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Abstract. A code c is a covering code of X with radius r if every element of X is within Hamming distance

r from at least one codeword from c. The minimum size of such a c is denoted by crðXÞ. Answering a

question of Hämäläinen et al. [10], we show further connections between Turán theory and constant

weight covering codes. Our main tool is the theory of supersaturated hypergraphs. In particular, for

n > n0ðrÞ we give the exact minimum number of Hamming balls of radius r required to cover a Hamming

ball of radius rþ 2 in f0; 1gn.
We prove that crðBnð0; rþ 2ÞÞ ¼

P
1�i�rþ1 ð bðnþi	1Þ=ðrþ1Þc

2
Þ þ bn=ðrþ 1Þc and that the centers of the

covering balls Bðx; rÞ can be obtained by taking all pairs in the parts of an ðrþ 1Þ-partition of the n-set and

by taking the singletons in one of the parts.
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1. The Generalized Covering Radius Problem

Let Q be a (finite) q-ary alphabet. We usually identify Q with the set of integers
f0; 1; 2; . . . ; q	 1g. The set of sequences of length n, Qn, is a metric space with the
Hamming distance, dðx; yÞ ¼ jfi : xi 6¼ yigj for x ¼ ðx1; . . . ; xnÞ and y ¼ ðy1; . . . ; ynÞ,
x; y [Qn. The Hamming ball, Bn;Qðx; rÞ, about the center x is the set of all vectors
v [Qn such that dðx; vÞ � r. The subscript Q is usually omitted if it is clear from the
context, especially when Q ¼ f0; 1g. We say that x has weight dðx; 0Þ, where
0 ¼ ð0; 0; . . . ; 0Þ. We frequently call the set of codewords of f0; 1gn of weight ‘ the
‘-th layer of the hypercube. It is also identified with the set of all ‘-subsets of the set
½n� denoted by ð ½n�

‘
Þ. Namely, x [Qn is identified with X(½n� when xi ¼ 1 iff i [X . If

x; y [Qn are identified with subsets X ;Y(½n� then dðx; yÞ ¼ jX4Y j.
A covering code c of a set X(Qn with radius r is a subset c(Qn with the

property that every element of X belongs to some Hamming ball with radius r



centered about an element of c, i.e.,

X( [y [c Bn;Qðy; rÞ:

We often call a covering code of radius r an r-cover. The minimum size of such a
code is denoted by crðXÞ and is called the r-covering number of X . The subscript r
will be omitted when the radius r is understood from the context, especially in the
case r ¼ 1. The 1-covering number is simply called the covering number. If X is the
full set of codewords, X ¼ Qn, then minimizing jcj is called the covering radius
problem and was studied, e.g., by Graham and Sloane [9]. More recent research
deals not with the whole space but with smaller important subsets of it. For example,
Hämäläinen, et al. [10] proposed to determine crðBnð0; ‘ÞÞ.

The main goal of this paper is to show how the results of extremal hypergraph
theory can be applied to find an (asymptotic) solution for this problem. We will show
connections between Turán theory and constant weight covering codes.

2. Constant Weight Codes and Turán’s Theorem

An ðn;w; ‘; rÞ-code is a set, c, of 0–1 vectors of length n with weight w such that every
word of weight ‘ lies within Hamming distance r from at least one element of c. In
other words, the Hamming balls of radius r, centered about the elements of c(ð ½n�

w
Þ,

cover all vectors of weight ‘. The minimum size of such a code is denoted by
Kðn;w; ‘; rÞ and was studied by several authors, e.g., see the survey by Etzion et al. [6].

If w > ‘, for example, then Kðn;w; ‘;w	 ‘Þ is the well-known setcover number,
Cðn;w; ‘Þ. A code c is an ðn;w; ‘;w	 ‘Þ-code, if it is a family of w-subsets such that
every ‘-subset of ½n� is contained in at least one of the codewords. Thus its size is at
least ð n‘ Þ=ð

w
‘ Þ. For fixed w and ‘, Rödl [15] proved that, as n tends to infinity,

Cðn;w; ‘Þ ¼ ð1 þ oð1ÞÞ
n

‘

 !,
w

‘

 !
:

For w < ‘, the determination of the minimum ðn;w; ‘; ‘	 wÞ-code is still open in
general. It is the Turán problem, and Kðn;w; ‘; ‘	 wÞ is denoted by Tðn;w; ‘Þ. Turán
[18] (also see in Bollobás [1]) proved that

Tðn; 2; ‘Þ ¼
X

1�i�‘	1

bðnþ i 	 1Þ=ð‘	 1Þc

2

 !
¼ n2

2ð‘	 1Þ þOðnÞ: ð1Þ

Consider a partition of ½n� into ð‘	 1Þ parts, ½n� ¼ P1 [ � � � [ P‘	1, each part of size
either bn=ð‘	 1Þc or dn=ð‘	 1Þe. Take all pairs from the Pi’s, 1 � i � ‘	 1 as the
centers of Hamming balls of radius ‘	 2, i.e., let the set of centers to be

[‘	1

i¼1

Pi

2

 !
:
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Turán showed that this is the only way to get the extremal ðn; 2; ‘; ‘	 2Þ-code. Note
that this construction gives a cover not only for the ‘-th layer, but almost for the
whole Hamming ball, Bnð0; ‘Þ, too. We will see in Theorem 12 that the value of
c‘	2ðBnð0; ‘ÞÞ is close to Tðn; 2; ‘Þ.

