9 þ 5k þ 5m ¼ ð5n� 17Þ=2.

To show that Hn
k is vertex-diameter-2-critical, it is sufficient to check that u, v, a0,

b0, x0, a1, b1 are critical. Deleting these vertices results in each of the distances

dðb0; x0Þ, dða0; x0Þ, dðb0; vÞ, dða0; uÞ, dðu; y0Þ, dðb1; vÞ, dða1; uÞ being greater

than 2.
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3. STARTING THE PROOF OF THEOREM 1.1

The main idea of the proof, although it is not necessary immediately transparent

from the series of Lemmas presented in next four sections, is that there is a deep

connection between intersecting hypergraphs and diameter 2 graphs with only

linearly many (i.e., OðnÞ) edges. This observation is due to Pach and Surányi [29].

Generally speaking, it means that in a diameter 2 graph G, a set U of size oðnÞ
that usually contains all vertices with high degree can be found such that

NðxÞ \ NðyÞ \ U 6¼ ; for x; y 2 VnU. Applying this method to our case, when a

vertex-diameter-2-critical graph G has at most 5n=2 edges, for n > 1; 000, it can

be easily proved that every vertex of small degree must have at least two

neighbors in U, which already requires at least ð2 � oð1ÞÞn edges, and being

vertex-critical also implies that every vertex in VnU must have another neighbor

in VnU, which forces another n=2 � oðnÞ edges. Thus all but oðnÞ vertices have

degree 3 and have exactly one degree-3 neighbor and two neighbors of high

degree. Below we worked out this general argument and replaced it by a series of

lemmas to prove Theorem 1.1 except for n < 23.

Suppose that G is a vertex-diameter-2-critical graph on n ¼ nðGÞ vertices, and

let V ¼ VðGÞ. We observe that

if u 6¼ v 2 VðGÞ; then NðuÞ 6� N½v�: ð3:1Þ

In particular, if G is a vertex-diameter-2-critical graph, then �ðGÞ � 2.

A tool we frequently use is the following identity, which is obviously true for

every graph G and subset U � V ¼ VðGÞ.

eðGÞ ¼ eðG½U�Þ þ
X

z2V nU
jNðzÞ \ Uj þ 1

2
jNðzÞ \ ðVnUÞj

� �
: ð3:2Þ
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For every vertex z 2 VðGÞnU, we define the weight !ðzÞ ¼ !Gðz;UÞ of z,

wGðz;UÞ ¼ jNGðzÞ \ U þ 1
2
NðzÞ \ ðVðGÞnUÞ ¼ 1

2
ðdegðzÞþ

�� ��NGðzÞ \ UjÞ:
����

ð3:3Þ

Usually we use (3.2) in the form eðGÞ ¼ eðG½U�Þ þ
P

z2VnU !ðzÞ.
In the rest of this section, we shall prove the lower bound (1.1) for G when

�ðGÞ � 4 and n � 19. If �ðGÞ � 5, then eðGÞ � 5n=2 and we are done. Assume

�ðGÞ ¼ 4. Let x be a vertex of G with degðxÞ ¼ 4. We shall apply (3.2) to

U ¼ N½x�. Since every vertex not in U is adjacent to at least one vertex in U, we

have that

eðGÞ ¼ eðG½U�Þþ 5
2
ðn� 5Þþ 1

2

X
z2VnU

ðdegðzÞ � 4Þþ 1
2

X
z2VnU

ðjNðzÞ \ Uj � 1Þ:

ð3:4Þ

Now the sum of the first two terms is at least ð5n� 17Þ=2 and the last two sums

are nonnegative. Thus G satisfies (1.1) if n is odd.

Suppose that n is even and that eðGÞ < 5n=2 � 7. We obtain from (3.4) that

eðG½U�Þ ¼ 4 and that all vertices but at most one, say z , in VnU have degree

exactly 4 and are joined to U by exactly one edge; moreover for z , we have that

ðdegðzÞ � 4Þ þ ðjNðzÞ \ Uj � 1Þ � 1: This implies that degðzÞ � 5 and thatP
y2NðxÞ degðyÞ � ðn� 1Þ þ ðjNðzÞ \ Uj � 1Þ � n: Thus there exists a vertex y

adjacent to x such that degðyÞ � n=4. Consider a vertex w adjacent to y other than

x and z. Note that degðwÞ ¼ 4 and that NðwÞ \ U ¼ fyg. There are at mostP
v2NðwÞ degðvÞ � degðyÞ þ degðzÞ þ 4 þ 4 � n=4 þ 13 < n� 1 vertices whose

distances from w are 1 or 2. This contradicts the fact that diamðGÞ ¼ 2.

4. TREES IN VERTEX-DIAMETER-2-CRITICAL GRAPHS

In this section, we shall define some subtrees in a vertex-diameter-2-critical graph

G. The lemmas and inequalities proved in this section will be used in Sections 5,

6, and 7 to obtain properties of extremal graphs and to prove lower bounds for

the number of the edges. Suppose that A; S, and W are nonempty subsets of

V ¼ VðGÞ satisfying the following four conditions.

T1. A; S � W � V , and A \ S ¼ ;:
T2. Vertices in A have the same neighbors in VnW , that is, NðaÞ \ ðVnWÞ ¼
Nða0Þ \ ðVnWÞ for all a; a0 2 A; furthermore, vertices in S have the same

neighbors in VnW , that is, NðsÞ \ ðVnWÞ ¼ Nðs0Þ \ ðVnWÞ for all s; s0 2 S.

T3. Every vertex in A is adjacent to at least one vertex in S.

T4. The farthest distance dG½W �ðA; SÞ between A and S in the subgraph G½W �
induced by W is at most 2.

For every a 2 A, we shall define a tree T ¼ TðaÞ rooted at the vertex a.

