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Abstract

Let [n] denote the set {1,2, ...,n}, 2" the collection of all subsets of [1] and # <2/ be a
family. The maximum of |#| is studied if any r subsets have an at least s-element intersection
and there are no / subsets containing 741 common elements. We show that

|Q7|<Zf;3 (n z_ s) 4 Ll ( n=s ) + ¢ — 2 and this bound is asymptotically the best

H2-s\t+1—s
possible as n— o0 and t>2s>2, r,/>2 are fixed.
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1. Intersecting families: cylinders and Hamming balls

Let [n] denote the set {1,2,...,n} and 2" the collection of all subsets of [1], and
< [Z] ) is the set of k-element subsets of [n]. A simple theorem of Erdds et al. [6] says

that the maximum of |#| is 2"~ if every two members of a family # =2 have a
non-empty intersection. Such an % is called an intersecting family. A maximum
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intersecting family .# can be obtained by considering all the subsets containing one
fixed element. This .# sometimes is called a cylinder, or trivially intersecting, since
N #0. The above theorem was extended by Katona [12] as follows. If a set system
F on [n] is s-intersecting, i.e., any two sets in the system have intersection of size at
least s, then for n+s is even |#|<|B(n, 21(n+s))|, where B(n, >x) = {A<[n]:
|4|=x}, a Hamming ball. For the case n+s is odd one has |7 |<2|B(n—1,
>i(n+s—1))|, and the optimal family is a combination of a cylinder and a
Hamming ball. This is often the case in the theory of intersection families, especially
if one considers uniform families (where all sets have the same sizes), see, e.g.,
Ahlswede and Khachatrian’s [1] solution for the Erdés—Frankl conjecture.

In general, we say that & has the I(r,>s) property (also called r-wise
s-intersecting) if

[FinFan---nZ,|=s holds for every Fi, F», ..., F,eF (1)

and let f(n;I(r, =s)) denote the size of the largest r-wise s-intersecting family on
n elements. Taking all subsets containing a fixed s-element set (i.e., a cylinder)
shows that f'(n; I(r, =s)) =2"" holds for all n>=s5>0. One of the nicest results of the
field is due to Frankl [7] that f(n;I(r, =s)) = 2" holds if and only if n<r+ s or
s§<2" — r — 1 with the possible (but unlikely) exception of the case (r,s) = (3,4). An
excellent survey of these families is due to Frankl [§].

2. Intersecting families: codes and packings

If we have an upper bound on the intersection sizes, then the extremal families are
codes, designs, and packings. More precisely, we say that % has the I(/, <)
property if

[FinFyn---nF <t holds for every distinct Fy, F, ..., F,eF (2)

and let f(n;I1(¢, <t)) denote the size of the largest family satisfying I(/, <¢) on n
elements. A family of k-subsets of [n] with the I(¢, <t) property is called an (n, k, ¢ +
1, </ — 1) packing and its maximum size is denoted by P(n,k,t+ 1, </ — 1). More
generally, a family # <2/ is called an (n, k", j, <) packing if |F| > k holds for every
FeZ and |7 [X]|< A for every j-subset X <[n]. (Here, as usual, #[X] denotes the
family {F: X<FeZ}, Z[x] stands for Z[{x}], and deg,(x):=|Z[x]|.) The
maximum size of such a packing is denoted by P(n,kt,j, <1). Simple double
counting gives that

()
P(n7k7]7<i)<P(n,k+,]7<i)<ﬂv— (3)

J
k)'
J
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k
in the case A = 1, a Steiner system. For more details about packings see [3.4].
The existence of designs and the determination of the packing number is a very
difficult question, here we only recall a folklore result about the case j = k — 1.

If here equalities hold for # = ( ] >, then it is called an S, (n, k,j) block design, and

in—k n
_ < — <
k n (k—l)\P(n’k7k 1, <7)

Al n
<P 7k+ak_ l,gﬂv <+ . 4
( <) @)

Proof. The upper bound follows from (3). To show the lower bound we give a
construction . For every xe[n] consider #,:={Fe (@) D perf =

x (mod n))}. Tt satisfies the property that every (k — 1)-element set is contained in
at most one member of F,, so F UF,U---UF, is a decomposition of the

]

i ) into (n,k,k — 1, <1) packings. Define & as the union

complete hypergraph <

of the A largest ones among these 7 ,’s. Then |7 | >%(Z> = %¥(kn 1). O
One can see that the determination of f(n;I(/,<t)) is equivalent to the
determination of the packing function estimated in (4).

