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Abstract

A long-standing open problem in combinatorial geometry is the chromatic number of the
unit-distance graph in Rn; here points are adjacent if their distance in the ‘2 norm is 1. For n=2,
we know the answer is between 4 and 7. Little is known about other dimensions. The subgraphs
induced by the rational points have been studied with limited success in small dimensions.

We consider the analogous problem on the n-dimensional integer grid with 8xed distance
in the ‘1 norm. That is, we make two integer grid points adjacent if the sum of the absolute
di:erences in their coordinate values is r. Let the chromatic number of this graph be �(Z; r).

The main results of this paper are (i) �(Zn; 2) = 2n for all n, and (ii) (1:139)n6 �(Zn; r)6
(1=

√
2�n)(5e)n for all n and even r. We also give bounds useful for small values of n and r.

We also consider the lower and upper bounds on the n-dimensional real space with unit distance
under ‘p norm for 16p6∞.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is a famous problem to determine the chromatic number of unit distance graph
on the Euclidean real plane, i.e., G=(V; E) de8ned by V =R2 and xy∈E(G) for
x=(x1; x2) and y=(y1; y2) if and only if ‖x − y‖2 = 1, where
‖x − y‖2 =

√
(x1 − x2)2 + (y1 − y2)2. It is well known that 46�(G)67, where �(G)

is the chromatic number of G. More generally, for given integers n; p with n¿2 and
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16p6∞, we can consider graphs on n-dimensional real space under the ‘p norm.
Speci8cally, we can de8ne the graph (Rn

p; 1) with vertex set V and edge set E by

V = Rn;

xy∈E if and only if ‖x− y‖p = 1

and consider �(Rn
p; 1).

Similarly, we can de8ne (Qn
p; 1) and consider �(Qn

p; 1) for n-dimensional ratio-
nal space. Woodall [7] proved that �(Q2

2; 1)=2. Benda and Perles [1] proved that
�(Q3

2; 1)=2 and �(Q4
2; 1)=4, and Morayne [6] proved that �(Q2

p; 1)=2 for p¿3
using Fermat’s Last Theorem. See [2] for a survey.
In this paper, for given integers n; r with n¿2 and r¿1, we consider graphs

on n-dimensional integer grid under the ‘1 norm. More precisely, de8ne the graph
(Zn; r) := (Zn

1; r) with vertex set V and edge set E by

V = Zn

xy ∈ E if and only if ‖x− y‖1 = r:

We seek its chromatic number �(Zn; r).
Note that (Zn; r) is a subgraph of (Rn; r) := (Rn

1; r), and, as a graph, (Rn; r) is isomor-
phic to (Rn; 1) for all r by scaling in Rn. Hence we have �(Zn; r)6�(Rn; r)= �(Rn; 1).
For an odd number r, it is easy to prove that there is no odd cycle in (Zn; r). If

x1x2 : : : xk is an odd cycle in (Zn; r), then ‖xi−xi+1‖1 =
∑n

j=1 |xi; j−xi+1; j|= r, where

xi =(x1; x2; : : : ; xn) for 16i6k and xk+1 = x1. Hence kr=
∑k

i=1 ‖xi − xi+1‖1 ≡
∑n

j=1

x1; j+
∑n

j=1 x2; j+
∑n

j=1 x2; j+
∑n

j=1 x3; j+ · · ·+∑n
j=1 x1; j=2

∑k
i=1

∑n
j=1 xi;j ≡ 0 (mod 2),

but kr≡ 1 (mod 2) because k and r are odd. Hence, we have

Observation 1: (Zn; r) is a bipartite graph for odd r.
When r is even, determining �(Zn; r) is not trivial. The graph (Zn; r) has cliques of

order 2n such as that induced by {(0; : : : ; 0;±r=2︸︷︷︸
ith

; 0 : : : ; 0)|i=1; : : : ; n} in (Zn; r). Hence

�(Zn; r)¿2n.
In fact, �(Z2; r)= 4. The clique of size 4 gives �(Z2; r)¿4. Since �(R2; 1)64 using

a tiling by diamonds, we obtain �(Z2; r)6�(R2; r)= �(R2; 1)64 for all even r. So the
interesting question that remains is 8nding �(Zn; r) for n¿3 and even r.
Observe that (Zn; r) has two isomorphic components, one induced by {x=(x1; : : : ; xn)

| ∑ xi =even} and the other induced by {x=(x1; : : : ; xn) |
∑

xi =odd}. Call these sets
En and On, respectively. For x∈En, y∈On, it is impossible that ‖x−y‖1 = r for even
r due to parity. Hence, without loss of generality, we will 8nd the chromatic number
of the component induced by En.
In this paper, we will show the following results:

Theorem 1. �(Zn; 2)=2n for all n¿3.
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So, the lower bound for �(Zn; 2)=2n turns out to be sharp for r=2. We might hope
that this result is true for all r, but in Section 5 we will show that �(Zn; r)¿2n for all
n¿3 and even r¿4. In fact, the next two theorems show that �(Zn; r) is exponential
in n.

