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Abstract

A large variety of problems and results in Extremal Set Theory deal with estimates on the
size of a family of sets with some restrictions on the intersections of its members. Notable
examples of such results, among others, are the celebrated theorems of Fischer, Ray-
Chaudhuri-Wilson and Frankl-Wilson on set systems with restricted pairwise intersections.
These also can be considered as estimates on binary codes with given distances. In this paper
we obtain the following extension of some of these results when the restrictions apply to k-wise
intersections, for k>2.

Let L be a subset of non-negative integers of size s and let k> 2. A family & of subsets of an
n-element set is called k-wise L-intersecting if the cardinality of the intersection of any k
distinct members in % belongs to L. We prove that, for any fixed k and s and sufficiently large
n, the size of every k-wise L-intersecting family is bounded by

k+s—1/n n
Fl<— .
A< ()2 (7)
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This result is asymptotically best possible. In addition, we show that for an extremal k-wise
L-intersecting family, L consists of s consecutive integers. Our proof combines tools from
linear algebra with some combinatorial arguments.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Problems and results concerning the maximum cardinality of set systems with
certain restrictions on the intersections of its members are at the heart of Extremal
Set Theory. These problems have been studied intensively during the last half
century, with many papers, and an excellent monograph by Babai and Frankl [2]
devoted to the subject and its diverse applications. These also can be considered as
estimates on binary codes with given distances. One rather general problem of this
type can be described as follows.

Let 7 be a family of subsets of an n-element set and let L be a set of non-negative
integers. The family % is called uniform if all its members have the same size. For an
integer k>2, we also say that & is k-wise L-intersecting if the cardinality of the
intersection of any k distinct members in & belongs to L. Given a particular set L,
what is the maximum number of members of a k-wise L-intersecting family? No
general answer to this problem has been found or conjectured, but a number of
appealing partial results are known. Here we list some of them, starting with the
most studied case, when k = 2.

One of the first such results was obtained by Majumdar [10] and rediscovered by
Isbell [9]. Extending some earlier results of Fisher, they proved that if % is a family
of subsets of an n-element set such that the intersection of any two members of F#
has the same non-zero cardinality, then |# | <n. Ray-Chaudhuri and Wilson [11] and
Frankl and Wilson [3] generalized this result and obtained tight bounds on uniform
and non-uniform pairwise L-intersecting families. In particular, in [3] it was proved
that if |L| =s then the size of a 2-wise L-intersecting family is bounded by
|71<>i<,(}). Frankl and Wilson [3] also showed that the same bound remains true
if L is a set of residues modulo a prime p, and we assume that the cardinality of
pairwise intersections of members of & modulo p is in L, but the size of every
member of % modulo p is not in L.

For k>2, the general problem of investigating k-wise intersection restrictions on
families of sets was posed by Sos [12]. Fiiredi [6] proved, that for z-uniform families,
the order of magnitude of the largest set system satisfying k-wise or just pairwise
intersection constraints are the same. The constant in [6] is very large, but depends
only on k and ¢. Vu [14] considered families of sets with restricted k-wise
intersections modulo two and established bounds for the size of such set systems. A
sharp bound for this problem was obtained in [13]. Grolmusz [7] and Grolmusz and
Sudakov [8] studied restricted k-wise intersections modulo an arbitrary prime. They
proved that if the cardinality of k-wise intersections of members of & modulo a
prime p is in a set L of size s, and the size of every member of % modulo p isnotin L,
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then |7 |<(k — 1)), (7). Recently, their result was slightly improved in [13] by an
additive factor depending on k. On the other hand, Grolmusz and Sudakov showed
in [8] that the above bound is asymptotically tight. They also obtained the following

non-modular version of this result.

Theorem 1.1. Let & be a family of subsets of an n-element set, L be a subset of non-
negative integers of size s and let k=2. If F is a k-wise L-intersecting family then

(7| < (k= 1)30,(7)-

The tightness of the above bound was left in [8] as an open question. In this paper
we will answer this question negatively and obtain the following improvement of
Theorem 1.1.