Proposition 1. Suppose that /=2, t>=1 are integers. Then
n

1

fostc<0) = S (1) 4P+ 1202,
0<i<t+1

Proof. Easy. Let % <2 be a set system with property I(/, <t). We may suppose
that all subsets of [n] with at most ¢ elements belong to % because if |X|<t, then
Z U{X} has the I(¢, <t) property. We also show that we may suppose that all
(t+ 1)-element subsets belong to #. Indeed, if Xe (I[ﬁl ), X¢7 and
F[X]|</ -2, then again # U{X} also has the I(/, <t) property. Finally, if
|7 [X]| = ¢ — 1>0, then take a member F € # [X] and replace it by X. The obtained
new family #\{F} u{X} has the I(/, <t) property, too. One can repeat this process

until all members of ( ] > belong to 7.

t+1
Then, obviously, the family 7\ Uy, <, ([’:}> isan (n;(t+2)",t+1,</ - 2)

packing. [
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Note that the above proof implies the following slightly stronger result. If & has
the I(/, <t) property on [n] and each FeZ has size at least ¢ + 1, then

7

g(“’:l)+P(n,(t+2)+,t+1,</—2). (5)

Conjecture 2. Suppose that k, j and A are positive integers. Then for sufficiently large
n, n>ny = no(k,j,A) the packing functions in (4) have the same values

P(n,k,j, <i) = P(n,k",j, <2).

3. Simultaneous restrictions

Problem. Determine f'(n; I(r, =s), I(¢, <t)), the maximal size of & <2 satisfying
both the conditions (1) and (2).

Although there were several partial results (and we will cite some of those later)
this problem was proposed in this generality only in [13]. We suppose that r,/>2,
although the cases r = 1 and / = 1 are also interesting. It was also proved in [13] that
the following asymptotic holds for fixed 7 as n— oo

S 12, 21),1(4/,<1)) = ({/ — 1)n+ o(n).

Our first result is a simple proof for a more precise version of this.

Theorem 3. If any r>2 members of F =2") have a non-empty intersection but the
intersection of any ¢ distinct members contains at most one element, then |F|<({ —
Dn, ie.,

f(n;](r, 21)7 I(/a <1)) < (/_ l)l’l
holds for every n and r,/>=2.

The proof is postponed to Section 4. There we also discuss related results, linear
(and almost linear) hypergraphs, a topic started by de Bruijn and Erdés [5], who
proved the case / = 2 of Theorem 3.

In Section 5, we give an asymptotic solution of the general problem for the case
t>=2s. More exactly, we reduce it to a packing function discussed in (4). We show
that
Theorem 4. Suppose that t=2s>2,r=2,/>2andn>ny = ny(r,s,,t). Then for r=3

f.(n;l(h 25)71(/5 <Z)) :f(n - S;I(/7 <t— S))
If r =2 then
f(nal(za >S)al(/a Sl))<f(n_s;l(/a SI—S)) +/_2
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and here equality holds if Conjecture 2 holds for (n —s,t +2 —s,t+1—5, </ — 2)-
packings and s=¢ — 1.

Then Proposition 1 and (4) imply (for r>3) that
t+1—s

n—s
f= Z;( ; )+P(n—s;(t+2—s)+,t+l—S,</—2)
=

—(l+0(l))<1+%><t+’;_s>,

and the same asymptotic result holds for r» = 2.

4. The case s=t =1

Here we prove Theorem 3. The following is a slight generalization of a result of
Motzkin [14] who proved the case ¢ = 1. In fact, the case ¢ = | implies the lemma for
all real ¢>0.

Lemma 1. Let G = G(A, B; E) be a bipartite graph with E+#0, and let ¢ be a positive
real number. Suppose that no vertex in A is adjacent to all vertices in B and that for
every pair of non-joined vertices a€ A,be B, (a,b) ¢ E one has deg(a) <cdeg(b). Then
|4|c=|B.

Proof. Let p and ¢ be positive integers satisfying p/g=c. We will show
(p/q)|A|=|B|, and since (p/q) — ¢ could be arbitrarily small and since G is finite
this will suffice to show c|4|>|B|.

Let G’ be a bipartite graph with vertices 4’ U B’ such that A’ is p copies of 4, and B’
is ¢ copies of B and if @’ € A" is a copy of ae A and b’ € B' is a copy of be B then &' is
joined to » in G’ if and only if a is joined to b in G. Then in case of (d',b')¢ E/,

degg(d) = q degg(a)<q (gdega(b)) = p degg(b) = degg (b').

