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Abstract

Let ½n� denote the set f1; 2;y; ng; 2½n� the collection of all subsets of ½n� and FC2½n� be a
family. The maximum of jFj is studied if any r subsets have an at least s-element intersection

and there are no c subsets containing t þ 1 common elements. We show that

jFjp
Pt�s

i¼0
n � s

i

� �
þ tþc�s

tþ2�s

n � s

t þ 1� s

� �
þ c� 2 and this bound is asymptotically the best

possible as n-N and tX2sX2; r; cX2 are fixed.
r 2004 Published by Elsevier Inc.
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1. Intersecting families: cylinders and Hamming balls

Let ½n� denote the set f1; 2;y; ng and 2½n� the collection of all subsets of ½n�; and
½n�
k

� �
is the set of k-element subsets of ½n�: A simple theorem of Erdös et al. [6] says

that the maximum of jFj is 2n�1 if every two members of a family FD2½n� have a
non-empty intersection. Such an F is called an intersecting family. A maximum
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intersecting familyM can be obtained by considering all the subsets containing one
fixed element. This M sometimes is called a cylinder, or trivially intersecting, since

-Ma|: The above theorem was extended by Katona [12] as follows. If a set system
F on ½n� is s-intersecting, i.e., any two sets in the system have intersection of size at

least s; then for n þ s is even jFjpjBðn;X1
2
ðn þ sÞÞj; where Bðn;XxÞ :¼ fAC½n� :

jAjXxg; a Hamming ball. For the case n þ s is odd one has jFjp2jBðn � 1;
X
1
2
ðn þ s � 1ÞÞj; and the optimal family is a combination of a cylinder and a

Hamming ball. This is often the case in the theory of intersection families, especially
if one considers uniform families (where all sets have the same sizes), see, e.g.,
Ahlswede and Khachatrian’s [1] solution for the Erdös–Frankl conjecture.
In general, we say that F has the Iðr;XsÞ property (also called r-wise

s-intersecting) if

jF1-F2-?-FrjXs holds for every F1;F2;y;FrAF ð1Þ

and let f ðn; Iðr;XsÞÞ denote the size of the largest r-wise s-intersecting family on
n elements. Taking all subsets containing a fixed s-element set (i.e., a cylinder)
shows that f ðn; Iðr;XsÞÞX2n�s holds for all nXsX0: One of the nicest results of the
field is due to Frankl [7] that f ðn; Iðr;XsÞÞ ¼ 2n�s holds if and only if nor þ s or
sp2r � r � 1 with the possible (but unlikely) exception of the case ðr; sÞ ¼ ð3; 4Þ: An
excellent survey of these families is due to Frankl [8].

2. Intersecting families: codes and packings

If we have an upper bound on the intersection sizes, then the extremal families are
codes, designs, and packings. More precisely, we say that F has the Iðc;ptÞ
property if

jF1-F2-?-Fcjpt holds for every distinct F1;F2;y;FcAF ð2Þ

and let f ðn; Iðc;ptÞÞ denote the size of the largest family satisfying Iðc;ptÞ on n

elements. A family of k-subsets of ½n� with the Iðc;ptÞ property is called an ðn; k; t þ
1;pc� 1Þ packing and its maximum size is denoted by Pðn; k; t þ 1;pc� 1Þ: More
generally, a familyFD2½n� is called an ðn; kþ; j;plÞ packing if jF jXk holds for every
FAF and jF½X �jpl for every j-subset XD½n�: (Here, as usual, F½X � denotes the
family fF : XDFAFg; F½x� stands for F½fxg�; and degFðxÞ :¼ jF½x�j:) The
maximum size of such a packing is denoted by Pðn; kþ; j;plÞ: Simple double
counting gives that

Pðn; k; j;plÞpPðn; kþ; j;plÞpl

n

j

� �

k

j

� �: ð3Þ
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If here equalities hold forFD
½n�
k