298 JOURNAL OF GRAPH THEORY



For all s 2 S not adjacent to a, pick the middle vertex of one ða, sÞ-path of

length 2 in G½W �, call it tðsÞ. The vertex set VðTÞ of T is fag [ S together with all

the middle vertices tðsÞ chosen above, that is, VðTÞ ¼ fag [ S [ ftðsÞ :
s 2 SnNðaÞg: Let AT ¼ A \ VðTÞ. Let L be the set of middle vertices in

WnðA [ SÞ, that is, L ¼ VðTÞnðA [ SÞ.
The edge set EðTÞ of T contains all the edges between a and S in G, and

the edges of the one chosen path of length 2 between a and every vertex in S

not adjacent to a, that is, EðTÞ ¼ fas : s 2 S \ NðaÞg [ fatðsÞ; tðsÞs : s 2 S n
NðaÞg:
Lemma 4.1. Suppose that G is a vertex-diameter-2-critical graph with subsets

A; S;W satisfying T1, T2, T3, T4, that T, AT ¼ A \ VðTÞ, and L ¼ VðTÞnðA [ SÞ
are as defined above. Then we have that

jSnNðaÞj � jAT naj þ jLj þ jftðsÞ : s 2 SnNðaÞg \ Sj: ð4:1Þ

Suppose further that every vertex in AnAT has at least two neighbors in G½W �.
Then we have

eðG½W �Þ � 3
2
jAj � 1

2
jAT j þ jSj þ jLj � 1 þ 1

2

X
z2WnðA[S[LÞ

jNðzÞ \W j

þ 1
2

X
s2 S

jfsz 2 G½W � : s 2 S; z 62 An AT ; sz 62 Tgj: ð4:2Þ

Proof. Since the number of the vertices in S not adjacent to the root a of the

tree T is at least as large as the number of the middle vertices chosen, we have

that (4.1) holds.

eðG½W �Þ ¼ ð
P

v2W jNðvÞ \W jÞ=2 counts the terms in I, II, III, and VI. In II,
III, and IV, every edge contributes 1=2 to the sum at each of its two endvertices

except for the edges between S and AnAT in II, each of which contributes 1 only

at its endvertex in AnAT .

I. The edges of T , whose number is eðTÞ ¼ jAT j þ jSj þ jLj � 1:

II. The edges incident to the vertices of AnAT in G½W �. Their number is at least

X
a2AnAT

jNðaÞ \ Sj þ 1
2
jNðaÞ \ ðWnSÞj

� �
� 3

2
ðjAj � jAT jÞ:

Note that the edges between S and AnAT are counted only in II.

III. The edges incident to WnðA [ S [ LÞ in G½W �. Their number isP
z2WnðA[S[LÞ jNðzÞ \W j=2:

IV. The edges incident to S in G½W � that we did not count in I, II, III. Their

number is at least ð
P

s2S jfsz 2 G½W �; s 2 S; z 62 AnAT ; sz 62 TgjÞ=2: &
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Suppose that G is a vertex-diameter-2-critical graph with subsets A; S;W
satisfying T1, T2, T3, T4. We shall state the following five properties that are

possessed by some graphs we shall discuss in Section 5, 6, and 7.

R1. Every vertex in A is either the only neighbor in A of s for some s 2 S, or the

only common neighbor of nonadjacent vertices a0 and s for some a0 2 A, and

s 2 S.

R2. Every vertex in S is either the only neighbor in S of a for some a 2 A, or the

only common neighbor of nonadjacent vertices s0 and a for some s0 2 S, and

a 2 A.

R3. No vertex in S is adjacent to any vertex in WnðA [ SÞ.
R4. The farthest distance dG½A[S�ðA; SÞ between A and S in the subgraph induced

by A [ S is at most 2.

R5. For all choices of the root a 2 A and the tree T , the following inequality

holds (where AT ¼ A \ VðTÞ and L ¼ VðTÞnðA [ SÞ are defined as above)

ðjSj � jAT jÞ þ
P

s2S jfsz 2 G½W� : s 2 S; z 62 AnAT ; sz 62 Tgj � 1:

Lemma 4.2. Suppose that G is a vertex-diameter-2-critical graph with subsets

A; S;W satisfying T1; . . . ; T4, and R1; . . . ; R4. Then jAj þ jSj is even if jSj � 2:
Suppose further that R5 also holds and that jSj � 3. Then we have that

eðG½A [ S�Þ � 2jAj and that jAj � jSj.
Proof. First, suppose S ¼ fsg. For all a 2 A, a is adjacent to s: If jAj � 2,

then vertices in A violate R1. Thus, jAj þ jSj ¼ 2 is even.

Second, suppose S ¼ fs1; s2g. By T2, s1 and s2 have the same neighbors in

VnW . By R3 and (3.1), we have that jAj � 2. If jAj > jSj, then there is a vertex a

in A such that a is not the only neighbor of si in A for i ¼ 1; 2. By R1, without loss

of generality, a is the only common neighbor of nonadjacent vertices a0 and s1 for

some other vertex a0 in A. By T3, a0 is adjacent to s2 and s1s2 are not adjacent. We

observe that a0 is not the only neighbor of s2 in A, otherwise, by T3 and R4,

vertices in Anfa; a0g are adjacent to s1 and a0, which contradicts the fact that a is

the only common neighbor of a0 and s1. Since a0 is not the only neighbor of s2 in

A, R1 implies that a0 is the only common neighbor of nonadjacent vertices a00 2 A

and s2. However, a00 ¼ a. By T3, a00 is joined to s1, thus a00 2 Nða0Þ \ Nðs1Þ
whose only member is a. Thus s1aa

0s2 is an induced path, and a and a0 determine

each other, Nða0Þ \ Nðs1Þ ¼ fag implies NðaÞ \ Nðs2Þ ¼ fa0g and vice versa.

Thus, A consists of pairs of vertices fa1; a2g such that ai is the unique common

neighbor of a2�i and si such that a2�i and si are not adjacent to each other. Hence

jAj is even.

Finally, we suppose jSj � 3: We shall show that S induces no edge in G.

Suppose a 2 A, and let T , AT be as defined before. Since each edge induced by S

but not in T contributes 2 to the sum in R5, we observe that all edges in G½S� are

in T for every choice of the root a. Consequently, jEðG½S�Þj ¼ jSj � jfs 2 S :
s 2 NðaÞ or ðs 62 NðaÞ and tðsÞ2AÞgj�jSj � jAT j�1 �

P
s2S jfsz2G½W � :s 2 S;
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z 62 AnAT ; sz 62 Tgj; by R5. This implies that S induces at most one edge in G.

In addition, if s1 is adjacent to s2 for some s1; s2 2 S, then by R2, a vertex s3 in

Snfs1; s2g is the only neighbor in S of a� for some a� 2 A, so a� is adjacent to

neither of s1, s2. This contradicts the earlier assertion that the edge s1s2 has to be

in the tree T rooted at a�, thus justifying the claim that S induces no edge in G.

By R2, every vertex in S is the only neighbor in S of a for some a 2 A, and this

implies that jAj � jSj. By R4, the farthest distance dG½A[S�ðA; SÞ between A and S

in the subgraph induced by A [ S is at most 2. We partition A into three subsets as

follows:

A1 ¼ fa 2 A : jNðaÞ \ Sj ¼ 1; jNðaÞ \ Aj � 2g;
A2 ¼ fa 2 A : jNðaÞ \ Sj ¼ 1; jNðaÞ \ Aj ¼ 1g; A3 ¼ fa 2 A : jNðaÞ \ Sj � 2g:

Note that if jNðaÞ \ Sj ¼ 1, then jNðaÞ \ Aj � 1, since dG½A[S�ðA; SÞ � 2,

jSj � 3, and S induces no edge in G.