Theorem 1.2. Let L be a subset of non-negative integers of size s, let k=2 and let F be
a k-wise L-intersecting family of subsets of an n-element set. Then there exists an
integer ny = ny(k,s) such that for all n>ny

k+s—1/n n
T -
17 1< s+ 1 (s)JrZ(i)'

i<s—1

Our result is asymptotically best possible and its proof combines tools from linear
algebra with some combinatorial arguments. In addition, we show that for k>3, if
Z is the largest k-wise L-intersecting family with |L| = s then L = {0, 1, ...,5s — 1}.
The special case of the above statement, when s = 1, was independently obtained by
Szabo and Vu in [13], where they conjectured the more general result of Theorem 1.2.
Also note that the special case k = 2 of our result corresponds to the Frankl-Wilson
theorem. Thus we need to prove Theorem 1.2 only when k>3.

The rest of this paper is organized as follows. In the next section we study k-wise
L-intersecting families for L = {0,1,...,5s — 1} and present a construction which
shows that our main result is asymptotically tight. In Section 3 we obtain a Frankl-
Wilson-type result for pairs of families of sets with restricted intersections. Using this
result we can immediately obtain a k-wise version of the non-uniform Fischer
inequality. In Section 4 we establish some structural properties of extremal k-wise L-
intersecting families. In particular, we show that one can assume that Oe L. The
proof of our main result appears in Section 5. The final section contains some
concluding remarks. Throughout the paper we omit all floor and ceiling signs
whenever these are not crucial, to simplify the presentation.

2. Intersections of size 0,1, ..., 5 — 1

In this section we study k-wise L-intersecting families for L = {0, 1, ...,5s — 1}. We
start with a simple upper bound on the size of such set systems. In particular, this
bound shows that in this case the assertion of Theorem 1.2 is indeed true. We need
the following definition. An S;(v,k,t) block design is a k-uniform family of
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subsets of a v-eclement set such that each ¢-set is contained in exactly A members
of the family.

Lemma 2.1. Let k=3 and s be two positive integers and let L = {0,1, ...,s — 1}. If #
is a k-wise L-intersecting family of subsets of an n-element set, then

k—2/n S /n k+s—1/n n
Fl<— = -2 -
A< (0) 2 (0) =5 () 2.(0)

Here equality holds only if there exists an Si_»(n,s+ 1,s) design.

Proof. Denote by x the number of sets in % of size exactly s, and by y the number of
sets in Z of size at least s + 1. Since the remaining sets in this set system are of size at
most s — | we obtain that

Fl<x+y+ (n)
[Fl<x+y 1-;5;1 l
Let us count the number of pairs (U, F), where U is a subset of size s of the

ground set, F is a member of & and U < F. Since every set of size larger than s has at
least s + 1 subsets of size s we conclude that this number is at least x + (s + 1)y. On
the other hand the multiplicity of every set of size s in this counting is at most k — 1.
Indeed, if some set U of size s was counted k times, then there exist k distinct sets
Ay, ..., Ax€ F such that U< 4; and therefore |41 --- nAx|>|U| = s. This contra-
dicts the fact that the family & is k-wise L-intersecting. Since the total number of
subsets of size s is at most (}), we have that x 4 (s + 1)y < (k — 1)(%). Note that, by
definition, x< (/). Taking this into account, we obtain

(s+D(x+y)=x+(s+1)y+sx<(k— 1)(”) +s<’;>

s
:(k+s—1)<n>.
S
Therefore

n k+s—1/n n
|7 |<x+y+ Z (i)<M<Y)+ Z <l)

i<s—1 i<s—1

To check the case of equality is simple. This completes the proof of the lemma. [

Next we present a construction of a set system which gives a lower bound on the
size of the largest k-wise L-intersecting family with L =1{0,1,...,s—1}. This
construction also shows that the result of Theorem 1.2 is asymptotically best
possible.

Lemma 2.2. For all positive integers s and 3 <k <n there exists a family F of subsets
of an n-element set of size at least
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A (M) (Y,

i=0

such that 0<|A N -+ 0 Ax|<s — 1| for any collection of k distinct members of F .

Proof. To prove the lemma we use a variant of a well-known construction related to
a special case of the celebrated Erdés—Hanani conjecture.