� �
; then it is called an Slðn; k; jÞ block design, and

in the case l ¼ 1; a Steiner system. For more details about packings see [3,4].
The existence of designs and the determination of the packing number is a very

difficult question, here we only recall a folklore result about the case j ¼ k � 1:

l
k

n � k

n

n

k � 1

� �
pPðn; k; k � 1;plÞ

pPðn; kþ; k � 1;plÞ pl
k

n

k � 1

� �
: ð4Þ

Proof. The upper bound follows from (3). To show the lower bound we give a

construction F: For every xA½n� consider Fx :¼ fFA
½n�
k

� �
:
P

fAF f �

x ðmod nÞÞg: It satisfies the property that every ðk � 1Þ-element set is contained in
at most one member of Fx; so F1,F2,?,Fn is a decomposition of the

complete hypergraph
½n�
k

� �
into ðn; k; k � 1;p1Þ packings. Define F as the union

of the l largest ones among these Fx’s. Then jFjXl
n

n

k

� �
¼ l

k
n�k

n

n

k � 1

� �
: &

One can see that the determination of f ðn; Iðc;ptÞÞ is equivalent to the
determination of the packing function estimated in (4).

Proposition 1. Suppose that cX2; tX1 are integers. Then

f ðn; Iðc;ptÞÞ ¼
X

0piptþ1

n

i

� �
þ Pðn; ðt þ 2Þþ; t þ 1;pc� 2Þ:

Proof. Easy. Let FD2½n� be a set system with property Iðc;ptÞ: We may suppose
that all subsets of ½n� with at most t elements belong to F because if jX jpt; then
F,fXg has the Iðc;ptÞ property. We also show that we may suppose that all

ðt þ 1Þ-element subsets belong to F: Indeed, if XA
½n�

t þ 1

� �
; XeF and

jF½X �jpc� 2; then again F,fXg also has the Iðc;ptÞ property. Finally, if
jF½X �j ¼ c� 140; then take a member FAF½X � and replace it by X : The obtained
new familyF\fFg,fXg has the Iðc;ptÞ property, too. One can repeat this process

until all members of
½n�

t þ 1

� �
belong to F:

Then, obviously, the family F\
S
0piptþ1

½n�
i

� �
is an ðn; ðt þ 2Þþ; t þ 1;pc� 2Þ

packing. &
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Note that the above proof implies the following slightly stronger result. If F has
the Iðc;ptÞ property on ½n� and each FAF has size at least t þ 1; then

jFjp
n

t þ 1

� �
þ Pðn; ðt þ 2Þþ; t þ 1;pc� 2Þ: ð5Þ

Conjecture 2. Suppose that k; j and l are positive integers. Then for sufficiently large

n; n4n0 :¼ n0ðk; j; lÞ the packing functions in (4) have the same values

Pðn; k; j;plÞ ¼ Pðn; kþ; j;plÞ:

3. Simultaneous restrictions

Problem. Determine f ðn; Iðr;XsÞ; Iðc;ptÞÞ; the maximal size of FD2½n� satisfying
both the conditions (1) and (2).
Although there were several partial results (and we will cite some of those later)

this problem was proposed in this generality only in [13]. We suppose that r; cX2;
although the cases r ¼ 1 and c ¼ 1 are also interesting. It was also proved in [13] that
the following asymptotic holds for fixed c as n-N

f ðn; Ið2;X1Þ; Iðc;p1ÞÞ ¼ ðc� 1Þn þ oðnÞ:

Our first result is a simple proof for a more precise version of this.

Theorem 3. If any rX2 members of FD2½n� have a non-empty intersection but the

intersection of any c distinct members contains at most one element, then jFjpðc�
1Þn; i.e.,

f ðn; Iðr;X1Þ; Iðc;p1ÞÞp ðc� 1Þn

holds for every n and r; cX2:

The proof is postponed to Section 4. There we also discuss related results, linear
(and almost linear) hypergraphs, a topic started by de Bruijn and Erdös [5], who
proved the case c ¼ 2 of Theorem 3.
In Section 5, we give an asymptotic solution of the general problem for the case

tX2s: More exactly, we reduce it to a packing function discussed in (4). We show
that

Theorem 4. Suppose that tX2sX2; rX2; cX2 and n4n0 :¼ n0ðr; s; c; tÞ: Then for rX3

f ðn; Iðr;XsÞ; Iðc;ptÞÞ ¼ f ðn � s; Iðc;pt � sÞÞ:

If r ¼ 2 then

f ðn; Ið2;XsÞ; Iðc;ptÞÞpf ðn � s; Iðc;pt � sÞÞ þ c� 2
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and here equality holds if Conjecture 2 holds for ðn � s; t þ 2� s; t þ 1� s;pc� 2Þ-
packings and sXc� 1:

Then Proposition 1 and (4) imply (for rX3) that

f ¼
Xtþ1�s

i¼0

n � s

i

� �
þ Pðn � s; ðt þ 2� sÞþ; t þ 1� s;pc� 2Þ

¼ ð1þ oð1ÞÞ 1þ c� 2
t þ 2� s

� �
n

t þ 1� s

� �
;

and the same asymptotic result holds for r ¼ 2:

4. The case s ¼ t ¼ 1

Here we prove Theorem 3. The following is a slight generalization of a result of
Motzkin [14] who proved the case c ¼ 1: In fact, the case c ¼ 1 implies the lemma for
all real c40:

Lemma 1. Let G ¼ GðA;B;EÞ be a bipartite graph with Ea|; and let c be a positive

real number. Suppose that no vertex in A is adjacent to all vertices in B and that for

every pair of non-joined vertices aAA; bAB; ða; bÞeE one has degðaÞpc degðbÞ: Then

jAjcXjBj:

Proof. Let p and q be positive integers satisfying p=qXc: We will show
ðp=qÞjAjXjBj; and since ðp=qÞ � c could be arbitrarily small and since G is finite
this will suffice to show cjAjXjBj:
Let G0 be a bipartite graph with vertices A0,B0 such that A0 is p copies of A; and B0

is q copies of B and if a0AA0 is a copy of aAA and b0AB0 is a copy of bAB then a0 is
joined to b0 in G0 if and only if a is joined to b in G: Then in case of ða0; b0ÞeE0;

degG0 ða0Þ ¼ q degGðaÞpq
p

q
degGðbÞ

� �
¼ p degGðbÞ ¼ degG0 ðb0Þ:

Thus the conditions of the Motzkin’s lemma (the case c ¼ 1) hold for G0: This
implies jA0jXjB0j: Hence p

q
jAjXjBj holds, as desired. &

Proof of Theorem 3. Let F be an intersecting family, with no c sets containing two
common elements. Define a bipartite graph GðA;B;EÞ as follows. A :¼ ½n�; B :¼ F

and xA½n� is adjacent to FAF if xAF : If this graph has no edge then F ¼ | for every
FAF; implying jFjp1:
If there is an aAA which is adjacent to all vertices of B; then the element a is

contained in every member of F: However, there are at most c� 1 members of F
containing a pair of ½n�; i.e.,

jF½x; y�jpc� 1; ð6Þ
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where F½x; y� :¼ fXAF : x; yAXg: Using this inequality for the pairs ða; yÞ; we get
that every element yaa is contained in at most c� 1 sets of F: Thus jFjp1þ
ðc� 1Þðn � 1Þpðc� 1Þn:We will show that in any other case the main constraint of
Lemma 1 holds with c ¼ c� 1 (which is positive, since cX2).
Let xA½n� ¼ A and FAF ¼ B be a non adjacent pair in G; i.e., xeF : Consider

F½x� :¼ fXAF : xAXg: We have jF½x�j ¼ degGðxÞ: Since F is intersecting, all
members of F½x� intersect F ; thus F½x� ¼ ,yAFF½x; y�: Then (6) implies
jF½x�jpðc� 1ÞjF j: This means degGðxÞpðc� 1ÞdegGðFÞ: Hence Lemma 1 can be
applied to G giving ðc� 1Þn ¼ ðc� 1ÞjAjXjBj ¼ jFj: &

5. Proof of Theorem 4

Let

S :¼
Xtþ1�s

i¼0

n � s

i

� �
þ Pðn � s; ðt þ 2� sÞþ; t þ 1� s;pc� 2Þ:

One can give a family of S sets which have s common elements and satisfies

the intersection properties. Let P0 be a packing with Pðn � s; ðt þ 2� sÞþ; t þ 1�
s;pc� 2Þ members on the underlying set ½n�\½s�: Let P ¼ fP,½s� : PAP0g: Let
F0 ¼ fFC½n� : jF jpt þ 1; ½s�CFg,P: Hence