For the general case (i.e., for w > 2), not even the limit limn?? Tðn;w; ‘Þð n
w Þ

	1, is
known. The existence of this limit was shown by Katona et al. [11], see also Etzion et
al. [6]. The current best lower bound for the Turán number, due to de Caen [2], is
Tðn;w; ‘Þ � ð n

w Þð ‘	1
w	1

Þ	1ðn	 ‘þ 1Þðn	 wþ 1Þ	1. Together with the obvious upper
bound ð n

w Þ we obtain that the order of magnitude of the Turán number (for fixed w
and ‘) is exactly nw, i.e.,

Tðn;w; ‘Þ ¼ YðnwÞ: ð2Þ

Here for two functions f ; g : R?R, f ¼ YðgÞ if there are positive constants x0, c1

and c2 such that c1 � f ðxÞ=gðxÞ � c2 for x > x0.
For further results on the topic, see Sidorenko’s survey [16].

3. The Covering Radius of Hamming Balls

In this section we give the asymptotic value of the r-covering number crðBnð0; ‘ÞÞ for
all fixed r; ‘ with ‘ > r. For ‘ � r the r-covering number is obviously 1. We give the
exact bounds when ‘ ¼ rþ 1 and ‘ ¼ rþ 2 in the last section. Some of these bounds
are corollaries of a more general result about covering products of graphs, which is
interesting on its own and appears in the next sections.

Let c be an optimal ðn; ‘	 r; ‘; rÞ-code which is a family of ð‘	 rÞ-element sets of
size Tðn; ‘	 r; ‘Þ. The r-balls centered about the elements of c together with the r-
balls centered about all the vectors of weight at most ð‘	 r	 1Þ cover Bnð0; ‘Þ.
Adding to c all the small sets (i.e., those having less than ð‘	 rÞ elements), we obtain

crðBnð0; ‘ÞÞ � Tðn; ‘	 r; ‘Þ þ
X

i�‘	r	1

�
n

i

�
: ð3Þ

From (2) we have that the second term in (3) is negligible compared to the
Tðn; ‘	 r; ‘Þ as n??. We shall prove in Theorem 2 that this construction is
asymptotically best possible. For this, we use the result on generalized Kneser
graphs. A generalized Kneser graph is a graph Kðn; k; tÞ ¼ ðV ;EÞ, with vertex set
V ¼

	 ½n�
k



and E ¼ ffF ;F 0g [V6V : jF \ F 0j < tg. Let wðGÞ denote the chromatic

number of the graph G. Frankl and Füredi proved the following.

THEOREM 1. Frankl and Füredi [8] wðKðn; k; tÞÞ ¼ ð1 þ oð1ÞÞTðn; t; kÞ.

Next we determine crðBnð0; ‘ÞÞ asymptotically.
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THEOREM 2. For ‘ > r � 1 fixed and n?? we have

crðBnð0; ‘ÞÞ ¼ ð1 þ oð1ÞÞTðn; ‘	 r; ‘Þ:

Theorem 2 gives an asymptotic expression for cr
		 ½n�

‘




as follows.

Kðn; ‘	 r; ‘; rÞ ¼ Tðn; ‘	 r; ‘Þ �

cr
½n�
‘

� �� �
� crðBnð0; ‘ÞÞ 	

X
i�‘	r	1

�
n

i

�

¼ ð1 þ oð1ÞÞTðn; ‘	 r; ‘Þ:

The Turán configuration (i.e., an ðn; ‘	 r; ‘; rÞ-code) uses codewords (centers)
located only at the ð‘	 rÞ-th layer. The above inequalities imply that allowing
centers outside of the ð‘	 rÞ-th layer one can not make a (significantly) smaller
r-cover of the ‘-th layer.

Proof of Theorem 2. The upper bound follows from (3). For the lower bound we
show that crðBnð0; ‘ÞÞ � wðKðn; ‘; ‘	 rÞÞ, then Theorem 2 follows from Theorem 1.

Let us assume, on the contrary, that c ¼ fU1;U2; . . . ;Ucg is an r-cover of Bnð0; ‘Þ
with c < w ¼ wðKðn; ‘; ‘	 rÞÞ. Let

½n�
‘

� �
¼ a1 [ � � � [ac

such that

ai ¼ F [
½n�
‘

� �
: jF 4Uij � r

� �
:

Next let

b1 ¼ a1; b2 ¼ a2na1; . . . ; bc ¼ acnða1 [ . . .ac	1Þ:

The sets bi, i ¼ 1; . . . ; c form a partition of
	 ½n�

‘



. As c < w, there is a bi and

F ;F 0 [bi such that jF \ F 0j < ‘	 r. We have

jF 4Uij � r; jF 0 4Uij � r:

jFnF 0j > r; jF 0 nF j > r:

However, from the triangle inequality we have

2r < jF 4F 0j � jF 4Uij þ jF 0 4Uij � 2r;

a contradiction. &
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One can also note that Theorem 2 gives an asymptotic expression in terms of the
Turán numbers although these numbers are not known in general. For the cases
when Tðn; ‘	 r; ‘Þ are known we can show more.