We observe that for every vertex a 2 A2, we have that NðaÞ \ A � A3, since

the distances between a and the vertices in S not adjacent to a are at most 2, and

there are at least two vertices in S not adjacent to a. We have that

eðG½A [ S�Þ ¼ eðG½A; S�Þ þ eðG½A�Þ ¼
X
a2A

jNðaÞ \ Sj þ 1
2
jNðaÞ \ Aj

� �

�
X
a2A1

jNðaÞ \ Sj þ 1
2
jNðaÞ \ Aj

� �
þ

X
a2A2

jNðaÞ \ Sj þ jNðaÞ \ A3jð Þ

þ
X
a2A3

jNðaÞ \ Sj � 2jAj:

Note that we count the edges between A2 and A3 only in the second sum. &

5. THE PROOF WHEN G HAS SEVERAL DEGREE-2 VERTICES

In this section, we present some properties of vertex-diameter-2-critical graphs.

This leads to the proof of Theorem 1.1 when the graph G has more than one

degree-2 vertices. The following three observations in Lemma 5.1 were

discovered by Ando and Egawa.

Lemma 5.1 [1]. Suppose that G is a vertex-diameter-2-critical graph. Then the

following three statements hold:

1. If there is an adjacent pair of degree-2 vertices, then G is the 5-cycle C5.

2. If nðGÞ > 5, then there is a unique vertex v� adjacent to all degree-2 vertices.

3. If nðGÞ > 5, then Y ¼
S

x2V;degðxÞ¼2ðNðxÞnfv�gÞ induces a complete

subgraph of G.

Proof. 1. Suppose that x and y are an adjacent pair of degree-2 vertices, that

NðxÞ ¼ fy; ag, and that NðyÞ ¼ fx; bg. Since G is critical, we have that xy, xa,

and yb are the only edges induced by fx; y; a; bg in G. Since dða; bÞ � 2, there

exists a vertex c adjacent to a and b. If there exists another vertex z 6¼ c in
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VðGÞnfx; y; a; bg, then z is not critical, since every vertex in VðGÞnfx; y; a; bg is

adjacent to both a and b. Thus G is isomorphic to the 5-cycle C5.

2. Suppose that G has m � 2 degree-2 vertices, v1, v2; . . . ; vm. Note that these

vertices induce no edge in G. The fact that diamðGÞ ¼ 2 implies that v1 and

v2 have a common neighbor v�. Suppose that Nðv1Þ ¼ fv�;w1g and that

Nðv2Þ ¼ fv�;w2g. We have that v� is adjacent to neither w1 nor w2, since v1 and

v2 are critical. Suppose that vi is another degree-2 vertex. The fact diamðGÞ ¼ 2

implies that vi is either adjacent to v�, or adjacent to w1 and w2. However, in the

latter case, we have that dðvi; v�Þ > 2, a contradiction.

3. Suppose that NðvjÞ ¼ fv�;wjg for 1 � j � m. We have that v� is adjacent to

none of w1;w2; . . . ;wm, since vj is critical for 1 � j � m. The fact that

dðvi;wjÞ � 2 implies that wi is adjacent to wj for 1 � i; j � m, i 6¼ j. &

Suppose that G is a vertex-diameter-2-critical graph on n ¼ nðGÞ vertices, that

G has m � 2 degree-2 vertices, v1, v2; . . . ; vm, and that they have common

neighbor v� and the other neighbor w1, w2; . . . ;wm, respectively. By Lemma 5.1,

w1;w2; . . . ;wm induce a complete subgraph on m vertices in G. Denote

C ¼ fv�; v1; v2; . . . ; vm;w1;w2; . . . ;wmg, and write V ¼ VðGÞ. Every vertex in

VnC is either adjacent to v� but to none of w1;w2; . . . ;wm, or adjacent to all of

w1;w2; . . . ;wm but not to v�, since vi is the only common neighbor of v� and wi

for 1 � i � m, and by the fact diamðGÞ ¼ 2. Let A be the set of vertices in VnC
adjacent to v� and S be the set of vertices in VnC adjacent to w1;w2; . . . ;wm.

Note that V ¼ C [ A [ S.

In the following Claim 1 and Claim 2, we suppose that G is a vertex-diameter-

2-critical graph on n ¼ nðGÞ � 11 vertices, and that G has at most 5n=2 � 8

edges.

Claim 1. Suppose that G has m � 3 degree-2 vertices. Then A 6¼ ; and jSj � 2.

First, if A ¼ ;, then we have that

eðGÞ ¼ eðG½C�Þ þ eðG½C; S�Þ þ eðG½S�Þ � 2mþ mðm� 1Þ
2

þ m n� ð2mþ 1Þð Þ � 5n� 15

2
;

if n � 11 and m � 3. So, we may suppose A 6¼ ;. Note that vertices in A have

distances at most 2 with w1; . . . ;wm, so S 6¼ ;.

Second, if S ¼ fsg, then every vertex in A is adjacent to s. If jAj > 1, then

vertices in A are not the only common neighbor of v� and s, and this is a

contradiction. Thus, jAj ¼ 1. This implies that the vertex in A has degree 2, and

this is a contradiction. So, jSj � 2.

Claim 2. If G has exactly two degree-2 vertices, then A 6¼ ; and S 6¼ ;.
Since degðv�Þ � 3, we have that A 6¼ ;. Since vertices in A have distances at

most 2 with w1 and w2, every vertex in A is adjacent to some vertices in S, in

particular, S 6¼ ;.
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Lemma 5.2. Suppose that G is a vertex-diameter-2-critical graph on n ¼ nðGÞ
vertices, that G has at most 5n=2 � 8 edges, and that n � 11. Then G has at most

two degree-2 vertices.