f ðn; Iðr;XsÞ; Iðc;ptÞÞXjF0j ¼ S: ð7Þ

For r ¼ 2 one can construct a larger family. Suppose that there is an optimal
ðn � s; ðt þ 2� sÞþ; t þ 1� s;pc� 2Þ packing consisting of only ðt þ 2� sÞ-element
sets, i.e. Conjecture 2 holds for these values. Then remove ½s� from F0 and add
minfs; c� 1g sets of the form ½n�\fig; 1pips: One can easily see that the obtained
family F1 is pairwise s-intersecting and satisfies the Iðc;ptÞ property.
Let F be a family with properties (1) and (2). We have to show the other

inequality jFjpS for rX3; and jFjpSþ c� 2 for r ¼ 2:
First, we discuss the case j-FjXs: This means that all the members of F have s

common elements, say, ½s�CF for every FAF: ConsiderF0 ¼ fF \½s� : FAFg: InF0

the intersection of any c members has at most ðt � sÞ elements, it satisfies the
property Iðc;pt � sÞ: So every t þ 1� s elements are contained in at most c� 1
members of F0: Hence jFj ¼ jF0jpS by Proposition 1.
From now on, we suppose that j-Fjos: Define FðiÞ :¼ fFAF : jF j ¼ ig and

FðXjÞ ¼ FðjÞ,Fðj þ 1Þ,y :We haveF ¼ Fð1Þ,Fð2Þ,y : TriviallyFðiÞ ¼
| if ios: The family FðiÞ is i-uniform on ½n� vertices and satisfies Ið2;XsÞ: So
Erdös–Ko–Rado theorem [6] says that

jFðiÞjp
n � s

i � s

� �
for n4nði; sÞ: ð8Þ

We use this estimate if spipt:
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By (7) and (4) we can suppose that jFjX
Pt�s

i¼0
n � s

i

� �
þ 1þ c�2

tþ2�s
n�t�2

n�s

� �
�

n � s

t þ 1� s

� �
: Hence (8) implies

jFðXt þ 1ÞjX 1þ c� 2
t þ 2� s

n � t � 2
n � s

� �
n � s

t þ 1� s

� �
: ð9Þ

We need an upper bound on the number of large sets. &

Lemma 2. If jA-F jXs for every FAF then

jFðXkÞjp

jAj
s

� �

k � s

t þ 1� s

� � n � s

t þ 1� s

� �
ðc� 1Þ:

Proof. Let A ¼ fXA
½n�

t þ 1

� �
: jA-X jXsg: Clearly jAjp jAj

s

� �
n � s

t þ 1� s

� �
:

Every t þ 1 elements are contained in at most c� 1 members of F; and

every FAFðXkÞ contains at least k � s

t þ 1� s

� �
members of A: Hence

jFðXkÞj k � s

t þ 1� s

� �
pjAjðc� 1Þ: &

Since tX2sX2 the fraction
k

s

� �
=

k � s

t þ 1� s

� �
is arbitrarily small for all

sufficiently large kXk0: For example, for k4k0ðt; sÞ :¼ 4s2 þ 6t2 we get

k

s

� �

k � s

t þ 1� s

� �o2t
k

o
1

3t
:

Split FðXt þ 1Þ into two parts, G,FðXk0Þ; i.e., G :¼ Fðt þ 1Þ,Fðt þ
2Þ,?,Fðk0 � 1Þ: We are going to give an upper bound on the size of the family
FðXk0Þ: If it is non-empty, then choose F0AFðXk0Þ with the minimum size among
its members, i.e., jF jXjF0j for every FAFðXk0Þ: Denote the size of F0 by f0:We can
use F0 as A in Lemma 2. We obtain

jFðXk0Þj ¼ jFðXf0Þjp

f0

s

� �

f0 � s

t þ 1� s

� � n � s

t þ 1� s

� �
ðc� 1Þoc� 1

3t

n � s

t þ 1� s

� �
:
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Comparing this to (9) we get (for n4k0) that

jGj ¼ jFðXt þ 1Þj � jFðXf0ÞjX 1þ c� 2
t þ 2� s

n � t � 2
n � s

� c� 1
3t

� �
n � s

t þ 1� s

� �

X
c� 1
3t

n � s

t þ 1� s

� �
: ð10Þ

Proposition 5. j-Gj ¼ s:

Proof. If j-Gjps � 1; then there is a set AC½n�; jAjo3k0 such that jA-GjXs þ 1
for every GAG: Indeed, either there is an AAG meeting all other members of G
in at least s þ 1 elements, or we can find G1;G2AG with jG1-G2j ¼ s: Then
there exists a G3AG not containing G1-G2: Thus jG1-G2-G3jps � 1: Then
G1,G2,G3 is suitable for A: The existence of such an A in the case j-GjXs þ 1 is
obvious.
The Iðc;ptÞ property implies that

jGjp
jAj

s þ 1

� �
n � s � 1

t � s

� �
ðc� 1Þp

3k0

s þ 1

� �
t þ 1� s

n � s

n � s

t þ 1� s

� �
ðc� 1Þ:

This contradicts (10) for n4n0ðk; sÞ: &

Thus, we may assume that ½s�C-G: Let S :¼ fFAFðXt þ 1Þ : ½s�CFg and let
H ¼ fFAFðXt þ 1Þ : ½s�gFg: We have FðXt þ 1Þ ¼ S,H: The family S0 :¼
fF \½s� : FASg has the Iðc;pt � sÞ property on n � s elements. Moreover each

member of S0 has size at least t þ 1� s: So Proposition 1, more exactly (5),
implies that

jSj ¼ jS0jp
n � s

t þ 1� s

� �
þ Pðn � s; ðt þ 2� sÞþ; ðt þ 1� sÞ;pc� 2Þ: ð11Þ

IfH ¼ | then S ¼ FðXt þ 1Þ and (11) and (8) imply jFjpS; and we are done.
From now on we suppose that Ha|: Let H1 be a minimal size member in H;

jH1j ¼ h:
To estimate jSj consider the family C :¼ fCC½n� : C*½s�; jCj ¼ t þ 1g: Since

Fðt þ 1ÞCGCS we have that Fðt þ 1ÞCC: Every member of SðXt þ 2Þ contains
at least t þ 2� s members of C: On the other hand, every member of C is contained
in at most c� 1 members of F: We obtain, that

ðt þ 2� sÞðjSj � jFðt þ 1ÞjÞ þ jFðt þ 1Þjpðc� 1ÞjCj ¼ ðc� 1Þ
n � s

t þ 1� s

� �
:

Rearranging we get

jSjp 1þ c� 2
t þ 2� s

� �
n � s

t þ 1� s

� �
� t þ 1� s

t þ 2� s
ðjCj � jFðt þ 1ÞjÞ:
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For FAFðt þ 1Þ; ðF \½s�Þ cannot be contained in ½n�\H1: Hence jCj � jFðt þ

1ÞjX n � s � h

t þ 1� s

� �
: Also the fraction ðt � s þ 1Þ=ðt � s þ 2Þ is at least 2

3
: We obtain

jSjp 1þ c� 2
t þ 2� s

� �
n � s

t þ 1� s

� �
� 2
3

n � h � s

t þ 1� s

� �
: ð12Þ

To give upper bound to jHj we use Lemma 2 with an arbitrary AAG: Since
jAjpk0 and jHjXh for every HAH; we have

jHjp

k0

s

� �

h � s

t þ 1� s

� � n � s

t þ 1� s

� �
ðc� 1Þo2t

h

n � s

t þ 1� s

� �
ðc� 1Þ: ð13Þ

Adding up the upper bounds (12) and (13) and comparing to the lower bound (9) we
get the following.

1þ c� 2
t þ 2� s

n � t � 2
n � s

� �
n � s

t þ 1� s

� �
pjFðXt þ 1Þj ¼ jSj þ jHj

p 1þ c� 2
t þ 2� s

� �
n � s

t þ 1� s

� �
� 2
3

n � h � s

t þ 1� s

� �
þ 2t

h

n � s

t þ 1� s

� �
ðc� 1Þ:

Rearranging we obtain

2

3ðc� 1Þ
n � h � s

t þ 1� s

� �
p
2t

h

n � s

t þ 1� s

� �
þ 1

n � s

n � s

t þ 1� s

� �
: ð14Þ

We can redefine k0ðt; sÞ as k0ðt; s; cÞ; sufficiently large depending only on t; s;
and c; and suppose that n is sufficiently large compared to this new k0; i.e.,

n4n0ðt; s; cÞ: Then (14) implies h4c�1
c ðn þ tÞ: Hence the Iðc;ptÞ property implies

that jHjpc� 1:
Again (11) and (8) imply jFjpSþ jHjpSþ ðc� 1Þ: Since jFjXS; we get from