4. Supersaturated Hypergraphs

In the previous section we determined, in the asymptotic sense, the r-covering
numbers of the Hamming ball Bnð0; ‘Þ and the ‘-th layer of the hypercube. In this
section we give a direct proof.

THEOREM 3. cr
		 ½n�

‘




¼ Tðn; ‘	 r; ‘Þ þ oðn‘	rÞ.

Before formally proceeding with the proof we recall some definitions and results
from hypergraph theory.

A hypergraph is a pair H ¼ ðV ;EÞ with vertex set V and set of edges E(2V . The
number of its edges is denoted by eðHÞ. A hypergraph with all edges having
cardinality h is an h-uniform hypergraph. The complete h-uniform hypergraph, K‘

h,
has ‘ vertices and ‘

h

	 

edges. The complement of an h-uniform hypergraph H ¼

ðV;EÞ is an h-uniform hypergraph H ¼ ðV ; V
h

	 

nEÞ.

Let L be an h-uniform hypergraph. The Turán function exðn;LÞ is the maximal
number of edges in an h-uniform hypergraph on n vertices with no subhypergraph
isomorphic to L. Considering complements one can see that

Tðn;w; ‘Þ ¼
�
n

w

�
	 exðn;K‘

wÞ:

An h-uniform hypergraph G on n vertices is supersaturated (with respect to L) if
eðGÞ > exðn;LÞ. We are going to use the following theorem of Erdo

0 0

s and
Simonovits.

THEOREM 4. [5] For any given real number c > 0 and an h-uniform hypergraph L
there exists a c0 ¼ c0ðc;LÞ > 0 such that the following holds:
If G is an h-uniform hypergraph on n vertices with eðGÞ > exðn;LÞ þ cnh then G

contains at least c0nt copies of L, where t ¼ jVðLÞj.

The number of common elements of the ‘-th layer and a Hamming ball Bnðx; rÞ can
be easily computed, it depends only on the weight of x. We obtain that there exists a
constant g‘ > 0 depending only on ‘ such that for every x with weight other than
‘	 r

Bnðx; rÞ \
½n�
‘

� �








 � g‘n

r	1: ð4Þ

Actually, the right hand side is at most Oðnr	di=2eÞ for any x of weight ‘	 rþ i,
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ð0 � i � 2rÞ. Another version of the above inequality is used in the next section as
Lemma 1.

Proof of Theorem 3. The upper bound for the r-covering number follows from the
definition of the Turán number, or from (3). To prove the lower bound consider an
r-cover c of

	 ½n�
‘



and suppose that jcj � Tðn; ‘	 r; ‘Þ 	 cn‘	r for some c > 0. We

are going to show that n < n1ðcÞ.
Let H be the ð‘	 rÞ-uniform hypergraph with edges corresponding to the

codewords of c of weight ‘	 r and let c
0 denote the rest of the code,

c
0 ¼ c	 EðHÞ. Let H denote the complement of H. For the size of H we have

eðHÞ �
�

n

‘	 r

�
	 jcj � exðn;K‘

‘	rÞ þ cn‘	r:

Thus, by Theorem 4, there are at least c0n‘ copies of the complete hypergraph K‘
‘	r in

H. Thus the ð‘	 rÞ-element sets of c leave c0n‘ uncovered ‘-sets. These ‘-sets must be
covered by the members of c

0. However each member of c
0 covers at most g‘n

r	1

‘-element set by (4). Therefore we have jc0j � c0n‘=ðg‘nr	1Þ, implying�
n

‘	 r

�
� Tðn; ‘	 r; ‘Þ > jcj � jc0j � c0n‘

g‘nr	1
:

Hence n < g‘=c
0 follows. &

5. The Covering Radius of Graph Products

In this section we consider a covering problem in a power of a graph. In fact, we are
going to determine (or estimate) the r-covering number of a certain set X in the usual
q-ary space; only in the definition of X we use a q-vertex graph G. To avoid
confusion between graph-theoretic distance and the Hamming distance, in this
section we shall denote the Hamming distance by dHamm and the distance in a graph
G by dG. Let G ¼ ðVðGÞ;EðGÞÞ be a graph with q vertices and let a [VðGÞ be a
vertex of degree d. Denote the set of its neighbors by N. Denote the set of
vertices of distance 2 from a by N� (the set of second neighbors), i.e.,
N� ¼ fv [VðGÞ : dGða; vÞ ¼ 2g, and its size by D. Define the vertex set of the
product of n copies of G; Gn as follows.

VðGnÞ ¼ VðGÞn ¼ fðv1; . . . ; vnÞ : vi [VðGÞ; i ¼ 1; . . . ; ng:

As usual, we also abbreviate ðv1; . . . ; vnÞas v, and the special vertex ða; a; . . . ; aÞ as a. We
say that a vertex has weight i if its Hamming distance is i from the special vertex a. As
before, we say that c is an r-cover of X(VðGnÞ if every element of X is within
Hamming distance r from at least one element ofc. Define the edge set ofGn as follows.

EðGnÞ ¼ ffu; vg : fuk; vkg [EðGÞ for some k; and ul ¼ vl; for all other l 6¼ kg:
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In general, the graph distance between the vertices fu1; . . . ; ung and fv1; . . . ; vng isP
1�i�n dGðui; viÞ, and thus the Hamming distance does not exceed it. Let the i-th

neighborhood of v [VðGnÞbe the set of vertices inGn at graph distance exactly i from v.
Let Gnðv; lÞ be the union of i-th neighborhoods of v for 0 � i � l.