Proof. Suppose that A, S, and W ¼ A [ S are as defined in the paragraph

after the proof of Lemma 5.1. It is to see that A, S, and W satisfy all assumptions

of Lemma 4.1. Take a� 2 A and consider a tree T rooted at a� defined in the

preceding section. By (4.2), we have that

eðG½W �Þ � 3jAj
2

� jAT j
2

þ jSj � 1:

Suppose G has m degree-2 vertices. If m � 3, then we have that

eðGÞ ¼ eðG½C�Þ þ eðG½C;W�Þ þ eðG½W �Þ

� 2mþ mðm� 1Þ
2

� �
þ ðjAj þ mjSjÞ þ 3jAj

2
� jAT j

2
þ jSj � 1

¼ 2mþ mðm� 1Þ
2

� �
þ 5jAj

2
þ 5jSj

2
þ jSj � jAT j

2
þ ðm� 2ÞjSj � 1

� 2mþ mðm� 1Þ
2

� �
þ 5ðjAj þ jSjÞ

2
þ 1 � 5ð2mþ 1Þ � 15

2
þ 5ðjAj þ jSjÞ

2

¼ 5n� 15

2
:

This contradicts the fact that eðGÞ � ð5n=2Þ � 8, thus we have m � 2. &

Lemma 5.3. Suppose that G is a vertex-diameter-2-critical graph on n ¼ nðGÞ
vertices. If G has exactly two degree-2 vertices and n � 7, then G satisfies ð1:1Þ.

Proof. Suppose that eðGÞ � ð5n=2Þ � 8. We have to show that eðGÞ �
ð5n� 17Þ=2 and that n is odd. Suppose that A, S, and W ¼ A [ S are as defined in

the paragraph after the proof of Lemma 5.1. It is easy to see that A, S, and W

satisfy all assumptions of Lemma 4.1. Take a� 2 A and consider a tree T rooted at

a� defined in the preceding section. By (4.2), we have that

eðG½W �Þ � 3jAj
2

� jAT j
2

þ jSj � 1:

This implies that

eðGÞ ¼ eðG½C�Þ þ eðG½C;W �Þ þ eðG½W �Þ � 5 þ ðjAj þ 2jSjÞ þ 3jAj
2

� jAT j
2

þ jSj � 1 ¼ 4 þ 5ðjAj þ jSjÞ
2

þ jSj � jAT j
2

� 4 þ 5ðn� 5Þ
2

þ jSj � jAT j
2

¼ 5n� 17

2
þ jSj � jAT j

2
:
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Note that by (4.1), jSj � jAT j � 0: It is sufficient to show that jAj þ jSj is even.

Since we assume that eðGÞ � 5n=2 � 8, we have that jSj � jAT j � 1, and that R5
holds. It is easy to see that R1; . . . ;R4 hold. By Lemma 4.2, we have that

jAj þ jSj is even if jSj � 2, and that eðG½A [ S�Þ � 2jAj and jAj � jSj if jSj � 3.

Suppose jSj � 3. We have that

eðGÞ ¼ eðG½C�Þ þ eðG½C;W �Þ þ eðG½W �Þ � 5 þ ðjAj þ 2jSjÞ þ 2jAj

¼ 5 þ 5ðjAj þ jSjÞ
2

þ jAj � jSj
2

� 5 þ 5ðn� 5Þ
2

¼ 5n� 15

2

and this is a contradiction. &

6. EXTREMAL GRAPHS CONTAIN BULLS

Throughout this section, we suppose that G is a vertex-diameter-2-critical graph

with at most one degree-2 vertex, that �ðGÞ < 4 and that eðGÞ � ð5n=2Þ � 8.

Define the graph Q with vertex set fx, y, u, v, wg and edge set fxy, xu, xv, yv,

ywg. (Sometimes this graph is called the bull.) The aim of this section is to prove

that if G has at least 23 vertices, then G contains an induced copy of Q. Actually,

this is the only part of the proof when the lower bound nðGÞ � 23 is used.

Lemma 6.1. Suppose that the degree-3 vertices are adjacent neither to each

other nor to the degree-2 vertex. Then nðGÞ � 22.

Proof. Let x1 be a vertex of minimum degree, A1 ¼ N½x1�. We have that

jA1j ¼ � þ 1, i.e., it is 3 or 4, and all vertices in VnA1 have degree at least 3.

Apply (3.2) to U ¼ N½x1�. If every vertex z 2 VnU has !ðzÞ � 5=2, then (3.2)

implies that eðGÞ � � þ ðn� � � 1Þ5=2 ¼ 5n=2 � ð3� þ 5Þ=2 > 5n=2 � 8, a

contradiction. So there exists a vertex x2 2 VnU with ðdegðx2Þþ jNðx2Þ \ UjÞ=
2 � 2. Recall that G has at most one degree-2 vertex. As jNðx2Þ \ Uj � 1 and

degðx2Þ � 3, these imply that here equalities hold.

Let A2 :¼ A1 [ N½x2� and fcg :¼ Nðx1Þ \ Nðx2Þ. Suppose that Ai has already

been defined, then let xiþ1 be a degree-3 vertex such that xiþ1 =2 Ai and

jAi \ Nðxiþ1Þj ¼ 1. If such a vertex exists then necessarily Nðxiþ1Þ \ Ai ¼ fcg.
This process stops after some steps, we obtain the independent vertices x1; x2; . . . ;
xt (where t � 2), all adjacent to c and the set A :¼ At with

jAj ¼ 3t þ ð� � 2Þ

such that every degree-3 vertex not in A is joined to at least two vertices of A.

We have the following lower bound for the number of edges eðAÞ :¼ eðG½A�Þ

eðAÞ �
7 ¼ jAj þ 1 if t ¼ 2 and � ¼ 2;

8 ¼ jAj þ 1 if t ¼ 2 and � ¼ 3;

2jAj � 2 þ 1
2
tðt � 5Þ for t � 3:

8><
>: ð6:1Þ
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If here equality holds for t � 4, then G½Anfx1; . . . ; xtg� has two components, a star

with center c and a complete graph Kt meeting each NðxiÞ in one vertex.

To see this, first we have jAj � t � 1 edges joining fx1; . . . ; xtg to ðAncÞn
fx1; . . . ; xtg. Second, there are jN½c� \ Aj � 1 edges joining c to Anfcg. Third,

observe that a vertex y 2 NðxiÞnN½c� is joined to at least one vertex in NðxjÞ for

all 1 � j � t, j 6¼ i), otherwise it was not possible to reach xj from y by a path of

length at most 2. Thus all vertices of AnN½c�, has at least t � 1 neighbors in

AnN½c�. We obtain that

eðAÞ � ðjAj � t � 1Þ þ ðjN½c� \ Aj � 1Þ þ 1

2
ðt � 1ÞjAnN½c�j

¼ 2jAj � t � 2 þ 1

2
ðt � 3ÞðjAnN½c�Þ:

(3.1) implies that NðxiÞ 6� NðcÞ thus t � jAnN½c�j, which implies (6.1).

