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A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points

and lines of the finite projective plane of order 2. Proving a conjecture of T. Sós, the largest

triple system on n vertices containing no Fano configuration is determined (for n > n1).

It is 2-chromatic with
(
n
3

)
−

(�n/2�
3

)
−

(�n/2�
3

)
triples. This is one of the very few nontrivial

exact results for hypergraph extremal problems.

1. Turán’s problem

Given a 3-uniform hypergraph F, let ex3(n,F) denote the maximum possible size of a

3-uniform hypergraph of order n that does not contain any subhypergraph isomorphic

to F. Our terminology follows that of [16] and [10], which are comprehensive survey

articles of Turán-type extremal graph and hypergraph problems, respectively. Also see the

monograph of Bollobás [2].

There is an extensive literature on extremal graph problems. Nevertheless, we know

much less about the hypergraph extremal problems and we have even fewer exact results

on hypergraphs. One of the main contributions of this paper is that we improve an earlier

result of de Caen and Füredi [5], providing the exact solution of the Fano hypergraph

extremal problem.
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Figure 1. The complete 4-graph, the Fano hypergraph, and the octahedron

The tetrahedron, K
(3)
4 , i.e., a complete 3-uniform hypergraph on four vertices, has

four triples {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}. The complete 3-partite triple

system K (3)(V1, V2, V3) consists of |V1||V2||V3| triples meeting all the three Vis. We also

use the simpler notation K (3)(n1, n2, n3) if |Vi| = ni. K
(3)(2, 2, 2) is sometimes called the

octahedron. The Fano configuration F (or Fano plane, or finite projective plane of order 2,

or Steiner triple system, STS(7), or blockdesign S2(7, 3, 2)) is a hypergraph on 7 elements,

say {x1, x2, x3, a, b, c, d}, with 7 edges {x1, x2, x3}, {x1, a, b}, {x1, c, d}, {x2, a, c}, {x2, b, d},
{x3, a, d}, {x3, b, c}.

An averaging argument shows [12] that the ratio ex3(n,F)/
(
n
3

)
is a non-increasing

sequence. Therefore

π(F) := lim
n→∞

ex3(n,F)/
(
n
3

)
exists. This monotonicity implies that ex3(5, K

(3)
4 ) � �

(
5
3

)
ex3(4, K

(3)
4 )/

(
4
3

)
� = 7, thus

ex3(n,K
(3)
4 ) � 0.7

(
n

3

)
holds for every n � 5. (1.1)

We note that the determination of π(K (3)
4 ) is one of the oldest problems of this field, due to

Turán [18], who published a conjecture in 1961 that this limit value is 5/9, and Erdős [8]

offered $1000 for a proof. The best upper bound, 0.5935 . . . , is due to Fan Chung and

Linyuan Lu [6].

Concerning the octahedron, a very special case of an important theorem of Erdős [7]

states that

ex3(n,K
(3)(2, 2, 2)) = O(n3−(1/4)), (1.2)

i.e., in this case the limit π = 0.

The limit π(H) is known only for very few cases when it is nonzero. De Caen and

Füredi [5] proved the following.

Theorem A.

ex3(n,F) =
3

4

(
n

3

)
+ O(n2).
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Figure 2. The conjectured extremal graph

This was conjectured by Vera T. Sós [17]. She also conjectured that the following

hypergraph, Hn, gives the exact value of ex3(n,F). Let H(X,X) be the hypergraph

obtained by taking the union of two disjoint sets X and X as the set of vertices and define

the edge set as the set of all triples meeting both X and X. For Hn we take |X| = �n/2�
and |X| = �n/2�, (i.e., they have nearly equal sizes). Then

e(Hn) =

(
n

3

)
−

(
�n/2�

3

)
−

(
�n/2�

3

)
,

which is 3
4

(
n
3

)
+ O(n2).

The chromatic number of a hypergraph H is the minimum p such that its vertex set

can be decomposed into p parts with no edge contained entirely in a single part. It is

well known and easy to check that the Fano plane is not two-colourable, its chromatic

number is 3. Therefore F �⊆ H(X,X). Thus Hn supplies the lower bound for ex3(n,F) in

Theorem A, implying that π(F) � 3
4
.

In this paper we prove the exact version of T. Sós’s conjecture, even in a stronger form,

describing the extremal hypergraph as well.

Theorem 1.1. There exists an n1 such that the following holds. If H is a triple system on

n > n1 vertices not containing the Fano configuration F and of maximum cardinality, then it

is 2-colourable. Thus H = Hn and

ex3(n,F) =

(
n

3

)
−

(
�n/2�

3

)
−

(
�n/2�

3

)
.

This is an easy consequence of the following structure theorem.

Theorem 1.2. There exist a γ2 > 0 and an n2 such that the following holds. If H is a triple

system on n > n2 vertices not containing the Fano configuration F and

deg(x) >

(
3

4
− γ2

)(
n

2

)

holds for every x ∈ V (H), then H is bipartite, H ⊆ H(X,X) for some X ⊆ V (H).
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This result is a distant relative of the following classical theorem of Andrásfai, Erdős

and T. Sós [1]. Let G be a triangle-free graph on n vertices with minimum degree δ(G).

If δ(G) >
2

5
n, then G is bipartite. (1.3)

The blow-up of a five-cycle C5 shows that this bound is the best possible. They further

determined

δ(n, F) := max{δ(G) : |V (G)| = n, G is F-free χ(G) � χ(F)}

for F = Kp. The general case is still open, although Erdős and Simonovits [9] determined

a number of cases and showed, e.g., that Kp behaves uniquely: in the case χ(F) = p,

F �= Kp one has δ(n, F) − δ(n,Kp) � n/(6p2) − o(n).