We study the minimum size of an r-cover of Gnða; rþ 2Þ by proving that the
following two constructions give asymptotically optimal r-covers. In general this
yields a stronger result as to study simply the coverings of the Hamming balls in
VðGÞn, because the i-neighborhood of a in Gn is usually a small fraction of the
Hamming ball with center a and radius i.

First consider a partition of ½n�, expressing ½n� as a disjoint union of P1; . . . ;Prþ1

such that

n

ðrþ 1Þ

� �
� jPij � jPiþ1j �

n

ðrþ 1Þ

� �
; for 1 � i � r:

Construction 1. (An r-cover of Gnða; rþ 2Þ). Let

S ¼fv ¼ ðv1; . . . ; vnÞ : dHammðv; aÞ ¼ 2 with vi; vj [N for some i; j [Ps;

i 6¼ j; 1 � s � rþ 1g

and for 1 � s � rþ 1

Ss ¼ fv ¼ ðv1; . . . ; vnÞ : dHammðv; aÞ ¼ 1 with vi [N for some i [Psg;

S� ¼ fv ¼ ðv1; . . . ; vnÞ : dHammðv; aÞ ¼ 1 with vi [N� for some i [ ½n�g:

Define

c ¼ S [ S1 [ S� [ fag:

Claim. c is an r-cover of Gnða; rþ 2Þ of size

d2Tðn; 2; rþ 2Þ þ d
n

ðrþ 1Þ

� �
þ Dnþ 1: ð5Þ

Indeed, let v [Gnða; rþ 2Þ. As dGnðv; aÞ ¼
P

1�i�n dGðvi; aÞ, so dGnðv; aÞ � rþ 2
implies that dHammðv; aÞ � rþ 2. First, consider the case when v [Gnða; rþ 2Þ and
dHammðv; aÞ ¼ rþ 2. Then n	 ðrþ 2Þ coordinates of v are equal to a, and the other
rþ 2 are from N. Since there are only rþ 1 Pi’s, at least two of these coordinates, lie
in some Ps. Therefore v is contained in a ball of radius r about a center from S. These
centers, together with a, cover all points of v [Gnða; rþ 2Þ except some of those with
dHammðv; aÞ ¼ rþ 1 and dGnðv; aÞ ¼ rþ 1 or rþ 2. These are covered by the rest of c.

To calculate the size of this cover, notice that we have obtained the members of S
by changing the coordinates of a at exactly two places (from a set Ps) and the new
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coordinates are independently chosen from N, thus jSj ¼ jNj2Tðn; 2; rþ 2Þ giving us
the first term in (5). Similarly, the members of Ss are obtained by changing a single
coordinate in Ps, thus jS1j ¼ jNjbn=ðrþ 1Þc, and we obtain the second term in (5).
Finally, the members of S� are obtained by changing any single coordinate of a, we
obtain the third term. This concludes the proof of the Claim.

With a very similar argument we have the following slightly different cover.

Construction 2. (An r-cover of Gnða; rþ 2Þ). Define

c ¼ S [ S1 [ S2 [ fag;

then c is an r-cover of Gnða; rþ 2Þ of size

d2Tðn; 2; rþ 2Þ þ d
n

ðrþ 1Þ

� �
þ ðnþ 1Þ

ðrþ 1Þ

� �� �
þ 1:

The following Theorem shows that the Constructions 1 and 2 are asymptotically
optimal.

THEOREM 5. For fixed r � 1 and n > n0ðq; rÞ

d2 Tðn; 2; rþ 2Þ � crðGnða; rþ 2ÞÞ � d2 Tðn; 2; rþ 2Þ þ anþ 1;

where a ¼ minfDþ ðd=ðrþ 1ÞÞ; 2d=ðrþ 1Þg.

To prove this Theorem we need the following lemma.

LEMMA 1. Let Q ¼ f0; 1; . . . ; q	 1g, X ¼ Qn be the space of codewords with the
Hamming distance, and let L be the set of words from X of weight rþ 2. Suppose that
wðxÞ > 2, then for n � 4rþ 3

jBn;Qðx; rÞ \ Lj � 5
n	 3

r	 1

� �
ðq	 1Þrþ2:

Proof. Let w :¼ wðxÞ. Count y [Bðx; rÞ \ L according to the number of common
elements of the supports of x and y. Denote it by j þ k, where j is the number of
coordinates i such that yi ¼ xi 6¼ 0, and k is the number of coordinates such that
yi 6¼ xi and both are non-zero. These coordinates can be selected in

	
w
j



w	j
k

	 

ways

from the support of x and there are
	

n	w
rþ2	j	k



ways for the rest of the support of y.