Thus the conditions of the Motzkin’s lemma (the case ¢ = 1) hold for G’. This
implies |A'|>|B'|. Hence §|A|> |B| holds, as desired. [

Proof of Theorem 3. Let & be an intersecting family, with no / sets containing two
common elements. Define a bipartite graph G(A4, B; E) as follows. 4 .= [n], B =%
and xe [n] is adjacent to Fe # if xe F. If this graph has no edge then F = () for every
Fe#Z, implying |7|<1.

If there is an ae A which is adjacent to all vertices of B, then the element a is
contained in every member of % . However, there are at most / — 1 members of &
containing a pair of [n], i..,

|7 yll< =1, (6)
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where 7 [x,y] = {XeF : x,ye X}. Using this inequality for the pairs (a,y), we get
that every element y##a is contained in at most / — 1 sets of #. Thus |7 |<1+
(¢ = 1)(n—1)<(¢ — 1)n. We will show that in any other case the main constraint of
Lemma 1 holds with ¢ = ¢ — 1 (which is positive, since />2).

Let xe[n] = A and FeZ# = B be a non adjacent pair in G, i.e., x¢ F. Consider
Fx] ={XeZF : xeX}. We have |Z[x]| =deg;(x). Since & is intersecting, all
members of Z (x| intersect F, thus Z x| = U,crZ[x,y]. Then (6) implies
|7 |x]| < (¢ — 1)|F|. This means degq(x)<(/ — 1)deg,;(F). Hence Lemma 1 can be
applied to G giving (/ — l)n= (/- 1)|A|=|B| = |Z|. O

5. Proof of Theorem 4

Let

t+1—s n—s
Z;:Z ( ) )+P(n—s,(l+2—s)+7t—|—l—s,</—2).
i=0 !

One can give a family of X sets which have s common elements and satisfies
the intersection properties. Let 2’ be a packing with P(n —s,(t+2—s)",t4+1—
s, </ —2) members on the underlying set [n]\[s]. Let 2 = {PuU]s]: PeZ?'}. Let
Fo={Fc[n]:|F|<t+l;[s]cF}uZ. Hence

f(n;l(r>>s)vI(/7<Z))>‘g70|:2' (7)

For r =2 one can construct a larger family. Suppose that there is an optimal
(n—s,(t+2—5)",t+1—s, </ —2) packing consisting of only (¢ + 2 — s)-element
sets, i.e. Conjecture 2 holds for these values. Then remove [s] from % and add
min{s,/ — 1} sets of the form [n]\{i}, 1 <i<s. One can easily see that the obtained
family & is pairwise s-intersecting and satisfies the I(/, <t) property.

Let # be a family with properties (1) and (2). We have to show the other
inequality |#|<2 for r=3, and |Z|<2 + ¢ —2 for r = 2.

First, we discuss the case |n.%|>s. This means that all the members of # have s
common elements, say, [s] < F for every Fe #. Consider #' = {F\[s] : FeZ }. In 7'
the intersection of any / members has at most (¢ —s) elements, it satisfies the
property I(/, <t —s). So every t+ 1 —s elements are contained in at most 7 — 1
members of #'. Hence |7 | = |#'|<X by Proposition 1.

From now on, we suppose that |nZ|<s. Define 7 (i) .= {FeZ : |F| =i} and
F(z))=F(G)uZ(G+1)u...Wehave F = Z(1)uF (2)u ... . Trivially F (i) =
0 if i<s. The family (i) is i-uniform on [n] vertices and satisfies 7(2, >s). So
Erdés—-Ko—Rado theorem [6] says that

7 (i) < (’7_S)for n>ni,s). (8)

1— S

We use this estimate if s<i<1t.
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By (7) and (4) we can suppose that |Z| 22,’;‘8 <n ; S) + <1+tiﬁs ”;:2) X
t+1—s

|,97(>z+1)>(1+ 2 ”_’_2>( "o ) 9)

t+2—5s n—s t+1—s

( n=s > Hence (8) implies

We need an upper bound on the number of large sets. [

Lemma 2. If |[AnF|>s for every FeZ then

& N ()
eyl

7 (=k)|<

t+1—s

s t+1—s
Every ¢4 1 elements are contained in at most /—1 members of &%, and

k—s ) members of /. Hence
t+1-—s

Proof. Let M={X€<Z[Z]1>:|A0Xl>s}. Clearly |<9/|<<|A|>< e )

every FeZ(=k) contains at least (

k—s
Va —
|f<>k>|(t+1_s)<&/|<f . O
. . k k—s . S
Since ¢>2s>2 the fraction P / ftl—s) 8 arbitrarily small for all

sufficiently large k>ko. For example, for k> ko(t,s) = 45> + 61> we get

k

<s> 2t 1

k—s N\ k "3
(H—l—s)