Using the method of [5], Mubayi and Rödl [14] determined the limit π for a few

more 3-uniform hypergraphs, obtaining π = 3/4 for all of them. It is very likely that the

extremal hypergraphs are 2-colourable in those cases, too.

Turán [18] also conjectured that the 2-colourable triple system Hn is the largest K (3)
5 -

free hypergraph. Sidorenko [15] disproved this conjecture, in this sharp form, for odd

values n � 9. But it is still conjectured that it is true for all even values and it seems that

π(K (3)
5 ) = 3/4 holds as well. However, this question seems to be extremely difficult.

The main idea of the proof

The proof of Theorem A in [5] had the potential to prove our Theorem 1.1, but had

to be improved in several places. One of these improvements was to introduce coloured

multigraphs instead of multigraphs.

Earlier Brown, Erdős and Simonovits proved several results on multigraph extremal

problems, but the excluded graphs in [11] had special form (as in Bondy–Tuza [3]): see,

e.g., the survey paper [4]. A method called ‘augmentation’ was developed there which is

used implicitly here as well.

De Caen and Füredi [5] applied some multigraph extremal results of Füredi and

Kündgen [11]. Now we shall use coloured multigraph extremal results.

Theorem 1.1 was proved independently and in a fairly similar way by Keevash and

Sudakov [13]. Our Theorem 1.2 easily implies Theorem 1.1. Theorems 2.2 and 2.3 in the

next section deal with new type of problems.

2. Fano plane and the links

First we describe how we can find a Fano plane in a triple system, using multigraphs.

This will lead us to further investigation of multigraphs and coloured multigraphs.

Definition. The graphs G1, G2, . . . (with the common vertex set V ) have 3 pairwise

crossing pairs if there are four vertices {a, b, c, d} ⊆ V and three graphs Gij such that

ad, bc ∈ E(Gi1 ), ac, bd ∈ E(Gi2 ), and ab, cd ∈ E(Gi3 ).

Notation. If G1, . . . , Gp are (simple) graphs with the same vertex set V , then G1,...,p denotes

a coloured multigraph on V in which we join two vertices a, b ∈ V by an edge of colour

i if ab ∈ E(Gi). Thus, degG1,...,p
(x) =

∑
1�i�p degGi

(x).
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The multiplicity of a pair {a, b} ⊂ V is denoted by µ(ab) and it is the number of graphs

among the Gis containing ab as an edge. We have 0 � m � p. Also, the set {i : ab ∈ E(Gi)}
is called the set of colours of the pair ab.

As usual, e(G) stands for the number of edges of G (for multigraphs it is counted

with multiplicity). G[X] denotes the induced (multi)graph of G spanned by the subset of

vertices X. When possible, we shall use simplified notations, discarding parentheses and

commas.

Given a triple system H with vertex set V and a vertex x ∈ V , the link graph G(H, x)

is defined as the set of pairs {y, z} such that {x, y, z} is a hyperedge of H. Two of our

simple but crucial observations are as follows.

Claim 2.1. Assume that F �⊆ H.

(a) If {x1, x2, x3} is a hyperedge of H and S = {a, b, c, d} is disjoint from {x1, x2, x3}, then

consider the three link graphs Gi := G(H, xi). We have

G1, G2 and G3 have no 3 pairwise crossing pairs on S. (2.1)

(b) Consider a vertex x and suppose that the link graph G = G(H, x) contains three vertex-

disjoint complete graphs with vertex sets Ui, i.e., G[Ui] ≡ K(Ui). Then the triples of H
meeting each Ui can not form an octahedron:

H ∩ K (3)(U1, U2, U3) contains no K (3)(2, 2, 2). (2.2)

As a matter of fact, in the last statement four triples of appropriate position in H
would already yield a Fano configuration.

However, the main idea in the proof of Theorem A from [5] was to consider a K
(3)
4 on

{x1, x2, x3, x4} in H and to show that, for the four links,

∑
i�4

e(G(H, xi)) � 3

(
n

2

)
+ O(n).

In this paper our primary aim is to prove an exact form of this and describe the

corresponding extremal structures. Besides this we shall also prove some coloured

multigraph extremal theorems.

Let B(X,X) denote the coloured multigraph on the n-element vertex set V with a

partition V = X ∪ X, coloured in 1, 2, 3, and 4. Assume also that all edges in X have

colours 1 and 2, all edges in X have colours 3 and 4, and all edges joining X and X have

all the four colours.

Theorem 2.2. Let G1, . . . , G4 be four graphs on the common n-element vertex set V , for

n � 4. If they do not contain 3 pairwise crossing pairs, then

∑
i�4

e(Gi) � 2

(
n

2

)
+ 2

⌊
n2

4

⌋
. (2.3)

Further, for n > 7, equality holds in (2.3) if and only if their union G1,2,3,4 is isomorphic (up

to permuting the colours) to B(X,X) with ||X| − |X|| � 1.
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For n = 4, 5, 6 there are other extremal configurations: for example, one can add all the

four colours to every edge of the 3-partite Turán graph Tn,3. The case n = 7 remains open

(concerning the uniqueness of extremal configurations).

Again, Theorem 2.2 is strongly related to a structure theorem, the strongest result in

this paper.