Notice that dðy; xÞ ¼ ðrþ 2 	 j 	 kÞ þ kþ ðw	 j 	 kÞ, thus dðy; xÞ � r implies
wþ 2 � kþ 2j, and we have that j þ k � dwþ 2=2e. Each coordinate of the
support can take q	 1 or q	 2 distinct values, thus we obtain

jBðx; rÞ \ Lj ¼
X
j

X
k

w

j

� �
w	 j

k

� �
n	 w

rþ 2 	 j 	 k

� �
ðq	 2Þkðq	 1Þðrþ2Þ	j	k;
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where the sum is taken for all pairs of j � 0 and k � 0 such that wþ 2 � kþ 2j (and
of course kþ j � w). (For q ¼ 2, k ¼ 0 the value of the expression ðq	 2Þk is taken
to be 1.) Denote the above sum by Wðn; q;w; rÞ. Writing

	
w
j



w	j
k

	 

as
	

w
jþk



jþk
k

	 

,

substituting j þ k ¼ s and taking the sum for all k’s one has the upper bound

Wðn; q;w; rÞ �
X

dwþ2
2 e�s�minfw;rþ2g

�
w

s

�
n	 w

rþ 2 	 s

� �
ðq	 1Þrþ2: ð6Þ

As a polynomial of n the highest degree corresponds to the case when s is minimum,
and for n � 4r the first term dominates the sum. Thus we obtain

Wðn; q;w; rÞ
ðq	 1Þrþ2

�

3

3

� �
n	 3

r	 1

� �
; w ¼ 3

4

4

� �
n	 4

r	 2

� �
; w ¼ 4

2 w
dwþ2

2 e

� �
n	w

rþ2	dwþ2
2 e

� �
; w > 4

8>>>>>>>><
>>>>>>>>:

� 5
n	 3

r	 1

� �
for n � 4rþ 3:

ð7Þ

We give the details of these calculations in Appendix A. &

We also need the following result of Lovász and Simonovits.

THEOREM 6. [12] Let F be a graph on n vertices with n
2

	 

	 n2=2ð1 	 1=tÞ edges,

where t � rþ 1 is a real number. Let orþ2ðFÞ denote the number of complete ðrþ 2Þ-
graphs in the complement of F. Then

orþ2ðFÞ �
tðt	 1Þ . . . ðt	 r	 1Þ

ðrþ 2Þ!
nrþ2

trþ2
� t	 r	 1

t

nrþ2

ðrþ 2Þðrþ 1Þrþ1
: ð8Þ

The above Theorem gives a very good lower bound for orþ2ðFÞ if
eðFÞ < n

2

	 

	 n2=2ð1 	 1=rþ 1Þ. However, Tðn; 2; rþ 2Þ can be slightly larger. It is

easy to see using extremal construction for Tðn; 2; rþ 2Þ, that

�
n

2

�
	 n2

2
1 	 1

rþ 1

� �
� Tðn; 2; rþ 2Þ ¼

�
n

2

�
	 exðn;Krþ2Þ

�
�
n

2

�
	 n2

2
1 	 1

rþ 1

� �
þ r: ð9Þ

The next theorem of Erdo
0 0

s takes care of supersaturated graphs with slightly more
edges than exðn;Krþ2Þ.
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THEOREM 7. [3] There is a positive constant kr (for any given r) such that the
following holds. If F is a graph on n vertices with eðFÞ ¼ n

2

	 

	 exðn;Krþ2Þ 	 x edges,

where 0 � x < krn, then

orþ2ðFÞ � x
Y

1�i�r

�
n	 1 þ i

rþ 1

�
� x

2

n

rþ 1

� �r

: ð10Þ

Proof of Theorem 5. The upper bound for the covering number follows from
Constructions 1 and 2. For the lower bound we are going to use the same ideas as in
the proof of Theorem 3 but with more precise tools. Define

n0ðq; rÞ :¼ max 10ðq	 1Þrþ2d2 ðrþ 1Þrþ1

ðr	 1Þ! ;
2r

kr

( )
; ð11Þ

where kr is a function of r coming from Theorem 7. Assume that n > n0ðq; rÞ. Let X
be the ðrþ 2Þ-nd neighborhood of a in Gn with all coordinates in N [ fag:

X ¼ fv ¼ ðv1; . . . ; vnÞ [Gn : dHammðv; aÞ ¼ dGnðv; aÞ ¼ rþ 2; vi [N [ fag;
1 � i � ng:

We shall give a lower bound on the r-covering number of X which is a lower bound
on an r-covering number of Gnða; rþ 2Þ as well. Let c � VðGÞn be a minimal r-cover
of X , and assume that

jcj � d2 Tðn; 2; rþ 2Þ: ð12Þ

We are going to prove in two steps that equality holds here. Let

c2 ¼ fx ¼ ðx1; . . . ; xnÞ [c : dHammðx; aÞ ¼ 2; xi [N [ fag; for all 1 � i � ng:

First, we will show that jc2j=d2 � Tðn; 2; rþ 2Þ 	 2r and, as a second step, that
jc2j=d2 � Tðn; 2; rþ 2Þ.

Define the following graph H ¼ ðVðHÞ;EðHÞÞ, corresponding to c2. The vertex
set is ½n�6N and two vertices ði; sÞ and ð j; tÞ are joined if i 6¼ j and there is a v [c2

such that vi ¼ s, vj ¼ t. We shall show that if jc2j is not large enough then we have
many uncovered elements of X which could not be covered by cnc2. For this, we
count the number of Krþ2’s in the complement of H.