For every integer 0<i<n — 1 let &; be a family of subsets of [n] = {1, ...,n} of size
s + 1 whose elements sum up to i (mod ) for all Ce%;. Clearly all the families 4; are
pairwise disjoint and their union contains all subsets of [n] of size s+ 1. Also by
definition, it is easy to see that for a fixed i every subset of [n] of size s is contained in
at most one member of 4;. Let 4, ...,%;,_, be the k — 2 largest families, then

k=2 _
Ja[=2(,")
= n \s+1

and every subset of [n] of size s is contained in at most & — 2 members of this union.
Let # be a set system, composed of all subsets of [n] of size at most s together with
the members of U;%;. Then the size of 7 is at least

A2 ) ()00 (1) -5 (),

i=0 i=0

and every subset of [n] of size s is contained in at most k — 1 members of . This
implies that 0<<|4; N --- N Ax|<s — 1 for any collection of k distinct members of F#
and completes the proof. [

Finally from the above two lemmas we can immediately deduce the following
corollary.

Corollary 2.3. Let 3<k<n and s=o(n) be two positive integers and let L =
{0,1,...,5s — 1}. Let F be a largest possible k-wise L-intersecting family of subsets of
an n-element. Then F satisfies

7= arom A (1),

3. k-wise non-uniform Fisher inequality

In this section we deal with another special case of the restricted k-wise
intersections problem. We consider extremal set systems whose k-wise intersections
are all of size 4. In this case we are able to prove a tight bound on the size of such a
set system and also give a characterization of the extremal configurations. First we
need the following Frankl-Wilson-type result for pairs of families of sets with
restricted intersection, which might be of independent interest.
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Lemma 3.1. Let L be a subset of non-negative integers of size s and let Ay, ..., A, and
By, ..., By, be two families of subsets of the same n-element set satisfying

(i) |A;nBi|¢ L for all 1<i<m;
(i) |[4;nBi|eL for all 1<j<i<m.

Then m< Z,@(}Z)

Proof. Let L = {/1, ..., /,}. With each of the sets 4;, B; we associate its characteristic
vector, which we denote by a;, b; respectively. To prove the lemma we use an
approach introduced in [1].

Let Q denote the set of rational numbers. For x,yeQ", let x -y denote their
standard scalar product. Clearly a; - b; = |4;nB;|. For i =1, ...,m let us define the
polynomial f; in n variables as

S

fitx) =[x bi = 20).

r=1

Let us restrict the domain of the polynomials f; to the set {0, 1}" =Q". Since in this
domain x,? = x; for each variable, every polynomial is, in fact, multilinear. Indeed,
for each monomial of f;, we can reduce the exponent of each occurring variable to 1.
Using properties (i) and (ii) we obtain that for all | <j<i<m

fila))#0, but fi(a;) = 0.

We claim that the polynomials fi, ..., f,, are linearly independent as functions over
Q. Indeed, assume that > o, f;(x) = 0 is a non-trivial linear relation, where «; € Q. Let
ip be the smallest index such that o, # 0. Substitute a;, for x in this relation. Then it is
easy to see that all terms but the one with index i vanish, with the consequence
o;, = 0, contradiction. On the other hand, each f; belongs to the space of multilinear
polynomials of degree at most s. The dimension of this space is Y, (), implying the
desired bound on m. This completes the proof of the lemma. [

Remark. This proof, with slight modification, can be used to show that the
conclusion of the lemma follows under considerably weaker conditions. It is enough
that for all j<i, |4;n B;| belongs to at most s residue classes modulo some prime p,
assuming that |4; ~ B;| does not belong to these residue classes. A special case, when
p =2, of such a result appeared in [2].

We will illustrate an application of Lemma 3.1, by proving a k-wise version of the
non-uniform Fisher inequality. This result was independently proved by Szab6 and
Vu [13]. They obtained a different proof of this theorem using an old result of Fiiredi
[4]. They also treated the case when k> n.

Theorem 3.2. Let . be a non-negative integer and let 3<k<n. If F is a family of
subsets of an n-element set such that |A; N --- " Ai| = A for any collection of k distinct
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members of F , then
k

Moreover, the equality holds if and only if . =0 and F contains all sets of size
at most one, together with the sets of size two which form a (k — 2)-regular graph
on n vertices.