Theorem 2.3. There exists a γ4 > 0 such that the following holds. Let G1, . . . , G4 be four

graphs on the common n-element vertex set V , and let G = G1,2,3,4. Suppose that they do not

contain three pairwise crossing pairs and

degG(x) > (3 − γ4)n

holds for every vertex x ∈ V . Then G1,2,3,4 is a submultigraph of some B(X,X) (up to

permuting the colours 1, 2, 3, 4).

We prove this theorem with γ4 = 1/5. It can probably be sharpened. However, we

cannot take a γ4 > 1/3 as shown by the coloured multigraph 4Tn,3. If we colour each edge

of the 3-partite Turán graph by all the 4 colours we get an example with δ = 4�2n/3�.

3. Extremal noncrossing graphs

In this section we prove some lemmas, and then Theorem 2.2. As in [5], we first investigate

the 4-element subsets of V .

Lemma 3.1. Let G = G1,2,3,4 be a coloured multigraph without 3 pairwise crossing pairs.

Suppose that n = 4, V = {a, b, c, d}. Then:

(i) e(G) � 20, with equality if V can be split into two pairs, V = X ∪ X, so that the 4

edges of the complete bipartite graph K(X,X) (in fact it is a C4) belong to all the four

graphs; however, X and X do not belong to the same E(Gi),

(ii) if e(G) = 19, then G is obtained from the above example by deleting an edge,

(iii) if µ(ac) + µ(ad) + µ(bc) + µ(bd) � 14 then ab and cd get different colours,

(iv) e(G1) + e(G2) + e(G3) � 15.

Proof. There are only finitely many configurations to check. A quick way to do it is as

follows. Consider the 3 perfect matchings of V = {a, b, c, d}, M1 = {ab, cd},M2 = {ac, bd}
and M3 = {ad, bc} and arrange the 24 possible edges of G into a 4 × 3 array of ‘cells’.

Namely, the cell in the ith row and the jth column contains the intersection E(Gi) ∩ Mj . A

cell is called full if it contains 2 edges, otherwise it is incomplete. In this setting 3 crossing

pairs correspond to 3 full cells in different rows and columns.

A very special case of Frobenius’s theorem (in other words, the König–Egerváry

theorem) states that if there are no 3 such cells, then all the full cells can be covered by 2

rows or 2 columns or by 1 column and 1 row. (We use these deep theorems only to make

the proof more transparent: for 4 vertices we do not really need this heavy artillery.)

Suppose e(G) � 19. Since e(G) is the sum of the number of the edges in the 12 cells,

there must be at least seven full cells. By the Frobenius theorem, they are in 2 columns.
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Figure 3. The matching table

So we may assume that all the four cells in the third column are incomplete. We have

arrived at the structure of G claimed in (i) and (ii).

Concerning (iii), to get the 14 edges, the columns of M2 and M3 must contain at least 6

full cells. Then the Frobenius theorem gives that the first column, M1, has only incomplete

cells. This is exactly the assertion of (iii).

Finally, the proof of (iv) is similar to the proof of (i), but simpler.

We will frequently use the following obvious estimate for the degrees in a set of vertices

U ⊂ V . (In fact it is an identity, but we use it as an upper bound.)

∑
u∈U

deg(u) � 2 × e(U) +
∑

x∈V\U

(∑
u∈U

µ(xu)

)
. (3.1)

The type of a triangle (triple) {a, b, c} is the list of the multiplicities of its pairs,

(µ(ab), µ(bc), µ(ca)). (Note that these triangles have nothing to do with our 3-uniform

hypergraphs: this section is about graphs, not hypergraphs.)

Lemma 3.2. Let G = G1,2,3,4 be a coloured multigraph without 3 pairwise crossing pairs.

Suppose that δ(G) > (8/3)n. Then G has no triangle of types (4, 4, 4), (4, 4, 3), (4, 3, 3).

Proof. Suppose that µ(ab) = µ(bc) = µ(ca) = 4. Consider an x ∈ V \ {a, b, c}. Then abcx

contains at most 20 edges (by Lemma 3.1(i)), so µ(ax) + µ(bx) + µ(cx) � 8. Adding up

these inequalities for every x (more exactly, applying (3.1) to U = {a, b, c}), we obtain

deg(a) + deg(b) + deg(c) � 2 × 12 + 8(n − 3) = 8n.

This contradicts our condition δ(G) > (8/3)n. So from now on, we may suppose that there

is no triangle of type (4, 4, 4).

Suppose that µ(ab) = µ(ac) = 4, µ(bc) = 3. Consider V \ {a, b, c} and classify its vertices

according to their sum of multiplicities:

V�7 := {x ∈ V \ {a, b, c} : µ(ax) + µ(bx) + µ(cx) � 7},
V�8 := {x ∈ V \ {a, b, c} : µ(ax) + µ(bx) + µ(cx) � 8}.
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If x ∈ V�8 then {a, b, c, x} contains at least 19 edges. So Lemma 3.1(ii) gives that the edges

of multiplicities 4 are contained in the 4-cycle a–b–x–c–a. Thus the colours of ax and bc

are distinct. Hence µ(ax) + µ(bc) � 4, implying µ(ax) � 1. Thus

deg(a) � 8 + 4|V�7| + |V�8|. (3.2)

This inequality, together with the lower bound on δ(G), implies that |V�7| is large.