Let us note that applying (3.2) with U ¼ A and using (6.1), one can obtain

t � 6, hence jAj � 19. However, we would not use this upper bound (only

implicitly). Let M be the set of vertices not in A, which are not adjacent to c, the

set L be the set of vertices not in A [M whose degree is at least 4, and let

jMj ¼ m and jLj ¼ ‘.
We shall apply (3.2) to U ¼ A [M. Since vertices in M are not adjacent to c,

thus each of them is adjacent to at least one vertex in NðxjÞ for all 1 � j � t, we

have that eðG½U�Þ � eðAÞ þ tm. Every vertex z 2 VnU is adjacent to c and by

(3.1) it is adjacent to at least another vertex in VnNðcÞ, thus z is adjacent to at

least two vertices in U. Then (3.2) implies that

5n

2
� 8 � eðGÞ � eðAÞ þ tmþ 5

2
ðn� jAj � m� ‘Þ þ 3‘:

Rearranging we have

5jAj � 2eðAÞ � 16 � ‘þ ð2t � 5Þm: ð6:2Þ

Next we consider U ¼ A [M [ L. We have that eðG½U�Þ � eðAÞ þ tmþ 2‘.
As the vertices in VnU have degree 3, and they are independent, eðG½U;VnU�Þ ¼
3ðn� jUjÞ. Thus

5n

2
� 8 � eðGÞ � eðG½U�Þ þ eðG½U;VnU�Þ

� eðAÞ þ tmþ 2‘þ 3ðn� jAj � m� ‘Þ;

hence

6jAj � 2eðAÞ � 16 � n� 2‘þ ð2t � 6Þm: ð6:3Þ

Multiplying (6.2) by 2 and adding to (6.3) we obtain

16jAj � 6eðAÞ � 48 � nþ ð6t � 16Þm: ð6:4Þ
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In case of t � 3, the left hand side of (6.4) is at most �3t2 þ 27t � 32�
4ð3 � �Þ by (6.1). This is at most 22 for t ¼ 3 and t � 6, so we obtain 22 � n

for these cases. For t ¼ 4 and 5, the left hand side of (6.4) is at most 28. In

these cases, we get 22 � n again if eðAÞ exceeds the lower bound (6.1).

Suppose now that equality holds in (6.1). As t � 4, we have that t ¼ jAnN½c�j,
and that every degree-3 vertex xi has exactly one neighbor adjacent to c.

Consider y 2 Nðx2Þ \ NðcÞ. (3.1) implies that y has a neighbor z that is not

connected to c. However, y is not connected to any other vertex in A, so z =2 A.

Thus M 6¼ ;, m � 1. Then (6.4) gives 20 � 28 � ð6t � 16Þm � n and we are

done.

In the remaining case, t ¼ 2. Then the left hand side of (6.4) is at most 16 by

(6.1). It gives 20 � n for m � 1, so from now on we suppose that m � 2,

especially M 6¼ ;. Let k denote the minimum degree of vertices in M, let z0 be a

vertex in M with degðz0Þ ¼ k.

We distinguish three subcases.

I. jAj ¼ 6. In this case, � ¼ 2 and eðAÞ � 7.

II. jAj ¼ 7 and eðAÞ � 9. In this case � ¼ 3.

III. jAj ¼ 7 and eðAÞ ¼ 8. In this case � ¼ 3.

We discuss cases I and II together. We shall apply (3.2) to U ¼ A. Since every

vertex b in M has degðbÞ � k, we know that !ðbÞ � ðk þ 2Þ=2. Every vertex b0 in

L has degree at least 4, so that !ðb0Þ � 5=2. Finally, every vertex b00 2 Vn
ðA [M [ LÞ has at least two neighbors in A, so again wðb00Þ � 5=2. Thus (3.2)

implies that

5n

2
� 8 � eðGÞ � eðAÞ þ 1

2
ðk þ 2Þmþ 5

2
ðn� jAj � mÞ:

Rearranging we get 5jAj � 2eðAÞ � 16 � ðk � 3Þm. Here, in cases I and II, the

left hand side is at most 1. Thus m � 2 implies 1 > 1=m � k � 3, and we obtain

that k ¼ 3.

Consider B ¼ A [ N½z0�. We know that jAj þ 1 � jBj � jAj þ 2 � 9, since z0 is

adjacent to at least two and at most three vertices in A. The set L0 is defined to be

the set of vertices not in B whose degree is at least 4, and let jL0j ¼ ‘0.
We shall apply (3.2) to U ¼ B. Since z0 is not adjacent to c, every vertex z not

in B is adjacent to at least two vertices in B, thus !ðzÞ � 5=2. Also, every vertex z0

in L0 has !ðz0Þ � 3. We have that

5n

2
� 8 � eðGÞ � eðG½B�Þ þ 5

2
ðn� jBj � ‘0Þ þ 3‘0;

hence

5jBj � 2eðBÞ � 16 � ‘0: ð6:5Þ
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Next we consider U ¼ B [ L0. We have that eðG½U�Þ � eðBÞ þ 2‘0. As the

vertices in VnU have degree 3, and they are independent, eðG½U;VnU�Þ ¼
3ðn� jUjÞ. Thus

5n

2
� 8 � eðGÞ � eðG½U�Þ þ eðG½U;VnU�Þ � eðBÞ þ 2‘0 þ 3ðn� jBj � ‘0Þ;

hence

6jBj � 2eðBÞ � 16 � n� 2‘0: ð6:6Þ

Multiplying (6.5) by 2 and adding to (6.6), we obtain

16jBj � 6eðBÞ � 48 � n: ð6:7Þ

One can easily see, that here the left hand side is at most 18 in both cases I and

II. Indeed, there are eðAÞ edges induced by A , 3 edges incident to z0. If

Nðz0Þ � A, then jBj ¼ jAj þ 1, eðBÞ ¼ eðAÞ þ 3 � jAj þ 4, so the left hand side

of (6.7) is at most 10jAj � 56, which is at most 14. If Nðz0ÞnA 6¼ ;, then the

vertex in Nðz0ÞnA is adjacent to at least one vertex in A. So we have that

eðG½B�Þ � eðAÞ þ 4 and jBj ¼ jAj þ 2. Then (6.7) gives n � 10jAj � 40 �
6ðeðAÞ � jAjÞ, which is at most 14 in the case I, and at most 18 in the case II.

Finally, we turn to case III. Observe that the graph G½A� is unique. As jAj ¼ 7

and eðAÞ ¼ 8, the set Nðx1Þ [ Nðx2Þ contains exactly two edges. Both avoid the

common vertex c and they are disjoint. Denote them by y1y2 and z1z2 where

NðxiÞ ¼ fyi; zi; cg. Thus Nðx1Þ contains no edge. Since this is the last case, from

now on, we may suppose that we get t ¼ 2 and the above 8-edge graph by starting

our process with any degree-3 vertex x. We may also suppose that NðxÞ has no

edge for any degree-3 vertex x, and NðxÞ [ NðyÞ has exactly 2 edges if

degðxÞ ¼ degðyÞ ¼ 3 and jNðxÞ \ NðyÞj ¼ 1.