Split #(=t+1) into two parts, YUF(=ky), ie, 9=F+1)vF(t+
2)u - UF (ko — 1). We are going to give an upper bound on the size of the family
F (=ko). If it is non-empty, then choose Fye # (= k() with the minimum size among
its members, i.e., |F|>|Fy| for every F e 7 (=ky). Denote the size of Fy by f;. We can
use Fy as 4 in Lemma 2. We obtain

(7) _

/. o \s/) ([ n-s B /-1 n—s

J(>k0)|—|</’(>f0)|<( Jo—s )(t—l—l—s)(/ < 3t (l—l—l—s)'
I+1—s
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Comparing this to (9) we get (for n> k) that

(/-2 n—t—-2 (-1 n—s
9= 17 o+ D] - 7l 1+ “S( )

t+2—s5s n—s 3t t+1—s

/-1 n—s
>— . 10
3t (t+1—s> (10)

Proposition 5. |[n¥| =s.

Proof. If |n%|<s — 1, then there is a set A <=[n|, |4| <3ko such that [AnG|=s+ 1
for every Ge%. Indeed, either there is an 4€% meeting all other members of ¥
in at least s+ 1 elements, or we can find Gj,G,e% with |GinG,| =s. Then
there exists a G3e€% not containing Gy G,. Thus |GG, Gs|<s— 1. Then
G1 U Gy U Gy is suitable for A. The existence of such an A4 in the case |[n¥|=s+ 1 is
obvious.

The I(/, <t) property implies that

A —s—1 3k — —
s+ 1 t—s s+ 1 n—s t+1-—ys

This contradicts (10) for n>ny(k,s). O

Thus, we may assume that [sjc n¥. Let & = {FeZ(>t+1):[s]jcF} and let
H ={FeF(=t+1):[s]eF}. We have Z(=t+1) = S UA. The family &' =
{F\[s] : Fe%} has the I(/,<t—s) property on n—s elements. Moreover each
member of %’ has size at least r+1—s5. So Proposition 1, more exactly (5),
implies that

|5”|:|5”’<(tzl_s )+P(n—s7(t+2—s)+,(t+l—S),S/—?.). (11)
-5

If # =0 then ¥ = Z(=t+ 1) and (11) and (8) imply |#|<Z, and we are done.

From now on we suppose that # #0. Let H; be a minimal size member in #,
|H\| = h.

To estimate |.&| consider the family ¥ := {Cc[n]: C>]s], |C| =t + 1}. Since
F(t+1)=9 =¥ we have that Z (1 + 1) =%. Every member of (>t + 2) contains
at least 7 + 2 — s members of 4. On the other hand, every member of % is contained

in at most / — 1 members of #. We obtain, that
n—s
=( -1 .
( )<t+ 1— s)
Rearranging we get

|yK<L%f—EJ( n_s) =S 1 F e+ ).

t+2-5)(|7|— |7+ D)+ |F+1)|<(—-1)|F

+2—s)\t+1—-5s) t+2—s
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For FeZ (t+ 1), (F\[s]) cannot be contained in [#]\H;. Hence |%|— |7 (t +

t+1—ys

=2 n—s 2(n—h—s
LI<( 1 +——5— - . 12
7] ( +t—|—2—s)(t+ls) 3<z+1s> (12)

To give upper bound to |#| we use Lemma 2 with an arbitrary 4e€%. Since
|4|<ko and |H|=h for every H e #, we have

|Jf|<&< s )(/—1)<§( el )(/—1) (13)
S hs) I ‘

( t+1—3s t+1—s
t+1—s

Adding up the upper bounds (12) and (13) and comparing to the lower bound (9) we
get the following.