However, then there are too few edges going to {a, b, c}, a contradiction. More formally,

Lemma 3.1(i) implies that µ(ax) + µ(bx) + µ(cx) � 9. Apply (3.1) to U = {a, b, c}:

deg(a) + deg(b) + deg(c) � 2 × 11 + 7|V�7| + 9|V�8|. (3.3)

Adding the double of (3.2) to the triple of (3.3) and using |V�7| + |V�8| = n − 3, we get

11 × (8/3)n < 5 deg(a) + 3 deg(b) + 3 deg(c) � 82 + 29(|V�7| + |V�8|) < 29n.

This contradiction implies that there is no triangle of type (4, 4, 3) either.

Finally, suppose that µ(ac) = µ(bc) = 3, µ(ab) = 4. We show that µ(ax) + µ(bx) +

µ(cx) � 8 for every x ∈ V \ {a, b, c}. Consider an x ∈ V \ {a, b, c}. Suppose that µ(ax) +

µ(bx) + µ(cx) � 9. Then Lemma 3.1(ii) can be applied. Thus there are (exactly) 3 edges

of multiplicities 4 in {a, b, c, x} forming a path; ab could not be its middle edge, so the

path is, say, a–b–x–c. Then the triangle bxc is of type (4, 4, 3), contradicting our earlier

observations. Apply (3.1) to U = {a, b, c}:

3δ(G) � deg(a) + deg(b) + deg(c) � 2 × 10 + 8(n − 3) = 8n − 4.

This contradicts our condition δ(G) > (8/3)n, completing the proof of Lemma 3.2.

Define

f(n) := 2

(
n

2

)
+ 2

⌊
n2

4

⌋
.

Let Mn be a multigraph obtained by taking four times the edges of a complete bipartite

graph K(X,X) on n vertices with an equipartition (X,X) and by taking the other edges

of Kn twice. Obviously, e(Mn) = f(n).

Lemma 3.3. Let M be a multigraph with maximum edge-multiplicity at most 4. If M has

no triangle of types (4, 4, 4), (4, 4, 3), (4, 3, 3), then e(M) � f(n). Here equality holds only if

M ≡ Mn.

This is the part where we do not use colours.

Proof. We just copy the proof of the Turán–Mantel theorem using induction from n − 2

to n. The cases n = 1, 2, 3 are obvious.

If there is no edge of multiplicity 4, then e(M) � 3
(
n
2

)
� f(n) (for n � 3) and we are

done. Now suppose that µ(ab) = 4 and let A := {x : µ(bx) � 3} and B := {y : µ(ay) � 3}.
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Our condition implies that A ∩ B = ∅, thus

deg(a) + deg(b) � 4|A| + 2(n − 1 − |A|) + 4|B| + 2(n − 1 − |B|)
= 4n − 4 + 2(|A| + |B|) � 6n − 4. (3.4)

Use induction for M \ {a, b}. We have

e(M) = e(M \ {a, b}) + deg(a) + deg(b) − 4 � f(n − 2) + 6n − 8 = f(n).

If equality holds here then it holds in (3.4) too. This implies that A ∪ B = V (M) and every

edge of the form bx with x ∈ A has multiplicity 4. Thus every edge in A has multiplicity

at most 2. The same holds for B, implying

e(M) � 2

(
|A|
2

)
+ 2

(
|B|
2

)
+ 4|A||B| � f(n).

In the case of equality every A–B edge must have multiplicity four, thus M is isomorphic

to Mn.

Proof of Theorem 2.2. Let e(n) be the maximum of e(G), where G := G1,2,3,4. We prove

by induction that e(n) = f(n) for every n � 4. By Lemma 3.1(i) we have e(4) = 20.

A standard averaging argument shows that the sequence e(n)/
(
n
2

)
is monotone decreasing

(non-increasing). This gives that e(5) �
(
5
2

)
e(4)/

(
4
2

)
= 33.33 . . . . We claim that e(5) = 32.

Suppose, on the contrary, that V = {a, b, c, d, e} and e(G) = 33 with no three crossing

pairs. Since e(4) = 20, we have that every degree of G is at least 33 − e(4) = 13, so the

degree sequence of G is (13, 13, 13, 13, 14). Thus every four-element subset of V contains

at least 19 edges. Then Lemma 3.1(ii) implies that every four-element set X ⊂ V contains

a unique disjoint pair of edges P1(X), P2(X) with total multiplicities at most 4. Suppose

that µ(P1) � µ(P2). Suppose that P1(X) = {a, b} for X = {a, b, c, d} with µ(ab) := µ � 2.

Consider the sets X = V \ {c}, V \ {d}, and V \ {e}, we get that P2(X) = de, ce, and cd,

respectively. We get µ(de), µ(ce), and µ(cd) � 4 − µ. Hence e(G) � µ + 3(4 − µ) + 6 × 4 =

36 − 2µ. This is at most 32 for µ = 2, a contradiction. So the last case to consider is when

µ(P1(X)) � 1 for every X. In this case every X ⊂ V , |X| = 4 contains a unique pair with

multiplicity at most 1. However, this is impossible.

From now on we suppose that n � 6 and that e(G) is maximal, i.e., e(G) = e(n). Consider,

first, the case when G has no triangle of types (4, 4, 4), (4, 4, 3), (4, 3, 3). Then Lemma 3.3

implies that e(G) � f(n) and in case of equality the edges of multiplicity 4 form a complete

bipartite graph. Then Lemma 3.1(i) implies that G is isomorphic to a B(X,X).

Consider the other case, when G has a triangle of edge-multiplicities at least 4, 3 and 3.