Proof. If 2 = 0 then the upper bound follows from the case s = | of Lemma 2.1. In
addition, the analysis of the proof of this lemma shows that the case of equality is
only possible if & contains all subsets of [r] of size at most one and the remaining
members of # form an Sy_;(n, 2, 1) block design, i.e., they are edges in some (k — 2)-
regular graph.

Next suppose that A>0 but there exist Aj,...,4r_1€Z%# such that
|41+ " Ap_1| = A. Then, by definition, for any other 4e% we have that
[AnAyn--- N Ag_1| = A also. Therefore all other members of & should contain
the set X = Ay --- " Ag_;. Define a new set system 7' = {4\X|4eZ}. Then it
satisfies |#'| = |Z| and has the property that any k distinct members of #' have
empty intersection. Also note that members of #' are subsets of size n — /. Therefore
by the above discussion

|7 | = |97'|<§(n—i) + 1<1§n+ 1.

Finally we can assume that the intersection of any & — 1 members of & has
size different from A. Let # = {A4i,...,4,}, then let {4),...,4, ,.,} and
{B),.... B, _,,,} be two new set systems defined by B; = 4, --- N A;;x» and 4] =
A; for all 1 <i<m — k + 2. Then, by definition, |4;NB}| = |4;n - " Aiyi—2|# A for
all i, butif j<i then [4;n Bj| = [4;nA; 0 -+ N Ajy—2| = A since this is the size of the
intersection of k distinct members of & . Therefore by Lemma 3.1 we obtain that
m—k+2<n+ 1. This implies that m<n+ k — 1 and it is easy to check that n+
k—1 <§n + 1 for all 3<k<n. Hence configurations of size IEC” + 1 exist only in case
/4 = 0. This completes the proof of the theorem. [

4. Structural properties of extremal set systems

In this section we discuss some structural properties of extremal k-wise L-
intersecting families. First we study the intersection patterns of & — 1 members of
such a family. This is done in the following proposition, which might be of
independent interest.

Proposition 4.1. Let L = {/1, .../} be a set of non-negative integers, let k>3 and let
F be a k-wise L-intersecting family of subsets of an n-element set. If there exists an
index r, 1 <r<s such that no intersection of k — 1 distinct members of F has size (,,
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then

|g<(’;) k-1 Y (’:)

i<s—1

Proof. Let # ={Fy,...,F,} and let L'=L—{/,},|L'|=s5—1. To prove the
statement, we partition % into two families of sets .# and &' with the following
properties: there exists a family of sets 4 such that the pair (o7, %) satisfies the
condition of Lemma 3.1 and the family &' is (k — 1)-wise L'-intersecting. To do this
we repeat the following procedure. For every 0<r<m — 1, suppose that after step
t we have already constructed families of sets .o/ = {4, ..., 4;}, #={B, ..., B}
and #' = {Cy,...,C;} such that i+j =t and o/ UF' = {F, ..., F,}. Consider two
possible cases.

If there are indices ¢ + 1 <f; <--- <ty such that |F, . nF;,n---nF;,_,|¢L, then
define A;y = Fi41, Biv1 = FpinF,yn---F,, and proceed to the next step. Note
that, by definition, |A4;y1 N Biy1| = |Biy1|¢ L but |4;n B 1|eL for all j<i+ 1, since
this is a size of intersection of k distinct members of % .

Otherwise, suppose that |Fi . nF, n---nF, ,|eL for every set of indices 7+
1<t <.+ <tp_». Since no k — 1 members of .# have intersection size /, we have that
|FisinFyn---nF, ,|eL’. In this case define Cj;; = F,;; and continue. Clearly, by
construction, #' is a (k — 1)-wise L'-intersecting family and in both cases after this
step LOF ={Fy,....,Fy1}.

Let .7 and #' be the set systems obtained in the end of our procedure. Now we
can apply Lemma 3.1 to bound the size of .7 and Theorem 1.1 to estimate the size of
F'. Since F = o/ UF' we obtain that

el 171 (1) + e-n-n 3 (7)

i<s i<s—1
n n
= k—1 .
<S>+( >z<zs:1<i>

This completes the proof. [

This result implies the following two corollaries. The first one, in particular,
shows that to prove Theorem 1.2 we can assume that one of the intersection
sizes is zero.