We show that k � 4 (where k ¼ minz2M degðzÞ) leads to 22 � n. We shall

apply (3.2) again to U ¼ A. We already have wðbÞ � 5=2 for every b 2 VnA.

Split VnðA [M [ LÞ into two parts

H2 :¼ fx 2 VnA : x 2 NðcÞ, degðxÞ ¼ 3 and jNðxÞ \ Aj ¼ 2g, and

H3 :¼ fx 2 VnA : x 2 NðcÞ, degðxÞ ¼ 3 and jNðxÞ \ Aj ¼ 3g.

Thus (3.2) implies that

5n

2
� 8 � eðGÞ � eðAÞ þ 1

2

X
x2M

ð2 þ degðxÞÞ þ 5

2
‘þ 5

2
jH2j þ 3jH3j:

Rearranging we get 5jAj � 2eðAÞ � 16 � jH3j þ
P

x2MðdegðxÞ � 3Þ, where the

left hand side is 3, implying

3 � jH3j þ
X
x2M

ðdegðxÞ � 3Þ: ð6:8Þ
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Hence 3 � jH3j þ m � m. The left hand side of (6.2) is also 3, yielding

3 � ‘� m. Thus we obtain the upper bound 6 � ‘. We have jA [ ðH3 [MÞ [
Lj � 7 þ 3 þ 6 ¼ 16. Then 22 � n follows if we show that jH2j � 6.

Consider an arbitrary vertex b in H2. Note that b is adjacent to c and that it has

a neighbor w not in A. As b is a degree-3 vertex and we have supposed that their

neighborhoods contain no edge, we obtain that w is not adjacent to c, i.e., w 2 M.

This implies
P

x2MðdegðxÞ � 2Þ � jH2j. Adding this inequality to (6.8), we have

3 þ m � jH3j þ jH2j. Hence 6 � jH2j, finishing the case k � 4.

Finally, consider the case k ¼ 3. Again let z0 2 M be a degree-3 vertex. As

Nðz0Þ has no edge, z0 is connected to at most one of y1 and y2, and similarly

jNðz0Þ \ fz1; z2gj � 1. Equalities must hold, so we may suppose that, say,

Nðz0Þ \ A ¼ fy1; z2g. Let us denote the third neighbor of z0 by w, and let

B ¼ A [ N½z0�.
We claim that G½B� is a 9-vertex graph with 12 edges as follows. It consists of a

six-cycle x1cx2z2z0y1 and three diagonal paths x1z1z2, y1y2x2, and z0wc. We have

already described G½A [ fz0g�. We shall show that NðwÞ \ fy1; y2; z1; z2g ¼ ;.

The neighborhood Nðz0Þ contains no edge, hence y1; z2 =2NðwÞ. Consider the

degree-3 vertices x1 and z0. They have a single common neighbor, y1, so by our

assumption, their neighbors Nðx1Þ [ Nðz0Þ contain exactly two edges, both

avoiding the common neighbor y1. As z1z2 is an edge, the other edge is wc. We

also obtained that w is not adjacent to z1. Considering the degree-3 vertices x2 and

z0, we obtain in the same way that w is not adjacent to y2.

We shall apply (3.2) to U ¼ B. Every vertex z not in B is adjacent to at least

two vertices in B, thus !ðzÞ � 5=2. The set L0 is defined again as the set of

vertices not in B whose degree is at least 4, and let jL0j ¼ ‘0. Now (3.2) implies

that

5n

2
� 8 � eðGÞ � e G½B�Þ þ 5

2
ðn� jBj

� �
þ

X
x =2 B

wðxÞ � 5

2

� �
;

hence

5 ¼ 5jBj � 2eðBÞ � 16 �
X
x2L0

ðdegðxÞ � 3Þ þ
X
x =2 B

ðjNðxÞ \ Bj � 2Þ: ð6:9Þ

Here the first sum is at least ‘0, and we shall show that the second sum is at least 1,

thus (6.9) gives 4 � ‘0. Indeed, there is a vertex x in the common neighborhood of

z1 and y2, since dðz1; y2Þ � 2. This x has a common neighbor with Nðz0Þ, too,

implying jNðxÞ \ Bj � 3.

The left hand side of (6.6) is 14 so 4 � ‘0 implies 22 � 14 þ 2‘0 � n. &

Lemma 6.1 implies that for nðGÞ � 23, the graph G contains an adjacent pair

of vertices x; y with degðxÞ; degðyÞ � 3.

Lemma 6.2. Suppose that nðGÞ � 10, and that G has a single degree-2 vertex x

adjacent to a degree-3 vertex y. Then G contains an adjacent pair of degree-3

vertices having exactly one common neighbor.
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Proof. Suppose that NðxÞ ¼ fy; x1g and that NðyÞ ¼ fx; y1; y2g. We shall

apply (3.2) to U ¼ N½x� [ N½y�. Since every vertex z not in U is adjacent to x1 and

at least one of y1, y2, and degðzÞ � 3, we have that

eðGÞ ¼ 4þ 5

2
ðn� 5Þþ 1

2

X
z2V nU

ðdegðzÞ � 3Þþ 1

2

X
z2V nU

ðjNðzÞ \ Uj � 2Þ � 5n� 17

2
:

This implies that all vertices but at most one in VnU have degree 3 and are

adjacent to exactly two vertices in U, and that G has at least ðn� 5 � 1 � 2Þ=2

adjacent pairs of degree-3 vertices in ðVnUÞ \ Nðx1Þ one adjacent to y1, and the

other adjacent to y2. Namely, G has adjacent pairs of degree-3 vertices having

exactly one common neighbor. &

Lemma 6.3. Suppose that nðGÞ � 23, that G has an adjacent pair of degree-3

vertices, x, y. Then G contains an adjacent pair of degree-3 vertices having

exactly one common neighbor.

Proof. If x and y have one common neighbor, then we are done. Suppose that

x is adjacent to a1, a2, y, and that y is adjacent to x, b1, b2. First, we consider the

case �ðGÞ ¼ 3. We shall prove that G has more than one adjacent pairs of degree-3

vertices. We shall apply (3.2) to U ¼ N½x� [ N½y�. Every vertex z not in U is

adjacent to at least one of a1, a2 and at least one of b1, b2, so that !ðzÞ � 5=2.