(8) that jFðs þ 1ÞjX n � s

1

� �
� jHjXðn � sÞ � ðc� 1Þ4k04s þ 2: The members of

Fðs þ 1Þ pairwise meet in s elements so either j,Fðsþ1Þjpsþ2 and then jFðsþ1Þj

p s þ 2
s þ 1

� �
; or j-Fðs þ 1Þj ¼ s: Let S0 be the s-set contained in every FAFðs þ 1Þ:

If a set F meets every member ofFðs þ 1Þ in at least s elements and jF jojFðs þ 1Þj;
then S0CF : This implies that-G*S0 and also that S0 is contained in every member
of FðiÞ for spipt; too. Then Proposition 5 implies that S0 ¼ ½s�: We also get that

jH-½s�j ¼ s � 1 and H*ð,Fðs þ 1Þ\½s�Þ

holds for every HAH:
Consider F1aF2AFðs þ 1Þ; and H1AH: Then jF1-F2-H1jps � 1: This is a

contradiction for rX3 hence jFjpS in this case.
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Finally, suppose that r ¼ 2: Since Ha| the set system F cannot contain ½s�;
so jFðsÞj ¼ 0 and thus jF\Hjpf ðn � s; Iðc;pt � sÞÞ � 1: Thus jFjpS� 1þ
ðc� 1Þ: &

6. Multi-hypergraphs

In the previous theorems we did not allow multiplied sets. Consider a sequence of
sets F ¼ fF1;F2;y;Fmg of subsets of ½n� with properties Iðr;XsÞ and Iðc;ptÞ
where now repetition is allowed. If we can have multi-sets with size spjF jpt then
this sequence can be arbitrarily long. Define f 0ðn; Iðr;XsÞ; Iðc;ptÞÞ as max m where
F is a family of multi-subsets of ½n� satisfying the intersection conditions (1) and (2)
with all members having at least t þ 1 elements.

Theorem 6. Suppose that tX2sX2; rX2; cX2 and n4n0 :¼ n0ðr; s; c; tÞ: Then for rX3

f 0ðn; Iðr;XsÞ; Iðc;ptÞÞ ¼ f 0ðn � s; Iðc;pt � sÞÞ ¼ ðc� 1Þ
n � s

t þ 1� s

� �
:

If r ¼ 2 then

f 0ðn; Ið2;XsÞ; Iðc;ptÞÞ ¼ f 0ðn � s; Iðc;pt � sÞÞ þ c� 1

¼ðc� 1Þ
n � s

t þ 1� s

� �
þ c� 1:

The proof of the upper bound is nearly the same as of Theorem 4. The packing
problem giving the lower bound is trivial here, the extremal family consists of only
ðt þ 1Þ-element sets (c� 1 copies each) for rX3 and some ðn � 1Þ-element sets in the
case r ¼ 2:
The analog of Theorem 3 holds.

Theorem 7. f 0ðn; Ið2;X1Þ; Iðc;p1ÞÞ ¼ ðc� 1Þn holds for every n and cX2:

One can take multiple copies of the very same extremal configurations as in [5,14],
namely c� 1 copies of the lines of a finite projective plane (if such exists, so in this
case n ¼ q2 þ q þ 1) or c� 1 copies of n � 1 pairs through an element x and the set
½n�\fxg (for all n).

7. Conclusion

It was not unknown in the literature to investigate intersecting families of sets with
upper and lower bounds on the intersection sizes. For example it was conjectured in
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[9] that (using our notation)

f ðn; Ið2;X1Þ; Ið2;pkÞÞ ¼
X
0pipk

n � 1
i

� �
:

Taking all the at most ðk þ 1Þ-element sets containing a given element shows that
this is, indeed, the best possible. This was proved for n4100k2=logðk þ 1Þ by
Frankl and Füredi [9] using the so-called D-system method, for np2k þ 2 and for
6ðk þ 1Þpnpð1

5
Þðk þ 1Þ2 by Pyber [15] using the permutation method in an

ingenious way. Finally, Ramanan [16] proved the conjecture for all n (without
characterizing the extremal families) using the method of multilinear polynomials,
building on earlier successes by (among others) Alon et al. [2]. A second proof was
given based on the same technique by Sankar and Vishwanathan [17].
In the present paper, we extended those results for multiple intersections whenever

n is large. There is a renewed interest to multiple intersection problems, see, e.g.,
[10,11] for recent developments.
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