Corollary 4.2. Let L = {/| </2<--- </} be a subset of non-negative integers of size
s, let k=3 and let F be a k-wise L-intersecting family of subsets of an n-element set. If
| 7> () + (k= 1)), (}) then there exists an /-set X such that X = A holds for
every Ae F . Moreover, there exists a k-wise L'-intersecting family F' of subsets of an
(n— (1)-element set such that |F'| = |#| and 0e L.
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Proof. Let L = {/,</><--- </} be such that /,>0. If no intersection of k — 1
distinct members of % has size /; then, by Proposition 4.1, we have a contradiction,
as | F[< () + (k=13 ()-

Next suppose that there exist A, ..., Ay_1 €F such that |A;n--NAr_1| =7/1.
Then, by definition, for any other 4e# we have that |AnA;n--NnAi_1| =7
also. Therefore all other members of % should contain the set X = A1 --- N Ap_q.
Now consider the family #' ={A4\X|4eZ}. This is a k-wise L'-intersecting
family of subsets of an (n—/;)-element set with |#'|=|%#| and L =
{0, =41, ....0— ¢} O

Given n,k and L, we denote by my(n,L) the maximum size of a k-wise L-
intersecting family of subsets of an n-element set. Using this notation we can
reformulate Corollary 4.2 as follows.

I m(n, {01, ""/“})><Z> k-1 <':>

i<s—1

then mk<n7{/l7"'>/3‘}):mk(n_/b{oa/Z_/h'--;/S_fl})' (1)

Corollary 4.3. Let k=3 and ¢ and s be positive integers and let L={/,/ + 1, ...,/ +
s—1}. If 7 is a k-wise L-intersecting family of subsets of an n-element set and
n>=s> + 3s, then

g k+s—1/n n
171< s+ 1 <s)+z(i)‘

i<s—1

Proof. Let & be a family of subsets of an n-element set satisfying the
conditions of the corollary and suppose for the sake of contradiction that

F|>EL () + 3, (). For nx>s*+3s, it is easy to check that this sum
exceeds (§) + (k—1)>,, ;(%). Then it follows from the previous corollary that
all the members of & contain a common 7Z-set X. Finally, applying Lemma 2.1
for the family #' = {F\X|Fe%}, we obtain a contradiction which proves

the claim. O

Note that this proof also gives the following upper bound which is valid for all n
and k>=2.

i {0l + 1, ol s — 1})<M<’;> k- Y (”) 2)

S+1 i<s—1 !

In the next section we will show that (2) holds for m(n, L), for every L.

Given a family # and a point x in the underlying set, the degree deg(x) of x is
the number of members of & containing x. Another consequence of Proposition 4.1
is the following lemma.
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Lemma 4.4. Let L =1{0,¢5,...,/s} with (=2, let k=3 and let F be a k-wise L-
intersecting family of subsets of an n-element set. Suppose that for every x

degy(x)>(::ll) +(k—1) Z <n;1>.

i<s—2

Then ¢, divides (5, ...,{s and n, and
n f} /Y

F|< —,20,1,—=, ...,— % ).

7 mk</2{ 2 /2})

Proof. Let x be an arbitrary element of the underlying set and let Z(x) =
{FeZ|xeF} and F[x] = {F\{x}|FeZ (x)}. We have |Z|[x]| = |37(x)\>(’s’:11) +

(k— 1)21@;2(";1). Since 7 [x] is a k-wise {/» — 1, ...,/ — 1}-intersecting family on
n—1 elements, by Proposition 4.1 there are k— 1 members of Z[x] whose

intersection has size 7, — 1. This implies that there are sets Fi, ..., Fy_; € % (x) such
that the size of their intersection equals /,. Write A(x) = Fin--- nFy_;. Clearly
|FnA(x)|eL for every Fe# — {F\, ..., Fr_1}, since this is a size of intersection of k

distinct members of #. In addition, since /; = 0<|FnA(x)|<|A(x)| = /2, then
|FFnA(x)| can be only 0 or |4(x)|. Therefore every member of # is either disjoint
from A(x) or contains it. The same argument holds for every vertex of # and we get
that for vertices x # y the sets A(x) and A(y) are either disjoint or coincide. Thus the
n-element vertex set of & can be partitioned into n//, blocks from .o/ = {A(x)}. So,
in particular, /; divides n. Also we have that every F e % is a disjoint union of such
blocks.