Now define all ‘‘transversal’’ graphs HZ for all Z [Nn, Z ¼ ðv1; . . . ; vnÞ as follows:

VðHZÞ ¼ fð1; v1Þ; . . . ; ðn; vnÞg; EðHZÞ ¼ EðHjHZÞ:

Let, for some l [Nn, Hl have the minimal number of edges among the dn

transversal graphs. Then

jc2j ¼ jEðHÞj ¼ 1

dn	2

X
Z [Nn

jEðHZÞj � d2jEðHlÞj ð13Þ
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If jEðHlÞj ¼ n
2

	 

	 n2

2
1 	 1=tð Þ for any t < rþ 1 then, using (9) and (13), jcj � jc2j ¼

jEðHÞj � d2Tðn; 2; rþ 2Þ and we are done. Suppose that for some t � rþ 1 one has

jEðHlÞj ¼
�
n

2

�
	 n2

2
1 	 1

t

� �
: ð14Þ

Then

EðHÞ � d2

�
n

2

�
	 n2

2
1 	 1

t

� �� �

¼ d2

�
n

2

�
	 n2

2
1 	 1

rþ 1

� �� �
	 n2 d2

2ðrþ 1Þ6
t	 r	 1

t
: ð15Þ

Applying (8) for EðHlÞ we obtain

orþ2ðHlÞ �
t	 r	 1

t

nrþ2

ðrþ 2Þðrþ 1Þrþ1
; ð16Þ

where orþ2ðHlÞ is the number of Krþ2’s in Hl. These orþ2ðHlÞ members of X must
be covered by cnc2, thus

orþ2ðHlÞ �
X

x [cnc2

jX \ Bðx; rÞj � jcnc2j max
x [cnc2

jX \ Bðx; rÞj: ð17Þ

We may suppose that c is a minimal r-cover of X, so it contains no element
x [VðGnÞ such that the Hamming ball Bðx; rÞ is disjoint to X. This implies that for all
x [cnc2, dHammða; xÞ > 2, therefore one can use Lemma 1. We have

jX \ Bðx; rÞj � 5ðq	 1Þrþ2 n	 3

r	 1

� �
< nr	1 5ðq	 1Þrþ2

ðr	 1Þ! : ð18Þ

The above three inequalities (16), (17) and (18) give

jcnc2j �
t	 r	 1

t
6

n3ðr	 1Þ!
ðrþ 2Þðrþ 1Þrþ15ðq	 1Þrþ2

: ð19Þ

Combining (15) and (19) we have

jcj ¼ jc2j þ jcnc2j � d2

�
n

2

�
	 n2

2
1 	 1

rþ 1

� �� �

þ n26
t	 r	 1

t
	 d2

2ðrþ 1Þ þ
nðr	 1Þ!

ðrþ 2Þðrþ 1Þrþ15ðq	 1Þrþ2

 !
:

Here for n > n0ðq; rÞ (cf. (11)) the expression in the parantheses in the last term is not
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only positive but at least d2=2ðrþ 1Þ. However, (9) and (12) give that

jcj � d2

�
n

2

�
	 n2

2
1 	 1

rþ 1

� �� �
þ d2r;

so we obtain that

n26
t	 r	 1

t
6

d2

2ðrþ 1Þ � d2r:

Rearranging this yields that

n2

2
1 	 1

t

� �
� n2

2
1 	 1

rþ 1

� �
þ r:

This together with (9) implies in (14) that

jEðHlÞj ¼
�
n

2

�
	 n2

2
1 	 1

t

� �
�
�
n

2

�
	 n2

2
1 	 1

rþ 1

� �
	 r � Tðn; 2; rþ 2Þ 	 2r:

Thus

jEðHZÞj � Tðn; 2; rþ 2Þ 	 2r ð20Þ

holds for every Z [Nn. Note that, using (13), we have already obtained that
jcj � jc2j � d2Tðn; 2; rþ 2Þ 	 2rd2.

The second part of the proof is very similar to the first one, except we will use the
even more exact Theorem 7. We start with (20), and define again Hl as the minimal
transversal graph. We have

jEðHlÞj ¼ Tðn; 2; rþ 2Þ 	 x

for some 0 � x � 2r. Also (13) becomes

jc2j � d2jEðHlÞj ¼ d2Tðn; 2; rþ 2Þ 	 d2x: ð21Þ

Applying (10) for EðHlÞ we obtain

orþ2ðHlÞ �
x

2

nr

ðrþ 1Þr :

Then (19) becomes

jcnc2j �
x

2
6n6

ðr	 1Þ!
ðrþ 1Þr5ðq	 1Þrþ2

: ð22Þ
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Combining (21) and (22) we have

jcj ¼ jc2j þ jcnc2j � d2Tðn; 2; rþ 2Þ þ x

2
6 	 2d2 þ n

ðr	 1Þ!
ðrþ 1Þr5ðq	 1Þrþ2

 !
:

Here for n > n0ðq; rÞ (cf. (11)) the last term in the parentheses is positive. Thus the
equality holds in (12). &

6. Exact Bounds for crðBnð0; r þ 1ÞÞ, crðBnð0; r þ 2ÞÞ and c1ðBnð0; 3ÞÞ

One can reduce the problem of covering several layers of a hypercube to the problem
of covering a single layer using the following lemma.

LEMMA 2. cr
		 ½n�

k



[
	 ½n�
k	1




� cr

		 ½nþ1�
k




.