Lemma 3.2 gives that there exists a vertex x of small degree

deg(x) �
⌊

8

3
n

⌋
� 2n − 2 + 2

⌊
n

2

⌋
. (3.5)

Applying induction to G \ {x}, we have

e(G) � e(n − 1) + deg(x) � f(n − 1) + 2(n − 1) + 2

⌊
n

2

⌋
= f(n), (3.6)

completing the proof of e(n) = f(n).
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Now suppose that e(G) = e(n) and n � 8. For n � 10 and n = 8 inequality (3.5) is sharp,

so (3.6) gives e(G) < f(n). Thus, in these cases e(G) = e(n) implies that G is isomorphic to

a B(X,X).

Finally, when n = 9, e(G) = e(n), δ(G) = 2(n − 1) + 2�n/2� = (8/3)n we can return to

the proof of Lemma 3.2. One can sharpen it in the following way: if δ(G) = (8/3)n and

it contains a triangle of types (4,� 3,� 3), then G is isomorphic to 4Tn,3. The details are

omitted.

4. The structure of 4 noncrossing graphs

In this section we first prove two lemmas, and then Theorem 2.3.

Lemma 4.1. Let G = G1,2,3,4 be a coloured multigraph without 3 pairwise crossing pairs. If

n � 5 then there is an edge of multiplicity at most 2.

Proof. There are only finitely many configurations to check. A quick way to do it is as

follows. Suppose, on the contrary, that every pair has multiplicity at least 3. We may also

suppose that each edge has multiplicity exactly 3 (if not, delete some extra multiplicities)

and that n = 5, V = {a, b, c, d, e}. Consider the restriction of G to {a, b, c, d} and the 4 × 3

cells we can form from its homogeneous matchings (i.e., on both of its edges the set of

colours is the same). (See Figure 3.) The number of the edges in a column is the sum

of the multiplicities of the two corresponding edges, so each column contains exactly 6

edges. Thus each column contains at least two full cells. As we have seen, the Frobenius

theorem implies that the full cells can be covered by 2 rows; two columns or a column

and a row would not suffice. The possibility of an empty cell is also excluded. Thus in two

rows we have the 6 full cells and in the other two rows we have 1 edge in each cell. Then

two of the Gis are K4s, a third one is a triangle, and the fourth is the complementary

star of 3 edges. We have, e.g., that all the 6 edges of the K4 generated by {a, b, c, d} have

colours 1 and 2, and ab, ac, bc have colour 3 and ad, bd, cd have colour 4.

Consider abce. Its colours form the same structure that we have seen on abcd. The

triangle abc has colours 1, 2 and 3, so ae, be, ce must form a star of colour 4. Then, in

abde the edges ad, db, be and ea have colour 4, but ab does not, contradicting the fact

that each colour class is a K4, a triangle, or a star of 3 edges.

Lemma 4.2. Let G = G1,2,3,4 be a coloured multigraph without 3 pairwise crossing pairs.

Suppose that δ(G) > (11n − 8)/4. If G has no triangle of type (4, 4, 3) or (4, 3, 3), then it

also has no triangle of type (3, 3, 3).

Proof. Suppose that µ(ab) = µ(ac) = µ(bc) = 3. If for all x ∈ V \ {a, b, c} we have µ(ax) +

µ(bx) + µ(cx) � 8, then (3.1) leads to

3δ(G) � deg(a) + deg(b) + deg(c) � 8n − 6,

a contradiction.
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So there exists a vertex d joined with at least 9 edges to abc. If µ(ad) = 4, then consider

the abd triangle. Our condition implies that its third side, bd has multiplicity at most 2.

Considering acd we obtain µ(cd) � 2. Thus µ(ad) + µ(bd) + µ(cd) � 8, a contradiction.

Thus µ(ad) � 3, implying µ(ad) = µ(bd) = µ(cd) = 3. Now we repeat the above argu-

ment. If every x ∈ V \ {a, b, c, d} is joined to abcd by at most 11 edges, then applying (3.1)

to U = {a, b, c, d} we get the contradiction

11n − 8 < 4δ(G) � deg(a) + deg(b) + deg(c) + deg(d)

� 2 × 18 + 11(n − 4) = 11n − 8.

Thus there exists an e ∈ V with µ(ae) + µ(be) + µ(ce) + µ(de) � 12. Our condition implies

again that the multiplicities of these edges are 3. So all edges of abcde have multiplicities

exactly 3. However, this contradicts Lemma 4.1, completing the proof of Lemma 4.2.

Proof of Theorem 2.3. Let G3,4 be the graph formed by the edges with multiplicities 3

and 4. Let d(i)(x) be the number of pairs xy with multiplicities i (in G) and d3,4(x) :=

d(3)(x) + d(4)(x). In this proof we abbreviate degG(x) to deg(x). For any x we have

deg(x) =
∑
i�4

id(i)(x)

� 4(d(4)(x) + d(3)(x)) + 2(d(2)(x) + d(1)(x) + d(0)(x))

= 2d3,4(x) + 2(n − 1).

Thus

d3,4(x) � 1

2
deg(x) − (n − 1) >

1 − γ4

2
n � 2

5
n. (4.1)

Here in the last step we used that γ4 = 1/5.

Lemmas 3.2 and 4.2 give that G3,4 is triangle-free, and (4.1) gives that its minimum

degree exceeds 2n/5. Then the result of Andrásfai, Erdős and T. Sós [1], i.e., (1.3) can be

applied. Hence this graph is bipartite.