Define a family % on the blocks .o/ as follows. For FeZ define G(F) =
{AeA|A<F} and let 4 = {G(F)|FeZ}. Then |9|=|%| and ¥ is a k-wise L'-
intersecting family on n' = |</| = n//, vertices where L' = {/;//>|¢/;e L and ¢;/¢,
is an integer}. In the case of s =|L|<|L| =s consider the family %(x) =
{G(F)|xe F}. Note that %(x) is a k-wise L"-intersecting family on »’ elements with
L" = L' — {0}. Thus, by Theorem 1.1, we obtain

= pist-n 3 (7)<w-n 2 ("))

which contradicts our minimum degree assumption. Therefore |L'| =s and ¢»
divides ¢; for all i. O

Corollary 4.5. Let L =10,/5,...,4s} with {,=2, let k=3 and let F be a k-wise
L-intersecting family of subsets of an n-element set. If /, does not divide each
{3, ..., s, then

|37<(:)+(k—1)i§1(’;).



Z. Firedi, B. Sudakov | Journal of Combinatorial Theory, Series A 105 (2004) 143159 153

Proof. We use induction on n. Obviously |#|<2", so the result is true for n<s. Since
/> does not divide each /3, ...,/;, we have by the previous lemma that there is an
element x in the underlying set such that |7 (x)|<(""}) + (k — 1)>",c,_»("; "), where
F (x) = {FeZ|xeF}. Note that #\F (x) is k-wise L-intersecting on n — 1 elements
so by induction hypothesis its size is at most (";')+ (k—1)>,., (";'). This
together with the upper bound on |7 (x)| adds up to (}) + (k—1)>7,.,_;(}), as
claimed. O

5. Proof of the main result

In this section we present a proof of Theorem 1.2 in the following stronger form.
To state it we define

k+1
c(k,s) = maX{l,m}.

Theorem 5.1. Let L ={/1<(r<---<{ls} be a set of non-negative integers, let
k=2 and let & be a k-wise L-intersecting family of subsets of an n-element set.

Then
k+s—1/n n
Fl{— —1 .
7 s+ 1 (s)+(k )Z(l)

i<s—1

Moreover, if L is not an interval, i.e., there exists an index 1<i<s— 1 such that
liv1 — (=2, then

|57<c(k,s)<z> +k-1)Y (’:)

i<s—1

Note that this result together with Corollary 4.3 immediately implies Theorem 1.2.
It also shows that for an extremal k-wise L-intersecting family, L =
{0, ...,s — 1}.

The case k =2 of the above theorem follows from Frankl-Wilson and the case
s = 1 is covered by Theorem 3.2. We are going to use induction on n + s + k, but first
we list a few lemmas. These are simple inequalities, for completeness we supply
sketches of proofs, standard in Linear Programming and in Extremal Hypergraph
Theory.

Lemma 5.2. Suppose that for integers n=s>3, k=3 and non-negative reals c,
10,115 .-, [fu the following inequalities hold.

> iﬁ<c'S<Z) +k—1) > z(’j)

0<i<n i<s—1
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n .
fi<k—1)| . for i<s—2
1
n
> et 3 (1)

i<s+1 i<s—1

Then

Proof. Consider a vector f = (fo, f1, ..., /) which maximizes > f; and has maximum
number of 0 coordinates. For j>i>s + 1 we can replace the coordinates f; and f; by
Ji—h and fi +h if f;=h>0, without changing the sum. It is easy to see that by
repeating this operation we can suppose that f; =f;,; =0, fi;3= - =f, =0, and
equality holds in all conditions. Then f; = (k — 1)(}) for i<s—1, fs2 =55 (})
which gives the assertion of the lemma. [

The next two statements can be proved similarly to Lemma 5.2.