Theorem 2. �(Zn; r)¿�((1:139)n) for n=4q − 1, r=2q, q odd prime. Moreover,
�(Zn; r)¿�((1:139)n=2) for all n¿11 and even r¿n=2.

Theorem 3. �(Zn; r)6(1=
√
2�n)(5e)n for all n and even r.

In Section 5, we show that �(Zn; r)¿2n + 1 for all n¿3 and even r¿4, which is
better than Theorem 2 for small values of n. The next theorem gives a bound in terms
of both n and r, and is better than Theorem 3 when r is small.

Theorem 4. �(Zn; r)63rn−2 for all n¿3, even r¿4.

In the proof of the next result, we extend the ideas used in Theorem 2 thus demon-
strating how easily this method leads to lower bounds on �(Rn

p; 1) for all n and p.
Theorem 3 extends to a corresponding upper bound.

Theorem 5. (i) �((Rn
p; 1))¿1:139n for n=4q−1, q odd prime. Moreover, �(Rn

p; 1)¿
�((1:139)n=2) for all n¿11 and even r¿n=2.
(ii) �((Rn

p; 1))6
√
(p=2�n)(5(ep)1=p)n for all n, 16p¡∞.

In a recent paper [4], the authors give a new upper bound on �(Rn
p; 1); which is

independent of p and is based on a special covering of Euclidean space Rn. Recently,
Raigorodskii [8] informed us that a more careful calculation gives �((Rn

p; 1))¿ 1:365n

when p = 1.

2. Proof of Theorem 1

Consider a coloring f :En →{0; 1; : : : ; 2n− 1} de8ned by

f(x) =
n∑

i=1
ixi − 1

2

n∑
i=1

xi (mod 2n):

Consider x; y∈En with ‖x − y‖1 = 2. We want to show that f(x) − f(y)=∑n
i=1 i(xi − yi)− 1

2 (
∑n

i=1 (xi − yi)) 
=0mod 2n.
If there is i such that |xi − yi|=2, then xj − yj =0 for all j 
= i. If xi − yi =2,

then f(x) − f(y)= 2i − 1, which is between 1 and 2n − 1. If xi − yi = − 2, then
f(x)− f(y)= − 2i + 1≡ 2(n− i) + 1, which is between 1 and 2n− 1.
Otherwise, there are i; j; 16i¡j6n, such that |xi − yi|=1; |xj − yj|=1. Then we

have 4 cases.
Case (i): xi − yi =1; xj − yj =1: f(x)− f(y)= i + j − 1

2 (1 + 1)= i + j − 1, which
is between 1 and 2n− 2.



360 Z. F5uredi, J.-H. Kang / Theoretical Computer Science 319 (2004) 357–366

Case (ii): xi − yi =1; xj − yj = − 1: f(x)− f(y)= i − j − 1
2 (1− 1)≡ 2n− (j − i),

which is between n+ 1 and 2n− 1.
Case (iii): xi−yi =−1; xj−yj =1: f(x)−f(y)= − i+ j− 1

2 (−1+1)= i+ j, which
is between 1 and n− 1.
Case (iv): xi − yi =−1; xj − yj =−1: f(x) − f(y)=−i − j − 1

2 (−1 − 1)=
−i − j + 1≡ 2n− (i + j) + 1, which is between 2 and 2n− 2.

3. Proof of Theorem 2

We will use the intersection theorem in [3]:

Theorem 6 (Frankl and Wilson [3]). Let q be a prime number and F a (2q − 1)-
uniform family of subsets of a set 4q− 1 elements. If no members of F intersect in
precisely q− 1 elements, then

|F|62
(
4q− 1
q− 1

)
:

We will use Theorem 6 to construct a 8nite subgraph of (Zn; r) with small indepen-
dence number and, consequently, large chromatic number.