Let X,X be the parts of the bipartite graph G3,4. We may suppose that |X| � n/2. Then

(4.1) gives

1

2
δ(G) − n < |X| � n

2
� |X| < 2n − 1

2
δ(G). (4.2)

Let Q be the induced subgraph G2[X], the subgraph induced by the edges of multiplicity

2 in X. We claim that this graph is connected; moreover, it has diameter 2.

Claim 4.3. For every a, b ∈ X there exists a vertex x ∈ X with ax, bx ∈ E(Q).

Proof. Let

N := {c : c ∈ X, µ(ac) + µ(bc) = 4}.
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Apply (3.1) to U = {a, b}:

2δ(G) � deg(a) + deg(b) � 2 × 2 + 3(|X| − 2) + |N| + 8|X|
< 3(|X| + |X|) + 5|X| + |N| � 5.5n + |N|.

Then δ(G) > (11/4)n implies that N �= ∅.

Claim 4.4. Suppose that a, b, c ∈ X and suppose that ab has colours 1 and 2. Then bc

cannot have colour 3 (or colour 4).

Proof. Suppose on the contrary, that bc has colour 3, and let

N := {x : x ∈ X, µ(ax) + µ(bx) + µ(cx) � 11}.

Apply (3.1) to U = {a, b, c}:

deg(a) + deg(b) + deg(c) � 2 × 6 + 6(|X| − 3) + 12|N| + 10(|X| − |N|)
= 6n + 2|N| + 4|X| − 6. (4.3)

Now δ > (8/3)n and |X| � n/2 imply that |N| > 3. Fix a vertex x ∈ N and let y be another

arbitrary vertex in N. We have

µ(ax) + µ(bx) = (µ(ax) + µ(bx) + µ(cx)) − µ(cx) � 11 − 4 = 7,

and similarly, µ(ay) + µ(by) � 7. Apply Lemma 3.1(iii) to the a–x–b–y–a cycle. It gives

that the colours of xy are different from the colours of ab. Similarly, we get that

µ(xb) + µ(xc) � 7, and also µ(yb) + µ(yc) � 7. Applying Lemma 3.1(iii) again to x–b–y–

c–x, we obtain that the colours of xy are different from the colours of bc, too. Thus xy

can have at most one colour. We obtain

deg(x) � 4|X| + (|N| − 1) + 2(|X| − |N|) < 2n + 2|X| − |N|.

Adding the double of this to (4.3) we get

5δ(G) � 2 deg(x) + deg(a) + deg(b) + deg(c)

< 2(2n + 2|X| − |N|) + 6n + 2|N| + 4|X| = 14n.

This contradicts δ > (14/5)n, completing the proof of Claim 4.4.

By Claim 4.3 Q is connected, so the above Claim 4.4 implies that it is homogeneous,

i.e., all of its edges get the same pair of colours, say colours 1 and 2. Then the claim also

implies that all pairs of G[X] can have only colours 1 and 2.

The only thing left to show is that the edges of G[X] do not have colour 1 (or 2).

Suppose on the contrary that x, y ∈ X and xy has colour 1. Consider

N := {a : a ∈ X, µ(ax) + µ(ay) � 7}.

Apply (3.1) to U = {x, y}:

deg(x) + deg(y) � 4|X| − 4 + 6|X| + 2|N| < 4n + 2|X| + 2|N|. (4.4)
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Then the upper bound (4.2) on |X| implies that |N| > 3
2
δ(G) − 4n, so |N| > n/5 � 2.

Fix a vertex a ∈ N and apply Lemma 3.1(iii) to a–x–b–y–a with b ∈ N. We get that ab

cannot have colour 1, so it has only at most one colour (namely 2). Thus

deg(a) � 4|X| + 2|X| − 2 − (|N| − 1) < 2n + 2|X| − |N|.

Adding the double of this to (4.4), we get the contradiction

4δ(G) � 2 deg(a) + deg(x) + deg(y) < 8n + 2(|X| + |X|) + 2|X| � 11n. �

5. The structure of Fano-free triple systems

In this section we prove Theorem 1.2 and then Theorem 1.1.

To avoid the use of o(1), o(n), we define γ2, γ5, γ6, γ7 and n2, . . . , n7. Each of these

γi = γ(γ1, . . . , γi−1) and ni = n(γi) are explicitly computable so that γi → 0 whenever all

previous γj → 0.

Proof of Theorem 1.2. Let V be the set of vertices of H. Add up the degrees of H for

all x ∈ V . We obtain

e(H) =
1

3

∑
x∈V

degH(x) >

(
3

4
− γ2

)(
n

3

)
.

Here the right-hand side is at least 0.7
(
n
3

)
for γ2 � 1/20. Thus (1.1) implies that H

contains a four-element set W1 := {x1, x2, x3, x4} with a complete subhypergraph K
(3)
4 on it.

Consider the link graphs G(H, xi) and restrict them to V1 := V \ W1, Li := G(H, xi)[V1],

L = L1,2,3,4. Thus we have deleted some edges corresponding to the triples meeting W1 in

at least 2 vertices, so e(Li) � degH(xi) − 3(n − 4) − 3. Altogether

e(L) =
∑
i�4

e(Li) �
∑
i�4

degH(xi) − 12(n − 4) − 12 > (3 − 5γ2)

(
|V1|
2

)
. (5.1)

Here the last inequality holds for every n > 24/γ2.

Let γ5 � γ2, say γ5 =
√

10γ2 (we suppose that γ2 is sufficiently small).