Lemma 5.3. Suppose that for integers n=s=3, s>t, k=3 and non-negative reals
10,115 -, [fu the following inequalities hold:

ZLEp=()0) ez (L)0)

fi< (k- 1)(’7) for i<s—1.

l

Then

Lemma 5.4. Suppose that for integers n=s>=3, k=3 and non-negative reals fy,
f1, ....fn the following inequalities hold.

(L) Q) () e 2 ()0

i +ﬂ+fs+1<(k—1)(s”l>
n
i

f}S(k—l)( ) for i<s—2.
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Then

S R )

0<i<n i<s—1

Lemma 5.5. Let k,s>3 and suppose that F , is a family of r-element subsets of [n] such
that no k of them have an intersection of size s — 1. Then

I%Kk_l( " )
) s—1

Proof. In the case of r =5 each (s — 1)-subset of [#] can be contained in at most
(k —1) members of #,. Then a double counting gives s |#,|<(k —1)(,",) and we
get the first formula.

In the case of r = s+ 1 let X be an (s — 2)-subset of [n] and consider . [X] =
{F\X|X cFeZ% .} Itisa 3-uniform system with the property that if an element is
contained in at least k triples, then those triples contain another common element.
This implies that each triple has an element of degree at most k — 1. Adding together
the degrees of such vertices we obtain

[ FenlXll< Y degr )< (k= 1DIH)\X].

deg(y)<k-—1

Now a double counting gives

Fal((7,) = X 1l (", )t Do-s+2),

|X|=s-2

which implies the second inequality in the lemma. [

Proof of Theorem 5.1. We prove the theorem by induction on n+ s+ k. Since
obviously |7 |<2", the result is true for all n<s. The statement is also true for k =2
by Frankl-Wilson and the case s = 1 is covered by Theorem 3.2. So from now on,
assume that n>s, k>3 and s>2. Note also that by Corollary 4.2, more precisely by
(1) we may suppose that /; = 0 and by Eq. (2) we can also assume that L is not an
interval, i.e., ;1 — £;=2 for some i.

Let # be a family of subsets of an n-element set satisfying the conditions of the
theorem. Let x be an arbitrary element of the underlying set and Z(x) =
{FeZ|xeF}. If |7(x)] gc(k,s)(fy’:ll) + (k- 1)21@72("?1)7 then we can use
induction on n. Indeed, 7\ (x) is a k-wise L-intersecting family on n — 1 vertices
so its size is at most ¢(k,s)(";") + (k — 1)3>;<,_,(*;"). This together with the upper
bound for |7 (x)| adds up to c(k,s)(}) + (k= 1)>",<,_;(}), as claimed. From now
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on, we may suppose that

Feaka () re-n X (") ®)

i<s—2

holds for every vertex xe|n].
If /,>=2, then the last inequality together with Lemma 4.4 imply that

n f3 /5
Fl<m (200,12 20,
1 mk</2 { 2 fz})

So, using the induction hypothesis for n//> <n/2 we get

|97\<1%;1 (”iz) k1) Zl (”{2)

i<s—

<wrner () 2 0)

i<s—1

as claimed. Here (kK +s— 1)27°<(k + 1)/(s + 2) holds since s >2. Therefore we may
suppose that /, = 1, and since L is not an interval we have that /,>s>3.
Next, note that for every vertex xen] the family Z[x] = {F\{x}|xeFeZ}

is k-wise {0,/3 — 1, ...,/; — 1}-intersecting on n— 1 elements. Thus by induction
hypothesis
n—1 n—1
Fol=rll<aes 0" Jrw-n X ("), )
s—1 5 i

Comparing this with (3) we get c(k,s — 1)>c(k,s)>1. So from now on, we may
suppose that c(k,s — 1)>1, i.e., k=s> +s5— 1>11.