Define r ¼
P

z2V nUð!ðzÞ � 5=2Þ. Now (3.2) implies that 5n=2 � 8 � eðGÞ � 5þ
ðn� 6Þ5=2 þ r; hence

(i) r � 2;

(ii) at most four vertices in VnU have degree at least 4;

(iii) at most eight degree-3 vertices in VnU are adjacent to vertices of VnU
whose degree is at least 4.

These imply that there are at least ðn� 6Þ � 4 � 8 � 5 degree-3 vertices in

VnU, which are adjacent to two vertices of U and to one degree-3 vertex of VnU.

Namely, there are at least three adjacent pairs of degree-3 vertices each adjacent

to one of a1; a2 and to one of b1; b2.

Now we shall prove that G has an adjacent pair of degree-3 vertices having

exactly one common neighbor. Suppose on the contrary that all adjacent pairs of

degree-3 vertices have no common neighbor. Without loss of generality, z, w is an

adjacent pair of degree-3 vertices in VnU, where z is adjacent to a1, b1, w, and w

is adjacent to a2, b2, z.

In addition to z, w, there are at least two adjacent pairs of degree-3 vertices in

VnU each adjacent to two vertices in U. If s; t is another adjacent pair of degree-3

vertices in VnU, then diamðGÞ ¼ 2 implies that each of s and t is adjacent to one

of a1, a2, to one of b1, b2, to one of a1, b1, and to one of a2, b2. This implies that s,

t are adjacent to a1, b2 and a2, b1, respectively. But, in addition to s, t, there are at
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least one adjacent pair of degree-3 vertices each adjacent to two vertices of U.

The fact diamðGÞ ¼ 2 implies that each of them is adjacent to one of a1, a2, to

one of b1, b2, to one of a1, b1, to one of a2, b2, to one of a1, b2, and to one of a2,

b1. This is a contradiction since two vertices cannot meet all the six pairs. Thus,

we have finished the case � ¼ 3.

In the case � ¼ 2, we shall prove Lemma 6.3 for all n � 11. There is a unique

vertex c with degðcÞ ¼ 2. If c is a neighbor of x or y, then Lemma 6.2 yields the

desired pair of degree-3 vertices. So we may suppose that c =2 N½x� [ N½y�, and

NðcÞ ¼ fa2; b1g. The vertices a1 and b2 are neighbors of NðcÞ, so N½x� [ N½y�
induces at least 7 edges. Applying (3.2) again to U ¼ N½x� [ N½y� [ fcg, we

obtain that (i) r � 1=2, (ii) at most 1 vertex in VnU has degree at least 4, and (iii)

at most two degree-3 vertices in VnU are adjacent to vertices of VnU whose

degree is at least 4.

These imply that there are at least ðn� 6 � 1Þ � 1 � 2 � 1 degree-3 vertices

in VnU, which are adjacent to two vertices of U and to one degree-3 vertex of

VnU. As above, we obtain a pair of adjacent degree-3 vertices z;w 2 VnU where

z is adjacent to a1, b1, w, and w is adjacent to a2, b2, z.

Let U ¼ N½x� [ N½y� [ fcg [ N½z� [ N½w�. Then jUj ¼ 9 and it contains at

least 14 edges. Moreover, every vertex u =2 U is joined to at least 3 vertices of

fa1; a2; b1; b2g. Thus (3.2) gives ð5=2Þn� 8 � eðGÞ � 14 þ 3ðn� 9Þ, implying

5 � n=2. &

Lemma 6.4. If G contains an adjacent pair of degree-3 vertices having exactly

one common neighbor, then G contains a spanned copy of the bull Q.

Proof. Let x and y be an adjacent pair of degree-3 vertices having exactly one

common neighbor. Suppose that NðxÞ ¼ fu; v; yg, and NðyÞ ¼ fw; v; xg and let

I ¼ N½x� [ N½y�. By (3.1), the vertex u is not adjacent to v, and w is not adjacent

to v: We shall show that u is not adjacent to w, i.e., G½I� ¼ Q. Suppose on the

contrary that u is adjacent to !.

Let A be the set of vertices not in I, which are adjacent to only v in I, and let S

be the set of vertices not in I, which are adjacent to exactly the two vertices u and

w in I. Note that S ¼ VnðA [ IÞ, since x is the only common neighbor of u, v, and

y is the only common neighbor of v, w. We observe that A 6¼ ;, since degðvÞ � 3.

The fact NðaÞ 6� N½v� implies that a is adjacent to some vertices in S for all a 2 A,

in particular, S 6¼ ;.

Let H be the subgraph induced by VnI, that is, H ¼ G½A [ S�. Then

diamðGÞ ¼ 2 implies that for every vertex a 2 A, s 2 S, dHða; sÞ � 2. Note that

if G has a degree-2 vertex, then the degree-2 vertex is in A. It is easy to see

that A, S and W ¼ A [ S satisfy T1; . . . ;T4. Take a 2 A and consider a tree T

rooted at a defined in Section 5. If G has a degree-2 vertex, then we take

the degree-2 vertex to be the root of the tree. So, every vertex in AnAT has at

least two neighbors in W . By (4.1) and (4.2), we have that jSj � jAT j and
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that eðG½W �Þ � 3jAj=2 � jAT j=2 þ jSj � 1; hence eðGÞ ¼ eðG½I�Þ þ eðG½I;W �Þ þ
eðG½W �Þ

� 6 þ ðjAj þ 2jSjÞ þ 3jAj
2

� jAT j
2

þ jSj � 1 ¼ 5 þ 5ðjAj þ jSjÞ
2

þ jSj � jAT j
2

� 5 þ 5ðn� 5Þ
2

:

This is a contradiction, since eðGÞ � 5n=2 � 8. &

7. PROOF OF THEOREM 1.1

Let G be a vertex-diameter-2-critical graph on n � 23 vertices with eðGÞ �
5n=2 � 8 edges. To prove Theorem 1.1, we shall show that eðGÞ � ð5n� 17Þ=2

and that n is odd. By the results of Section 3, we can assume that �ðGÞ < 4.

By Lemma 5.2 and 5.3, we may assume that G has at most one degree-2

vertex. By Lemma 6.1, G contains an adjacent pair of vertices with degrees at

most 3. By Lemma 6.2 and 6.3, G contains an adjacent pair of degree-3 vertices

having exactly one common neighbor. Then Lemma 6.4 implies that G contains

the bull, Q, with vertex set I ¼ fx; y; u; v;wg as an induced subgraph. Let

V ¼ VðGÞ.
We partition VnI into five subsets A, B, C, S, and F according to their

adjacency with fu; v;wg. The sets of neighbors in I of vertices in A, B, C, S, F are

fvg, fu; vg, fw; vg, fw; ug, and fu; v;wg, respectively. Note that V ¼ I [ A [ B[
C [ S [ F. We denote the subgraph of G induced by VnI by H, that is, H ¼
G½VnI�. Note that if G has a degree-2 vertex, then the degree-2 vertex is in A.