Claim 5.1. There exists a subset V2 ⊆ V1 with |V2| � (1 − γ5)n, such that

degG(x) > (3 − γ5)|V2| (5.2)

holds for every x ∈ V2, where Gi := Li[V2] and G := G1,2,3,4.

Proof. Let V 0 := V1. Define a procedure for k = 0, 1, 2 . . . to obtain the sets Vk and

graphs Lk := L[Vk] as follows. If one can find a vertex vk ∈ Vk such that

degLk (vk) � (3 − γ5)|Vk|,

then let Vk+1 := Vk \ {vk}. If no such vertex exists then the procedure stops. Suppose the

last set defined was Vp and call it V2. By (2.1) the graphs Gi do not have 3 crossing pairs,
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so Theorem 2.2 implies (for γ5 � 1/5) that∑
i�4

e(Gi) � 3

(
|V2|
2

)
+

1

2
|V2|, (5.3)

Using the notation q := |V1| (= n − 4) we obtain from (5.1) and (5.3) that

(3 − 5γ2)

(
q

2

)
<

∑
i�4

e(Li) �
∑

q�k>q−p

(3 − γ5)k + e(G)

� (3 − γ5)

((
q + 1

2

)
−

(
q − p + 1

2

))
+ 3

(
q − p

2

)
+

1

2
(q − p).

Rearranging, we get

γ5p(2q − p + 1) <
1

2
(q + 5p) + 5γ2

(
q

2

)
.

This gives for n > n0(γ2) that γ5pq < 5γ2q
2, i.e., p < (5γ2/γ5)q = 1

2
γ5q. This implies |V2| =

q − p > (1 − γ5)(q + 4) = (1 − γ5)n for n > 10/γ2.

By (5.2) we can apply Theorem 2.3 to G. We obtain the disjoint sets X and X such that

G ⊆ B(X,X). We also have, as in (4.2), that

1 − γ5

2
|V2| � |X|, |X| � 1 + γ5

2
|V2|. (5.4)

Without loss of generality we may suppose that X contains only edges of colours 1 and

2 (that is, no edges of either G3 or G4), while G[X] has edges only of colours 3 and 4.

Let Q be the graph on X formed by the edges of G with two colours. We claim that

for every x ∈ X

degQ(x) > (1 − 5γ5)|X|. (5.5)

Indeed, we have a lower bound (5.2) for degG(x). On the other hand, x has exactly degQ(x)

neighbours in X joined by an edge of multiplicity 2; the other vertices of X are joined by

edges with multiplicities at most 1. Thus

(3 − γ5)(|X| + |X|) < degG(x) � 2 degQ(x) + (|X| − degQ(x)) + 4|X|.

Rearranging, we get

degQ(x) > (1 − 2γ5)|X| − (1 + γ5)(|X| − |X|).

This and ||X| − |X|| � 2γ5

1−γ5
|X| (a corollary of (5.4)) give (5.5).

We will prove that H[X] and H[X] contain almost no triples. Later we shall see that

they have no triples at all. First we show the following.

Claim 5.2. There exists a γ6 = O((γ5)
1/8) and a subset X1 ⊂ X such that |X1| > (1 − γ6)n/2

and H has at most γ6n
3 triples in X1.

Proof. Let k := �1/
√

5γ5�. Let Y ⊂ X, |Y | � 5kγ5|X| and consider Q[Y ]. Inequality (5.5)

implies that every vertex of Q[Y ] has degree at least |Y | − 5γ5|X| � k−1
k

|Y |. This implies
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(say, via Turán’s theorem) that Y contains a k-set U1 ⊂ Y inducing a complete subgraph

of Q. Applying this to another Y disjoint from U1, we get U2. Iterating this procedure

one can cover a ‘large’ part of X by disjoint k-sets U1, . . . , Um such that, for X1 = ∪i�mUi,

we have |X − X1| � 5kγ5|X|. Moreover, the complete graphs K[U1], K[U2], . . . , K[Um] are

all subgraphs of Q.

Let 1 � a < b < c � m and consider H[Ua,Ub,Uc], the set of hyperedges of H meeting

all Ua, Ub and Uc in 1 element. According to our earlier observation (2.2) we have that

this hypergraph is K (3)(2, 2, 2)-free. We can apply Erdős’s theorem to it, i.e., (1.2) implies

that

e(H[Ua,Ub,Uc]) � O(k11/4).

Altogether we have that

e(H[X1]) =
∑

1�a<b<c�m

e(H[Ua,Ub,Uc]) +
∑

1�a<b�m

e(H[Ua,Ua,Ub]) +
∑
a

e(H[Ua])

�
(
m

3

)
O(k11/4) + m(m − 1)

(
k

2

)
k + m

(
k

3

)

= O(|X1|3/k1/4) = O(n3γ
1/8
5 ).

A procedure (similar to the one leading to (5.2) and to Claim 5.1, but here we have to

delete vertices of ‘large’ degrees) gives the following.

Claim 5.3. There exists a γ7 = O((γ6)
1/2) and a subset X2 ⊂ X1 such that |X2| > (1 −

γ7)n/2 and for every x ∈ X2 the degree of x in H[X2] is at most γ7n
2.

Claim 5.4. X2 contains no triple from H.

Proof. Suppose, on the contrary, that {y1, y2, y3} ∈ H, y1, y2, y3 ∈ X2. Consider the link

graphs Li := G(H, yi), and let Gi be the restriction of Li to V \ X2.

Let Z be an arbitrary 4-tuple of vertices in V \ X2. Consider G1[Z], G2[Z] and G3[Z].