Lemma 7. �(Zn; r)¿(1:139)n for all n=4q− 1 and r=2q, where q is an odd prime.

Proof. Consider a subgraph Hq =(Vq; Eq) of (Z4q−1; 2q) induced by

Vq = {x = (�1; : : : ; �4q−1) ∈ {0; 1}4q−1|
n∑

i=1
�i = 2q− 1}: (1)

Note that Vq is the set of incidence vectors of the set
(

[4q−1]
2q−1

)
. Letting xA denote the

incidence vector of A∈
(

[4q−1]
2q−1

)
, observe that

‖xA − xB‖1 = 2(2q− 1− |A ∩ B|): (2)

Hence in the language of Theorem 6, xAxB ∈Eq i: |A∩B|= q−1. Thus F corresponds
to an independent set in Hq, hence

�(Hq)6 2
(
4q− 1
q− 1

)
:

Then

�(Zn; r)¿ �(Hq)

¿

(
4q−1
2q−1

)
2
(

4q−1
q−1

) =

(
4q
2q

)
(

4q
q

) =
q!(3q)!

(2q)!(2q)!
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¿
1

e1=12q

√
3
2

4

√
27
16

(
4

√
27
16

)4q−1

= �((1:139)4q−1):

For any integer N , there always exists a prime number q such that N6q¡2N . Using
this fact, it is easy to show that �(Zn; r)¿�((1:139)n=2) for all n¿11.

A similar calculation for �(Rn
2; 1) is done in the above-mentioned paper of Frankl

and Wilson.

4. Proof of Theorem 3

We will prove �(Rn; 1)6 (1=
√
2�n)(5e)n for all n and even r.

Cut Rn into regions

R(a) = {x = (x1; : : : ; xn) ∈ Rn :
(
ai − 1

2

) 1
n
6xi¡

(
ai + 1

2

) 1
n

for 16i6n} (3)

for each a=(a1; : : : ; an)∈Zn. Each region is nothing but a half-open and half-closed
cube centered at (1=n)a with each side length 1=n. Observe that (i) {R(a) : a∈Zn} is
a tiling of Rn, (ii) ‖1=na − x‖16 1

2 for all x∈R(a), and (iii) for each a∈Zn and x,
y∈R(a), we have ‖x− y‖1¡1.
De8ne an auxiliary graph H such that

V (H) = cubes = {R(a) : a ∈ Zn} and

R(a)R(a′) ∈ E(H) iff there are x ∈ R(a); y ∈ R(a′)

such that ‖x− y‖1 = 1: (4)

It is easy to see that a proper coloring of H gives a proper coloring of (Rn; 1); hence
�(Rn; 1)6�(H). We will bound �(H) from above by 1 plus its maximum degree.

Lemma 8. If R(a)R(a′)∈E(H), then ‖(1=n)a − (1=n)a′‖162.

Proof. R(a)R(a′)∈E(H) means that ‖x− y‖1 = 1 for some x∈R(a), y∈R(a′). Then
‖(1=n)a−x‖16 1

2 , ‖(1=n)a′−y‖16 1
2 . Hence triangle inequality yields ‖(1=n)a−(1=n)a′‖1

6‖(1=n)a − x‖1 + ‖x− y‖1 + ‖(1=n)a′ − y‖162, as desired.

Lemma 8 tells us that such R(a′) lies in the ball centered at R(a) of radius 5
2 . In

order to bound the maximum degree of H from above, it is enough to count the cubes
of side length 1=n in a generalized octahedron of radius 5

2 . The number of cubes is
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at most

Volume of a generalized octahedron of radius 5
2

Volume of a cube of side length 1=n

=

(
5
2

)n
2n=n!

(1=n)n

= 5n
nn

n!

¡
1√
2�n

(5e)n

by Stirling’s formula

nn

n!
6

1√
2�n

en:

5. Further results

The next two results are useful for getting non-trivial bounds on �(Zn; r) for small
values of n and r. For example, we can show that 76�(Z3; 4)612 for the smallest
values of n; r such that �(Zn; r) is unknown.

Proposition 9. �(Zn; r)¿2n+ 1 for all n¿3 and even r¿4.