Proof. Let c be an r-cover of
	 ½n�

k



[
	 ½n�
k	1



. We construct a new code cnew of length

nþ 1 of the same size, jcnewj ¼ jcj, and prove that it is an r-cover of
	 ½nþ1�

k



. We

define

cnew ¼fC : C [c and jCj:rþ k ðmod 2Þg [
fC [ fnþ 1g : C [c and jCj þ rþ k is oddg:

Suppose U [
	 ½nþ1�

k



. We shall show that there is a C0 [cnew such that jC0 4Uj � r,

thus proving that U is covered by some r-ball centered about an element of our
cover.

There exists a C [c such that dðC;Unfnþ 1gÞ � r. As either C or C [ fnþ 1g
belongs to cnew and both distances dðC;UÞ and dðC [ fnþ 1g;UÞ are at most
dðC;Unfnþ 1gÞ þ 1 we are done for the case dðC;Unfnþ 1gÞ < r.

Now suppose that dðC;Unfnþ 1gÞ ¼ r. We have that jI j þ jJj þ dðI ; JÞ is even
for any sets I and J. So, in the case ðnþ 1Þ 6[ U, we have dðC;UÞ ¼ r, thus jCj þ
rþ k ¼ jCj þ dðC;UÞ þ jUj is even, so C [c and we are done. Finally, in the case
ðnþ 1Þ [U, the equation dðC;Unfnþ 1gÞ ¼ r implies that jCj þ rþ k ¼ jCj þ
dðC;UÞ 	 1 þ jUj is odd, so C [ fnþ 1g [cnew and we are done again. &

The following construction gives an optimal r-cover of Bnð0; rþ 1Þ.

Construction 3. (An r-cover of Bnð0; rþ 1Þ) Let n > 2r and define

c ¼ ff1g; f2g; . . . ; fn	 2rg; fn	 2rþ 1; . . . ; ngg:

Then c is an r-cover of Bnð0; rþ 1Þ of size n	 2rþ 1.

We shall use the following form of a theorem of Lovász.
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THEOREM 8. [13] If the family of all the ðrþ 1Þ-subsets of an ðnþ 1Þ-set is
partitioned into n	 2r classes ðn � 2ðrþ 1ÞÞ, then there is a class containing two
disjoint ðrþ 1Þ-sets.

THEOREM 9. For n > 2r we have crðBnð0; rþ 1ÞÞ ¼ n	 2rþ 1.

Proof of Theorem 9. The upper bound for the r-covering number follows from
Construction 3. The case n ¼ 2rþ 1 is obvious, so from now on we suppose that
n � 2rþ 2. Applying Lemma 2 with k ¼ rþ 1, we have

crðBnð0; rþ 1ÞÞ � cr
½n�

rþ 1

� �
[ ½n�

r

� �� �
� cr

½nþ 1�
rþ 1

� �� �
:

Now we proceed as in the proof of Theorem 2. Consider an r-cover c ¼
fU1; . . . ;Ucg of

	 ½nþ1�
rþ1



. Let ai be the set of ðrþ 1Þ-element sets covered by the

r-ball centered about Ui.

ai :¼
�
F [

½nþ 1�
rþ 1

� �
: jF 4Uij � r

�
; i ¼ 1; . . . ; c

and

b1 ¼ a1; b2 ¼ a2na1; . . . ; bc ¼ acnða1 [ . . .ac	1Þ:

The sets bi, i ¼ 1; . . . ; c form a partition of
	 ½nþ1�

rþ1



. For c � n	 2r, Theorem 8

implies that there is a class bi containing two disjoint ðrþ 1Þ-sets F , F 0. These two
disjoint ðrþ 1Þ-sets could not belong to any Hamming ball with radius r. Therefore
c � n	 2rþ 1 and the lower bound follows. &

For n > n0ðrÞ we give the exact minimum number of Hamming balls of radius r
required to cover the Hamming ball of radius rþ 2. The result of Tort addresses the
case r ¼ 1.

THEOREM 10. Tort [17] For n � 6

c1
½n�
3

� �� �
¼ ðn	 1Þ2

4

$ %
:

Using this, we find c1 Bnð0; 3Þð Þ.

THEOREM 11. For n > 1

c1 Bnð0; 3Þð Þ ¼ n2

4

� �
:
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Moreover, for n > 4

c1 Bnð0; 3Þð Þ ¼ c1
½n�
3

� �
[ ½n�

2

� �� �
:

Proof of Theorem 11. As in the previous constructions, consider a partition of the
vertex set into two parts of sizes bn=2c and dn=2e, and as a cover, take single element
sets from the smaller part and all pairs from each of the partite set. Thus every
3-element set is covered by some pair. Every 2-element set either belongs to a cover
itself, or is covered by some single element set. Similarly, every 1-element set is
covered by some pair. Empty set is covered by any single element set. This cover
gives us the upper bound for the covering number.

c1
½n�
3

� �
[ ½n�

2

� �� �
� c1 Bnð0; 3Þð Þ � Tðn; 2; 3Þ þ

�
n

2

�
¼ Tðnþ 1; 2; 3Þ ¼ n2

4

� �
:

The lower bound for c1

		 ½n�
3



[
	 ½n�

2




is provided by Tort’s result [17] using Lemma 2

for n � 5.

c1
½n�
3

� �
[ ½n�

2

� �� �
� c1

½nþ 1�
3

� �� �
� n2

4

� �
:

Note that for small n, for example for n ¼ 4, there are other optimal covers, e.g.,

fð0; 0; 0; 0Þ; ð1; 1; 1; 0Þ; ð0; 1; 1; 1Þ; ð1; 0; 0; 1Þg:

A simple case analysis shows that c1 B4ð0; 3Þð Þ ¼ 4. In fact

c1
½4�
1

� �
[ ½4�

2

� �
[ ½4�

3

� �� �
¼ 4:

However, c1

		 ½4�
3
[
	 ½4�

2




� 3 since c ¼ fð1; 0; 0; 0Þ; ð0; 1; 1; 1Þ; ð1; 1; 1; 1Þg is a cover.