/=2 —t=2 n—s
(1+ " >< ><|y(>z+1)||y|+|%|

)= (n—s—h). Also the fraction (f — s+ 1)/(r — s +2) is at least 2. We obtain

t+2—5 n—=s t+1—ys

<<1+ =2 )( n—s ) 2<n—h—s>+2t< n—s )(/ D
= t+2—s)\t+1—s 3\t+1—3 h\t+1—s '

Rearranging we obtain

2 n—h-—s 2t/ n—s 1 n—s
S <= + . (14)
3-D\t+1-5 h\t+1—5 n—s\t+1-s

We can redefine ky(t,s) as ko(t,s,/), sufficiently large depending only on ¢, s,
and /, and suppose that n is sufficiently large compared to this new ko, i.e.,
n>no(t,s,/). Then (14) implies 2>%(n + 7). Hence the I(/, <1) property implies
that |#|</ — 1.

Again (11) and (8) imply |7 | <2 + |#|<Z + (/ — 1). Since |F| =X, we get from

n—s

(8) that |7 (s + 1)|>( ] > —|#|=zmn—s)— (£ —1)>ko>s+ 2. The members of

Z (s + 1) pairwise meet in s elements so either | U % (s+ 1)|<s+2 and then |Z (s+ 1)|

< (;i%), or |[nZ(s+ 1)] =s. Let Sy be the s-set contained in every F e Z (s + 1).

If a set F meets every member of # (s + 1) in at least s elements and |F|<|Z (s + 1)],
then Sy < F. This implies that "% > S, and also that S, is contained in every member
of 7 (i) for s<i<t, too. Then Proposition 5 implies that Sy = [s]. We also get that

|[Hn[s]|=s—1and Ho(UZ (s+ 1)\[s])
holds for every He # .

Consider Fi1#F,eZ (s+ 1), and Hye#. Then |FinF,nH;|<s— 1. This is a
contradiction for r>3 hence |#| <2 in this case.
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Finally, suppose that r =2. Since # #0( the set system # cannot contain [s],
so |Z(s)]=0 and thus |Z\A|<f(n—s,1(/,<t—s))—1. Thus |F|<Z -1+
(¢—-1). O

6. Multi-hypergraphs

In the previous theorems we did not allow multiplied sets. Consider a sequence of
sets & ={F\,F»,...,Fy} of subsets of [n] with properties I(r, >s) and I(¢/, <t)
where now repetition is allowed. If we can have multi-sets with size s<|F|<t then
this sequence can be arbitrarily long. Define f”(n; I(r, =s),1(/, <t)) as max m where
Z is a family of multi-subsets of [r] satisfying the intersection conditions (1) and (2)
with all members having at least 7 + 1 elements.

Theorem 6. Suppose that t=2s>2,r=2,/>2 andn>ny = ny(r,s,/,t). Then forr=3

L I(r,=29),1(4,<t)) =f'(n—s;1({, <t —5)) = ({ — 1)(111—;).

If r =2 then

f'(n;1(2, >S)al(/7 <t)) :fl(nfs;l(fa $[7S))+/*1

_(/_1)<IZ:S>+/—1.

The proof of the upper bound is nearly the same as of Theorem 4. The packing
problem giving the lower bound is trivial here, the extremal family consists of only
(z + 1)-element sets (£ — 1 copies each) for r>3 and some (n — 1)-element sets in the
case r = 2.

The analog of Theorem 3 holds.

Theorem 7. f'(n; (2, =21),1(¢, <1)) = (£ — 1)n holds for every n and £ =2.

One can take multiple copies of the very same extremal configurations as in [5,14],
namely / — 1 copies of the lines of a finite projective plane (if such exists, so in this

case n = ¢q> + ¢+ 1) or / — 1 copies of n — 1 pairs through an element x and the set
[7)\{x} (for all n).

7. Conclusion

It was not unknown in the literature to investigate intersecting families of sets with
upper and lower bounds on the intersection sizes. For example it was conjectured in
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[9] that (using our notation)
-1
FsI 20,12, <k) = 3 ( )
0<i<k

Taking all the at most (k + 1)-element sets containing a given element shows that
this is, indeed, the best possible. This was proved for n>100k*/log(k + 1) by
Frankl and Firedi [9] using the so-called A-system method, for n<2k + 2 and for
6(k+1)<n<()(k+ 1) by Pyber [15] using the permutation method in an
ingenious way. Finally, Ramanan [16] proved the conjecture for all n (without
characterizing the extremal families) using the method of multilinear polynomials,
building on earlier successes by (among others) Alon et al. [2]. A second proof was
given based on the same technique by Sankar and Vishwanathan [17].

In the present paper, we extended those results for multiple intersections whenever
n is large. There is a renewed interest to multiple intersection problems, see, e.g.,
[10,11] for recent developments.
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