Proof. We give a proof for r=4 to keep the notation simple. The proof for general
r is identical.
We begin with some de8nitions and notation.
For uv∈E(En; 4), where u; v∈Zn ⊂Rn, there can be a point w∈En lying on a

line segment from u to v in Rn. Let u=(u1; : : : ; un) and v=(v1; : : : ; vn). If |ui − vi|=
|uj − vj|=2 for some i 
= j so that ut = vt for all t 
= i; j, then a point w=(w1; : : : ; wn)
with

wt =

{ ut + vt
2

if t = i or j;

ut(= vt) otherwise
(5)

belongs to En and lies on the line segment from u to v in Rn. For each edge uv such
that |ui − vi|= |uj − vj|=2 for some i 
= j, we call such w∈V (En; 4) a halving vertex
of uv.
For a given x∈En, let P(x)= {x± 2ei | 16i6n}, where ei is the ith row of the

n× n identity matrix. The set P(x) is the set of 2n vertices of a generalized octahedron
centered at x with radius 2. As before, P(x) induces a clique of size 2n in (En; 4). We
call the edges of a generalized octahedron in Rn, sideedges to distinguish them from
edges of a graph.
When u and v are vectors expressed as sums, we write the edge uv as {u; v} for

clarity. Note that x+ ei + ej is a halving vertex of {x+ 2ei, x+ 2ej}. Furthermore, it
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is not diQcult to see that the halving vertex x + ei + ej is adjacent to all the vertices
of P(x) except x + 2ei and x + 2ej. Similarly, x + ei − ej, x − ei + ej, x − ei − ej,
respectively, are halving vertices of {x + 2ei, x − 2ej}, {x − 2ei, x + 2ej}, {x − 2ei,
x − 2ej}, respectively. Also, each of the halving vertices x + ei − ej, x − ei + ej,
x− ei − ej, respectively, is adjacent to all the vertices of P(x) except for x+ 2ei and
x− 2ej, x− 2ei and x + 2ej, x− 2ei and x− 2ej, respectively.

Lemma 10. Suppose that (En; r) is 2n-colorable, say under f with colors {1; 2; : : : ;
2n}. If w∈En is a halving vertex of uv, then f(u) 
=f(v), and f(w)∈{f(u); f(v)}.

Proof. It is immediate that f(u) 
=f(v) by the de8nition of the halving vertex. Con-
sider a generalized octahedron determined by P(x) with one side edge passing through
u,w,v. For example, if u=w+ ei + ej and v=w− ei − ej, we can take x as w+ ei − ej
or w− ei + ej. Then P(x) consumes all the 2n colors. Since w is non-adjacent only to
u and v among P(x), f(w) must be one of f(u) or f(v). This completes the proof
of the lemma.

Now, suppose that (En; 4) is 2n-colorable, say under f with colors {1; 2; : : : ; 2n}, and
consider a 8xed P(x) with x∈En. Without loss of generality, assume f(x− 2e1)= 1,
f(x + 2e1)= 2, f(x − 2e2)= 3, f(x + 2e2)= 4, f(x − 2e3)= 5, f(x + 2e3)= 6, etc.
By Lemma 10, f(x+ e1 + e2)∈{2; 4}, f(x− e1 + e2)∈{1; 4}, f(x− e1− e2)∈{1; 3},
f(x + e1 − e2)∈{2; 3}. Observe that x is a halving vertex of both {x + e1 + e2,
x − e1 − e2} and {x − e1 + e2, x + e1 − e2}. Applying Lemma 10 with w= x and
uv= {x+e1+e2; x−e1−e2}, and then with w= x and uv= {x−e1+e2; x+e1−e2}, we
have f(x)∈{1; 2; 3; 4}. By symmetry, we may assume f(x)= 1. A similar argument
with x± e2 ± e3 yields that f(x)∈{3; 4; 5; 6}, which contradicts f(x)= 1.

Recall that (En; r) and (On; r) are isomorphic induced subgraphs of (Zn; r) for even
r. Hence we have studied �(En; r) for �(Zn; r). When we say “a proper coloring for
(Zn; r)”, we will assume that the vertices of On are colored by translating the color of
En along, say, the last coordinate by one, unless some speci8c coloring is described.

Theorem 4. �(Zn; r)63rn−2 for all n¿3, even r¿4.