The cases when n ¼ 2 or 3 are trivial. &

Applying Theorem 5 with G ¼ K2, we obtain the following important special case.
Let P1; . . . ;Prþ1 be a partition of ½n� with bn=ðrþ 1Þc � jP1j � jPij � dn=ðrþ 1Þe for
1 � i � rþ 1.

Construction 4. (An r-cover of Bnð0; rþ 2Þ). Suppose that n � 2rþ 2 and let

c ¼
[rþ1

i¼1

Pi

2

� �[
ffug : u [P1g:

This is indeed an r-cover. If Y [Bnð0; rþ 2Þ and jY j ¼ rþ 2 then at least two
elements of Y belong to some Pi and, thus, Y is covered by a corresponding pair
from Pi. A similar argument works when jY j ¼ rþ 1 and there are two elements of Y
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in the same Pi. Otherwise Y must have an element in each Pi, in particular in P1 and
thus it is covered by a corresponding one-element set. If jY j ¼ r and Y \ Pi 6¼ ;, it is
covered by some pair from Pi. If jY j < r then Y is covered by any single element set.
The size of this cover is Tðn; 2; rþ 2Þ þ bn=ðrþ 1Þc ¼ Tðnþ 1; 2; rþ 2Þ.

THEOREM 12. For n > n0ðrÞ we have crðBnð0; rþ 2ÞÞ ¼ Tðnþ 1; 2; rþ 2Þ.

Proof of Theorem 12. The upper bound for the covering number follows from
Construction 4. For the lower bound consider Theorem 5 for G ¼ K2. We apply
Lemma 2 (with k ¼ rþ 2) and the lower bound on X (as defined in the proof of
Theorem 5) to show that

ðBnð0; rþ 2ÞÞ � cr
½n�

rþ 1

� �
[ ½n�

rþ 2

� �� �
� cr

½nþ 1�
rþ 2

� �� �

� Tðnþ 1; 2; rþ 2Þ: &

7. Conclusions

We believe that the value of n0ðrÞ in Theorem 5 could be improved, and in particular
we conjecture the following. Theorem 5 holds for all n > cr3, where c ¼ cðqÞ. We also
believe that one could improve the lower bound for crðGnða; rþ 2ÞÞ by YðnÞ using
the fact that the unique construction achieving optimal coefficient of the n2 term uses
elements of weight 2 only.
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Appendix A

First we consider the function W ¼ Wðn; q;w; rÞ of Lemma 1. Here we prove in
detail the fact that each term in (6) is at most a half of the previous one. Observe that�

w

s

�
n	 w

rþ 2 	 s

� �
¼ x

w

sþ 1

� �
n	 w

rþ 2 	 ðsþ 1Þ

� �
;
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where

x ¼ ðsþ 1Þðn	 w	 r	 1 þ sÞ
ðw	 sÞðrþ 2 	 sÞ :

If n � 4r then

x � ðsþ 1Þð3r	 w	 1 þ sÞ
ðw	 sÞðrþ 2 	 sÞ

�
ðdwþ2

2
e þ 1Þð3r	 w	 1 þ dwþ2

2
eÞ

ðw	 dwþ2
2
eÞðrþ 2 	 dwþ2

2
eÞ

� 2:

Second, we prove the very last inequality of Lemma 1 in detail, i.e., for w > 4 and
n � 4rþ 3; r � 2 one has

2
w

dwþ2
2
e

� �
n	 w

rþ 2 	 dwþ2
2
e

� �
� 5

n	 3

r	 1

� �
:

In the case w ¼ 5 the ratio of the left hand side and the right hand side is

2
5

4

� �
n	 5

r	 2

� �
1

5

n	 3

r	 1

� �	1

¼ 2ðr	 1Þðn	 r	 2Þ
ðn	 3Þðn	 4Þ

which is less than 1 for n > 2r. Similarly for w ¼ 6 we have

2
6

4

� �
n	 6

r	 2

� �
1

5

n	 3

r	 1

� �	1

¼ 6ðr	 1Þðn	 r	 2Þðn	 r	 1Þ
ðn	 3Þðn	 4Þðn	 5Þ

which is again at most 1 for integers n � 4rþ 3; r � 2.
In general, we have that for w > 4

wþ 2

dwþ4
2
e

� �
n	 w	 2

rþ 2 	 dwþ4
2
e

� �
� w

dwþ2
2
e

� �
n	 w

rþ 2 	 dwþ2
2
e

� �
:

Indeed, the ratio of the left hand side and the right-hand side is

ðwþ 2Þðwþ 1Þ
dwþ4

2
ebw

2
c

6
ðrþ 2 	 dwþ2

2
eÞðn	 w	 r	 2 þ dwþ2

2
eÞ

ðn	 wÞðn	 w	 1Þ

and this is at most 1 in the range given.
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