Let #; ={FeZ||F| =i} and let f; = |#,;|. Adding up (4) for every xe[n] we
obtain

; ifi :%;] |7 (x)|<c(k,s—1)s <Z) + (k- l)ig;i (’:)

If/s=s+ 1, then FouF U UF o is a k-wise {1, ...,/ }-intersecting system.
Thus Theorem 1.1 implies that

S f<k-1 Y ()
i<st1 i<s—1\ 1

In addition, clearly f;<(})<(k —1)(%) for all i. Therefore all three conditions of
Lemma 5.2 hold with ¢ = ¢(k,s — 1) and it implies that

7| :[Sznf,SHch(k,sf 1)<':) 4 (k- 1)i§1(':).

This is the desired upper bound, since c(k,s)>c(k,s — 1) ;5.
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Now it remains to consider the case /; = s. Then there exists 2<7<s — 1 such
that L={0,1,2,...,s —t,s —t+2,...,5s — 1,s}. First suppose that t>2. Consider
F|X)={F\X|XcFeZ} where | X| =s —t. Itisa k-wise {0,2, 3, ..., t}-intersecting
family. In this family /, > 1, and /> does not divide each member of L', so Corollary
4.5 gives that

—(s—t¢ —(s—1t
|ym<(" (s )>+(k—1)z<" (s )).
4 i<i—1 L
Adding this up for all X, we obtain

S(,0 )= X

i<n | X|=s—1

(L))
e (1))

(L0 e 2 (2)0)

Then Lemma 5.3 leads to the desired upper bound for |#| = > f;.

Finally suppose that r =2, i.e., L=1{0,1,2,...,5 —2,s}. Let X be a set of size
s — 2. Then Z[X] is k-wise {0,2}-intersecting. Using the induction hypothesis for
Z|X] and that k=11 one gets

|97m|<%(”‘<;‘2)) k- 1)(”—01*—2))

+(k1)(”_(;_2)).

Adding this up gives

>(,5L)i= X e

i<n

SO0 2 (L0
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Since s>=3, k=7 and no kK members of # have intersection size s — 1, we can use
Lemma 5.5 to deduce that

. o n k—1( n 6(k—1)( n
fsl+fs+fs+l<<s_l)+ s (s—l>+s(s+l)<s—l)

<(k—1)<sfl).

Now all the three constraints of Lemma 5.4 hold, so it implies the desired upper
bound for || = Y f;, and completes the proof of the theorem. [

6. Concluding remarks

Let L ={/,</,<--- </} be a subset of non-negative integers of fixed size s. In
this paper we have established an asymptotically tight bound on the maximum size
of a k-wise L-intersecting family of subsets of an n-element set for all k=2 and s>1.
On the other hand, when a specific set L is given, it looks plausible that this bound
can be improved. Here we have already some preliminary results in this direction.
For example, we obtained better estimates when L is not an interval or when £, —
/1 =2 and does not divide each /; — /;. But these results form only the tip of the
iceberg, and one definitely needs more insight and new ideas to deal with the general
question of estimating m(n, L) for various sets L.

We think that our c¢(k,s) is not too far from the best possible, in the sense that
there might be infinitely many L such that lim inf mk(n,L)(’S’)fl/k>s‘C for some
C>=2. However, only very few exact results are known, e.g., it was proved in [5] that
lim sup ma (n, {0, 1,3}1) ()" = 1/28.

Another interesting question that we know little about, is what happens if, in
addition to being k-wise L-intersecting, we assume that our family is uniform. Using
our results one can obtain correct asymptotics for the maximum size of such set
systems for all k£>3. Indeed, let # be a uniform k-wise L-intersecting family on n
elements and let |L| = s. If L = {0, 1, ..., 5 — 1} then, using the proof of Lemma 2.1
together with the uniformity of #, we can easily get that L/’|<max{1,s+1 ().

Moreover, since &=L > the proof of Corollary 4.2 together with Theorem 5.1

s+l (A+1 3+2
implies that even for a general set L of size s

|97<max{1,l;Tll} : (:) + (k- 1)25:1(':).

On the other hand, the construction in Lemma 2.2 can be used to show that this
bound is asymptotically best possible and there exist uniform k-wise {0, ...,s — 1}-
intersecting families of size at least mdx{l,Hl (1 =s/n)}-(}). Still, it would be
interesting to obtain precise results on the maximum size of uniform k-wise L-
intersecting set systems for k> 3. In particular, if k — 1<s + 1 it seems plausible that
the maximum is (}).
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