Proof. Let us prove the recurrence relation �(Zn; r)6r�(Zn−1; r) for all n¿4 and even
r¿4.
For s∈Z and 06i6r−1, let Hs; i be the hyperplane de8ned by Hs; i = {x∈Zn | xn =

sr + i}. Let f be an optimal coloring for (Zn−1; r), and put k = �(Zn−1; r). We ex-
tend f to a proper rk-coloring on (Zn; r) by coloring each Hs; i appropriately. The
idea is to color H0;0 by f and then translate this coloring to H0; i, for each i, along
the vector ṽ := (0; 0; : : : ; 0; 1; 1), accompanied by shifting the colors by ik. This color-
ing of the family of hyperplanes {H0; i | 06i6r − 1} is extended to all such other
families, {Hs; i | 06i6r − 1} for s∈Z by inductively translating, along the vector
ṽ, the coloring of the family of hyperplanes corresponding to s¿0 (60, respec-
tively,) to the family corresponding to s + 1 (s − 1, respectively,) along the vector
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ṽ. More precisely, for each i with 06i6(r − 1), de8ne gi on H0; i by gi(x1; : : : ;
xn−1; i)=f(x1; : : : ; xn−1 − i) + ik. Then, for s= ± 1;±2;±3; : : :, extend gi to the hy-
perplane Hs; i, inductively by gi(x1; : : : ; xn−1; sr + i)= gi(x1; : : : ; xn−1 − r; (s − 1)r + i)
when s¿0, and gi(x1; : : : ; xn−1; sr + i)= gi(x1; : : : ; xn−1 + r; (s + 1)r + i) when s¡0.
Now {gi | 06i6r − 1} is a proper rk-coloring for (Zn; r) whose vertex set Zn is⋃

06i6r−1

⋃
s∈ZHs; i. It is enough to show that gi is a proper k-coloring for the sub-

graph induced by
⋃

s∈ZHs; i for each i=0; 1; : : : ; r − 1 since ik6gi6ik + (k − 1),
that is, the values for gi and gj are disjoint for i 
= j. It is easy to see that gi is a
proper coloring on the hyperplane Hs; i for each s because gi on Hs; i is de8ned as
a translation of a proper coloring f on (Zn−1; r). So the possible neighbors with the
same color in

⋃
s∈ZHs; i of an arbitrary vertex x=(x1; : : : ; xn) of the hyperplane Hs; i

are x′ := (x1; : : : ; xn−1; (s − 1)r + i) in Hs−1; i and x′′ := (x1; : : : ; xn−1; (s + 1)r + i) in
Hs+1; i. Let us assume that s¿0. (A similar proof applies for s60.) The color gi(x)
has been de8ned inductively to equal gi(y′), where y′ := (x1; : : : ; xn−1 − r; (s− 1)r+ i),
but y′ is a neighbor of x′ in Hs−1; i, and hence gi(x′) 
= gi(y′)= gi(x). Similarly,
gi(x′′)= gi(y′′), where y′′ := (x1; : : : ; xn−1− r; sr+ i), but y′′ is a neighbor of x in Hs; i

hence gi(y′′) 
= gi(x).
The recursive upper bound just proved, along with the fact that �(Z2; r)= 4, implies

�(Zn; r)64rn−2. We get the stronger bound as stated in the theorem by the following
proposition.

Proposition 11. �(Z3; r)63r for all even r¿4.

Proof. To color (Z3; r), the idea is similar to the proof of the recurrence above. For
t ∈Z, let Ht be the plane de8ned by Ht = {x∈Z3 | x3 = t}. We just give a speci8c
coloring of the planes {Ht | t≡ 0 (mod (r=2))} and then translate, along the vector
ṽ := (0; 1; 1), these colorings to all other hyperplanes {Ht | t≡ i (mod (r=2))} for each
i with 16i6r=2 − 1, accompanied by shifting the color by i. More precisely, be-
gin by coloring the vertices x whose coordinates are all equivalent to 0 modulo r=2
with

∑3
i=1 xi=r=2≡ 0 (mod 2), i.e., for x=(r=2)x′ =(r=2)(x′1; x

′
2; x

′
3) with

∑3
i=1 x′i being

even, de8ne f0(x)=
∑3

i=1 ix′i − 1
2

∑3
i=1 x′i (mod 6). Then, using (xi −yi)=r=2= x′i −y′

i
and applying the proof of Theorem 1 with x′i − y′

i , it is easy to check that f0 is a
proper 6-coloring for the subgraph of (Z3; r) induced by such x. In the plane Ht for
each t≡ 0 (mod r