We make a number of observations.

x

y

v

u

w

A S

B

C

F

FIGURE 4.
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Observation 1. A 6¼ ;.

Note that eðG½I�Þ ¼ 5 and that eðG½I;VnI�Þ ¼ jAj þ 2jBj þ 2jCj þ 2jSj þ 3jFj:
Since every vertex in VnðA [ IÞ has degree at least 3, if A ¼ ;, then

eðHÞ � ðjBj þ jCj þ jSjÞ=2; hence eðGÞ ¼ eðG½I�Þ þ eðG½I;VnI�Þ þ eðHÞ � 5þ
ð2ðn� 5Þ þ jFjÞ þ ðn� 5 � jFjÞ=2 ¼ ð5n� 15 þ jFjÞ=2: This is a contradiction.

Observation 2. Every vertex a 2 A is the only common neighbor of nonadjacent

pairs fa0; sg or fv; s0g, for some a0 2 A, and s, s0 2 S, since a is critical; in

particular, every vertex in A is adjacent to some vertices in S, and S 6¼ ;.

Observation 3. Every vertex f in F has degðf Þ � 4.

Since f is critical, f must be the only common neighbor of some pairs of its

neighbors. But f is not the only common neighbor of u and w, since S 6¼ ;.

It is easy to see that A, S and W ¼ VnI satisfy T1; . . . ;T4. Take a 2 A and

consider a tree T rooted at a defined in Section 5. If G has a degree-2 vertex, then

we take the degree-2 vertex to be the root of the tree. So, every vertex in AnAT

has at least two neighbors in W . By (4.2), we have that

eðG½W �Þ � 3jAj
2

� jAT j
2

þ jSj þ jLj � 1 þ 1

2

X
z2WnðA[S[LÞ

jNðzÞ \W j

þ 1

2

X
s2 S

jfsz 2 G½W � : s 2 S; z 62 AnAT ; sz 62 Tgj;

where X
z2W nðA[S[LÞ

jNðzÞ \W j ¼ ðjBj þ jCj þ jFj � jLjÞ þ
X

z2B[CnL
ðdegðzÞ � 3Þ

þ
X

z2FnL
ðdegðzÞ � 4Þ:

Note that eðG½I�Þ ¼ 5, and that eðG½I;VnI�Þ ¼ jAj þ 2jBj þ 2jCj þ 2jSj þ 3jFj:
Observation 4. eðGÞ ¼ eðG½I�Þ þ eðG½I;VnI�Þ þ eðHÞ

� 1

2
ð5n� 17Þ þ 1

2
ðjSj � jAT jÞ þ jFj þ 1

2
jLj þ 1

2

X
z2B[CnL

ðdegðzÞ � 3Þ

þ 1

2

X
z2FnL

ðdegðzÞ � 4Þ

þ 1

2

X
s2 S

jfsz 2 G½W � : s 2 S; z 62 AnAT ; sz 62 Tgj � 5n� 17

2
:

Observation 5. F ¼ ; and L ¼ ;.

If L 6¼ ;, then, by (4.1), jSj � jAT j � jLj � 1: This implies that eðGÞ �
ð5n� 15Þ=2:
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Observation 6.

ðjSj � jAT jÞ þ
X

z2B[C
ðdegðzÞ � 3Þþ

X
s2 S

jfsz 2 G½W � : s 2 S; z 62 AnAT ; sz 62 Tgj�1:

Observation 7. There is no edge between B [ C and S. In particular, vertices in

S are adjacent only to u;w, to vertices in S and in A. That is, NðSÞ � S [
A [ fu;wg:

Suppose on the contrary that there is an edge zs� 2 EðGÞ, where z 2 B [ C and

s� 2 S. Then by Observation 5, L ¼ ;, we have that zs� 2 fsz 2 G½W� : s 2 S;
z 62 AnAT ; sz 62 Tg: By Observation 6, we have that degðzÞ ¼ 3 and that

jSj ¼ jAT j. Since z is critical, z is the only common neighbor of v and s�. This

implies that Nðs�Þ \ A ¼ ;. On the other hand, the equality jSj ¼ jAT j implies

that tðs�Þ 2 A which is a contradiction.

Observation 8. Every vertex in B is adjacent to exactly one vertex in C, and

every vertex in C is adjacent to exactly one vertex in B. Thus, jBj ¼ jCj.

By Observations 5 and 7, every vertex b in B is the only common neighbor of c

and u for some c 2 C [ A. By Observation 2, c 62 A, so b is adjacent to at least

one vertex in C. Similarly, every vertex in C is adjacent to at least one vertex in B.

Suppose b 2 B is adjacent to c1, c2 2 C. By Observation 6, degðcÞ ¼ 3 for all

c 2 C. This implies that Nðc1Þ ¼ Nðc2Þ, a contradiction.

Observation 9. If G has a degree-2 vertex a�, then jSj � 2.

Indeed, in this case, we have that AT ¼ fa�g, and then Observation 6 implies

jSj � 2.

Note that jIj ¼ 5, that F ¼ ;, and that jBj ¼ jCj. It is sufficient to show that

jAj þ jSj is even. By Observation 2 and 7, it is easy to see that G satisfies

R1; . . . ;R4. Suppose, first, that jSj � 2. Then Lemma 4.2 implies that jAj þ jSj is

even and we are done. By Observation 9, this includes also the case if G has a

degree-2 vertex.

Finally, suppose that jSj � 3 and so G has no degree-2 vertex. Then by

Observation 6, R5 holds. Again Lemma 4.2 implies that eðG½A [ S�Þ � 2jAj and

jAj � jSj. We have now

eðGÞ ¼ eðG½I�Þ þ eðG½I;VnI�Þ þ eðG½A [ S�Þ þ eðG½B;C�Þ

� 5 þ ðjAj þ 2jBj þ 2jCj þ 2jSjÞ þ 2jAj þ jBj þ jCj
2

¼ 5n� 15

2

þ jAj � jSj
2

� 5n� 15

2
;

and this is a contradiction, thus we have justified Theorem 1.1. &
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[17] P. Erdős and A. Rényi, On a problem in the theory of graphs, Publ Math Inst

Hungar Acad Sci 7 (1962), 623–641.
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