The 9-point circle touches the incircle and the escribed circles

Zoltán Füredi*

Department of Mathematics, University of Illinois at Urbana-Champaign and Rényi Institute of Mathematics, Hungarian Academy of Sciences

z-furedi@math.uiuc.edu and furedi@renyi.hu

Using inversion we give a short proof for the above theorem of Feuerbach.

Standard notations. Let Δ be a triangle with vertices A, B, C. The side lengths are a = |BC|, b = |AC|, c = |AB|; the lines determined by the sides are ℓ_a , ℓ_b and ℓ_c ; the midpoints of the sides AB, BC, and CA are H_c , H_a , and H_b ; the semiperimeter is s. Let C_0 be the incircle (the inscribed circle) of Δ , it touches a at A_0 . Let C_a be the escribed circle touching the side a at A_1 , by definition it also touches ℓ_b and ℓ_c . In this note we define the **9-point circle** C_F as the circle thru H_a , H_b , H_c .

The fourth tangent line. The disjoint disks C_0 and C_a have four common tangents, namely ℓ_a , ℓ_b , ℓ_c and a line ℓ'_a which is the mirror image of the line ℓ_a to the angle bisector f going thru A and the centers of the circles. Let B' and C' on ℓ'_a be the images of B and C mirrored to f.

The inversion. Knowing that two tangents from any point to any circle have equal lengths it is easy to calculate that $|CA_0| = s - c$ and that $|BA_1| = s - c$. Thus the length of the segment A_0A_1 is |a - 2(s - c)| = |c - b|, and its midpoint is H_a . Let \mathcal{K} be the circle with center H_a and diameter A_0A_1 . To avoid vacuous statements we suppose that $b \neq c$. Consider the inversion i to the circle \mathcal{K} . We have $i(A_0) = A_0$, $i(A_1) = A_1$, $i(\ell_a) = \ell_a$.

Claim.
$$i(\mathcal{C}_0) = \mathcal{C}_0, i(\mathcal{C}_a) = \mathcal{C}_a \text{ and } i(\ell'_a) = \mathcal{C}_F.$$

Proof. The inversion keeps tangency so $i(\mathcal{C}_0)$ is a circle touching $i(\ell_a) = \ell_a$ at $i(A_0) = A_0$. We obtain that the image of \mathcal{C}_0 is itself. Similarly, $i(\mathcal{C}_a) = \mathcal{C}_a$, too.

To prove that $i(\ell'_a)$ is the 9-point circle it is enough to show that $i(\mathcal{C}_F) = \ell'_a$. Since \mathcal{C}_F goes thru the center of the inversion its image is a line. We only need that the images of H_b and H_c lie on ℓ'_a . Consider H_b , the case of H_c is similar. Let X be the intersection point of the lines H_aH_b and ℓ'_a . Considering the similar triangles B'AC' and $B'H_bX$ we obtain

$$|H_bX| = |AC'| \frac{|H_bB'|}{|AB'|} = |AC'| \frac{|AB'| - |AH_b|}{|AB'|} = b \frac{c - b/2}{c}.$$

If c - b/2 is negative, then X is outside the segment $[H_b H_a]$. We obtain $|H_b X| < c/2$ so X

^{*}Research supported in part by the Hungarian National Science Foundation under grants OTKA T 032452, T 037846 and by the National Science Foundation under grant DMS 0140692.

Version as of May 2, 2003.

2000 Mathematics Subject Classification: ???

FÜREDI: The 9-point circle touches the incircle and the escribed circles

lies on the ray $[H_aH_b]$. Moreover

$$|H_bH_a||XH_a| = |H_bH_a|(|H_bH_a| - |H_bX|) = rac{c}{2}\left(rac{c}{2} - brac{c-b/2}{c}
ight) = rac{1}{4}(c-b)^2.$$

Thus $i(H_b) = X$ and $i(H_b) \in \ell'_a$.

Finally, as ℓ'_a is a common tangent to \mathcal{C}_0 and \mathcal{C}_a its inversion image \mathcal{C}_F is touching the images of these circles. Since \mathcal{C}_a was chosen arbitrarily we get that the 9-point circle touches the incircle and all the three escribed circles.

Appendix, the properties of inversions

The inversion i to a circle C(O, r) (center O, radius r) is a bijection of $\mathbf{R}^2 \setminus \{O\}$ to itself, such that i(P) lies on the open half ray emanating from O thru P and $|OP| \times |Oi(P)| = r^2$. It is an involution, i(i(P)) = P.

- The image of a straight line ℓ thru O is itself.
- The image of ℓ with $O \notin \ell$ is a circle thru O. (More precisely, for $O \in \ell$ we have $i(\ell \setminus \{O\}) = \ell \setminus \{O\}$, and for $O \notin \ell$ the image of the line is a circle minus the point O).
 - The image of a circle \mathcal{C} with $O \in \mathcal{C}$ is a line avoiding the center.
 - The image of a circle avoiding O is another circle with homothety center O.
- The inversion keeps tangency, touching lines and circles become touching lines and circles (actually it keeps all angles).