2 ), the set of vertices of this type form a diamond tiling for each
plane. Extend f0 to the whole plane Ht by 8lling each diamond with the color of
the leftmost vertex of the diamond. This yields a proper coloring for the subgraph
of (Z3; r) induced by {Ht | t≡ 0 (mod (r=2))}. For each i=1; 2; : : : ; r2 − 1, consider
the subgraph of (Z3; r) induced by {Ht | t≡ i (mod (r=2))}. We will shift the col-
oring of {Ht | t≡ 0 (mod (r=2))} to {Ht | t≡ i (mod (r=2))} as described above. That
is, for the vertex x=(x1; x2; x3)∈Ht where t≡ i (mod (r=2)), de8ne fi(x)=f0(x1;
x2− i; x3− i)+ i. Now fi is a proper 6-coloring for the subgraph induced by the planes
{Ht | t≡ i (mod (r=2))} since fi is just a translation of a proper coloring f0. Distinct
i; j; 06i; j6r=2−1, produce disjoint color classes of fi; fj; hence {fi | 06i6r=2−1}
gives a proper coloring for (Z3; r) with r=2× 6=3r colors.
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It is not possible to use the idea of the proof for (Z3; r) to give a better bound
on (Zn; r). For general n, we can construct a similar 2n-coloring f0 on the subgraph
induced by the vertices whose coordinates are all congruent to 0 modulo r=2. But such
vertices form generalized octahedrons in the hyperplane xn = t, t≡ 0 (mod (r=2)), and
generalized octahedrons are not a tiling for Zn (in fact, for Rn). That is, coloring each
piece of a generalized octahedron with the color of its leftmost colored vertex under
f0 leaves some uncolored vertices in the hyperplane.
Let us revisit the graph (Rn

p; 1) for given integers n; p with n¿2, 16p6∞,
introduced in Section 1.
It is easy to prove that �(Rn

∞; 1)=2n for all n∈N. The 2n corner points of hypercube
{(x1; : : : ; xn) | xi =0 or 1 for i=1; : : : ; n} form a clique, hence yield the lower bound,
and coloring a vertex x=(x1; : : : ; xn) with 0; 1-strings of length n by �xi� (mod 2) for
the ith digit gives us the upper bound.
The ideas similar to Theorems 2 and 3 yield the following theorem for the n-

dimensional real space with unit distance under ‘p norm for 16p¡∞.

Theorem 5. (i) �(Rn
p; 1)¿(1:139)n for n=4q−1, q odd prime. Moreover, �(Rn

p; 1)¿
�((1:139)n=2) for all n¿11 and even r¿n=2.

(ii) �((Rn
p; 1))6

√
p
2�n

(5(ep)1=p)n for all n, 16p¡∞.

Proof. (i) Note that (Rn
p; 1) is isomorphic to (Rn

p; r) for any r¿0. Hence it is enough
to prove that the value 1:139n is the lower bound of �(Rn

p;
p
√
2q).

Let Hq be the subgraph induced by the same Vq in (1). Then substituting

‖xA − xB‖pp = 2(2q− 1− |A ∩ B|) (6)

for (2) yields exactly the same argument as the proof in the Section 3 and leads to
the desired bound.
(ii) We can replace (3), (4) and Lemma 8 by

• R(a)= {x=(x1; : : : ; xn)∈Rn | (ai − 1
2 )1=

p
√
n6xi¡(ai + 1

2)1=
p
√
n for 16i6n}

• R(a)R(a′)∈E(H) i> there are x∈R(a), y∈R(a′) such that ‖x− y‖p =1

Lemma 8. If R(a)R(a′)∈E(H), ‖(1=n)a − (1=n)a′‖p62
With the same reason in the proof of Theorem 3, it is enough to count the number

of cubes R(a′) in a ball of radius 5
2 in Rn under ‘p norm, denoted by Bn

p(
5
2 ), centered

around a cube R(a).

((H)6
Volume(Bn

p(
5
2 ))

Volume(R(a))
=

(52 )
n(2)(1 + 1=p))n=)(1 + n=p)

(1= p
√
n)n

; (7)

where ) is the Gamma function;

)(x):=
∫ ∞

0
e−t tx−1 dt:
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Applying the well-known inequalities(x
e

)x √
2�x 6 )(x)6

(x
e

)x √
2�xe1=12x for x¿0

to (7) gives us the result.

For the Euclidean norm (p=2), a more careful calculation gives an upper bound of
(1=

√
�n)(5�e)n=2 for all n.
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