These 3 graphs do not contain 3 pairwise crossing pairs, by (2.1). Then Lemma 3.1(iv)

implies that e(G1[Z]) + e(G2[Z]) + e(G3[Z]) � 15 instead of the maximum possible 3 ×(
4
2

)
. There are

(
n−|X2|−2

2

)
4-tuples Z ⊂ X2 containing any edge, hence(

n − |X2| − 2

2

)
×

(
e(G1) + e(G2) + e(G3)

)
=

∑
Z⊆V\X2

(
e(G1[Z]) + e(G2[Z]) + e(G3[Z])

)

� 15 ×
(
n − |X2|

4

)
.

Therefore

e(G1) + e(G2) + e(G3) � 5

2
×

(
n − |X2|

2

)
.
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There are at most (|X2| − 1)(n − |X2|) edges of Li joining X2 to its complement. By

Claim 5.3 we also have that Li has at most γ7n
2 edges in X2. Altogether we get

degH(y1) + degH(y2) + degH(y3) < 3γ7n
2 + 3|X2|(n − |X2|) +

5

2

(
n − |X2|

2

)
.

Here the right-hand side is at most
(

17
16

+ O(γ7)
)
n2 (because |X2| > (1 − γ7)

n
2
), while for the

left-hand side we have the lower bound condition 3 ×
(

3
8

+ O(γ2)
)
n2. This contradiction

verifies our claim, that X2 contains no hyperedges.

Analogously, there exists an X3 ⊆ X containing no hyperedges such that |X3| > (1 −
γ7)

n
2
.

Claim 5.5. For an arbitrary x �∈ (X2 ∪ X3) consider the linkgraph L := G(H, x). Either

L[X2] or L[X3] contains no edge.

If, say, L[X2] has no edge, then we can add x to X3 and continue applying Claim 5.5

until no vertex is left. This claim will complete the proof of Theorem 1.2.

Proof. Suppose, on the contrary, that L has edges in both X2 and X3. Since e(L) >

( 3
4

− γ2)
(
n
2

)
and there are at most O(γ7n

2) edges of L not contained in X2 ∪ X3 and, further,

there are at most n2/4 edges meeting both X2 and X3, we obtain that there are at least

1

2

((
3

4
− γ2

)(
n

2

)
− O(γ7n

2) − 1

4
n2

)
=

(
1

16
− O(γ7)

)
n2

edges contained in one of the sides, say in X3. Then L[X3] also contains a matching

a1b1, a2b2, . . . , ambm of size

m >

(
1

8
− O(γ7)

)
n.

Let cdx ∈ H, c, d ∈ X2. Consider the three-element sets meeting cd and two of the

matching edges, aibi, ajbj . If all of these 8 triples belong to H, then by (2.2) one can

extend to a Fano plane the triples xcd, xaibi, xajbj . In fact, not more than 6 of these 8

triples can belong to H. Thus at least 2
(
m
2

)
such triples are missing from H, specifically

missing from those containing c or d. We obtain

2 ×
(

3

4
− γ2

)(
n

2

)
< degH(c) + degH(d) < 2 ×

((
n

2

)
−

(
|X2| − 1

2

))
− 2

(
m

2

)
.

Here the right-hand side is at most 2 ×
(

47
64

)(
n
2

)
+ O(γ7)n

2, a contradiction if γ7 is sufficiently

small.

Since γ2 = O(γ2
5) = O(γ2×8

6 ) = O(γ2×8×2
7 ), Theorem 1.2 is true for all sufficiently small γ2

(and n > n0(γ2)).
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Proof of Theorem 1.1. Knowing Theorem 1.2, it is a standard calculation. Let g(n) :=

e(Hn) =
(
n
3

)
−

(�n/2�
3

)
−

(�n/2�
3

)
. First, we prove by induction that, for every n,

ex3(n,F) � g(n) +

(
n2

3

)
. (5.6)

(Here n2 is a constant from Theorem 1.2.) Indeed, this inequality obviously holds for

n � n2. For n > n2 suppose that e(H) = ex3(n,F). If min deg(H) > ( 3
4

− γ2)
(
n
2

)
then we

can apply Theorem 1.2. In this case H is 2-colourable, and e(H) � g(n). Otherwise, there

exists a vertex x of small degree:

degH(x) �
(

3

4
− γ2

)(
n

2

)
< g(n) − g(n − 1) =

3

4

(
n

2

)
+ O(n).

Applying induction to e(H \ {x}), we get

e(H) � g(n − 1) +

(
n2

3

)
+ degH(x) � g(n) +

(
n2

3

)
,

verifying (5.6) for all n.

Now suppose that n > n1, where n1 = (n2)
2/γ2. If min deg(H) > ( 3

4
− γ2)

(
n
2

)
then, as we

have seen, Theorem 1.2 completes the proof. Otherwise, there exists a vertex x of small

degree:

degH(x) �
(

3

4
− γ2

)(
n

2

)
.

Applying (5.6) to e(H \ {x}), we get

e(H) � g(n − 1) +

(
n2

3

)
+ degH(x)

� g(n − 1) +

(
n2

3

)
+

(
3

4
− γ2

)(
n

2

)
< g(n − 1) +

3

4

(
n

2

)
< g(n).

Thus the extremal H is 2-colourable.
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[5] de Caen, D. and Füredi, Z. (2000) The maximum size of 3-uniform hypergraphs not containing

a Fano plane. J. Combin. Theory Ser. B 78 274–276.

https://doi.org/10.1017/S0963548305006784 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548305006784
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