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Abstract: The notion of a split coloring of a complete graph was intro-
duced by Erdó́s and Gyárfás [7] as a generalization of split graphs. In this
work, we offer an alternate interpretation by comparing such a coloring to
the classical Ramsey coloring problem via a two-round game played against
an adversary. We show that the techniques used and bounds obtained on
the extremal (r,m)-split coloring problem of [7] are closer in nature to the
Turán theory of graphs rather than Ramsey theory. We extend the notion
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of these colorings to hypergraphs and provide bounds and some exact
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1. TOTAL COLORING GAMES

Consider the following game played on an n-vertex complete graph against an
adversary. We are given positive integers r and m, and we have to start the game
by coloring all the edges of the given clique with r colors. The adversary then
takes over and colors the vertices with r colors, completing a total coloring. We
lose, if at the end of the two rounds, the two colorings together contain a totally
monochromatic m-clique. A totally monochromatic graph is one whose edges and
vertices all have the same color.

If the edge-coloring we produce contains a monochromatic m-clique of color i,
then the adversary will win by coloring these vertices with color i. So, our aim is
to produce an edge-coloring that contains no monochromatic m-cliques. If the
given n is at least as large as the Ramsey number RrðmÞ, then every edge-coloring
contains a monochromatic Km in some color and the adversary will win. Below
this threshold, there is always an edge-coloring that avoids monochromatic
m-cliques. Such an edge-coloring is a Ramsey coloring, and these are the color-
ings that are favorable for us to win the ‘‘Total Ramsey Game’’.

Suppose, the adversary now changes the rules of the game and decides that we
will win the game if there is a totally monochromatic m-clique, instead of losing
it. We ask how this changes the game and the threshold for winning.

Clearly, our aim now changes to producing an edge-coloring that has many
monochromatic m-cliques in different colors. For the adversary to win, he must
split (or destroy) these cliques by coloring some vertex with a different color. Let
us call this game a ‘‘Total Split Game’’ and an edge-coloring of Kn that is favor-
able to the adversary, an ðr;mÞ-splittable coloring to indicate that the mono-
chromatic m-cliques can all be split by an appropriate vertex-coloring.

2. DEFINITIONS

Formally, an edge-coloring of Kn is called an ðr;mÞ-splittable coloring if there is
an r-vertex-coloring of Kn that combines with the edge-coloring to avoid any
totally monochromatic Km. In other words, given an r-edge-coloring of Kn which
is ðr;mÞ-splittable, the vertices can be partitioned into r sets V1; . . . ;Vr so that for
each i, the subclique induced by Vi has no monochromatic Km in color i.

These colorings were introduced by Erdó́s and Gyárfás in [7] where they
observed that for small complete graphs, every edge-coloring is a splittable
coloring. It is easy to see that if we have an r-edge-coloring of Kn that is not
ðr;mÞ-splittable, it can be extended to a non-ðr;mÞ-splittable edge-coloring of Kn0
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for n0 > n. Therefore it is of interest to study the threshold where non-splittable
colorings emerge. From the perspective of the Total Split Game, this is precisely
the threshold beyond which we win against the adversary.

Let frðmÞ be the minimum n for which there is an r-edge-coloring of Kn which
is not ðr;mÞ-splittable.

Once n is at least frðmÞ, there is an r-edge-coloring that wins the Total Split
Game for us. One way to construct such an edge-coloring is to ensure that every
set of size dn

r
e has monochromatic m-cliques in every color. This is clearly an

edge-coloring which will defeat the adversary. These colorings were introduced
by Erdó́s and Gyárfás [7] under the name ðr;mÞ-balanced colorings.

Let grðmÞ be the minimum n for which there is an r-edge-coloring of Kn which
is ðr;mÞ-balanced.

Every ðr;mÞ-balanced coloring is a non-ðr;mÞ-splittable coloring, hence we
see that frðmÞ � grðmÞ. It is conjectured by Erdó́s and Gyárfás [7] that this in-
equality is strict.

3. COMPARING frðmÞ AND RrðmÞ

The general upper bound, frðmÞ � Rrðm þ 1Þ is given in [7]. For small values of
m and r, frðmÞ may be larger than RrðmÞ. For example, when m ¼ 2, Rrð2Þ ¼ 2
while in [7], Erdó́s and Gyárfás showed that r

2

� �
< frð2Þ � r2 þ r þ 1 (where the

upper bound holds if there is a finite projective plane of order r þ 1).
In the following section, however, we will show that the order of magnitude of

frðmÞ is much smaller—of the form Oðr2m2Þ, while RrðmÞ is known to be
exponential. In fact, RrðmÞ exceeds frðmÞ once m � 5. Further, the non-splittable
coloring presented is an explicit construction while all known near-optimal
Ramsey colorings are obtained using random methods.

4. CONSTRUCTION FROM TRANSVERSAL DESIGNS

To establish the upper bound, we construct an ðr;mÞ-balanced coloring with the
use of combinatorial designs known as nets (see e.g., [4, p.97]).

Definition 4.1. A ðk; vÞ-net is a pair ðX;CÞ where X is a set of v2 elements and

C is a set of kv blocks, each of size v, with the property that two distinct blocks
intersect in at most one element. Moreover, the blocks can be partitioned into k

parallel classes, each containing v blocks.
Interchanging the roles of elements and blocks gives us a ðv; kÞ-transversal

design.

Theorem 4.1. frðmÞ � grðmÞ � v2 if there is an ðr; vÞ-net for v > rðm � 1Þ.
Proof. Let n ¼ v2. We will show that Kn has an ðr;mÞ-balanced coloring. Let

ðX;CÞ be the ðr; vÞ-net with the blocks in C partitioned into r parallel classes. Let
VðKnÞ ¼ X and color the edges as follows:
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For c 2 ½r�, the color of edge ði; jÞ is c if and only if i and j lie together in some
block in parallel class c. This colors only rv v

2

� �
of the edges in Kn. To color the

remaining edges, we chose a color for each arbitrarily from f1; 2; . . . ; rg.
Now, let S � X such that jSj � dn

r
e > vðm � 1Þ. Consider color class c. Since

each class contains v parallel blocks, some block must contain at least m points
from S, thus yielding a Km in color c. &

A ðk; vÞ-net can have at most v þ 1 parallel classes. To see this, observe that
the total number of pairs of points is

�
v2

2

�
. Since each pair of points appears

together in at most one block, kv v
2

� �
�

�
v 2

2

�
. This yields k � v þ 1. When

k ¼ v þ 1, each pair appears exactly once, and a ðv þ 1; vÞ-net is an affine plane.
It is well known (see e.g., [4, p.76]) that an affine plane of order v exists whenever
v is a prime power. Thus we obtain the following.

Corollary 4.1. frðmÞ � grðmÞ � v2 where v is a power of a prime such that
v > r ðm � 1Þ.

In general, the existence of ðk; vÞ-nets was shown to be equivalent to the exis-
tence of ðk � 2Þ mutually orthogonal Latin Squares of side v by Bose (see e.g.,
[12, p.253]). Chowla, Erdó́s, and Straus [6] proved that for fixed k and sufficiently
large v, there is a ðk; vÞ-net. So, we obtain the following.

Corollary 4.2. For fixed r and m sufficiently large, frðmÞ � grðmÞ � ðrðm�
1Þ þ 1Þ2

.

5. LOWER BOUNDS FROM EXTREMAL GRAPH THEORY

We present two lower bounds for frðmÞ, extending the ideas given by Erdó́s and
Gyárfás in [7].

Theorem 5.1. frðmÞ � 2ðr � 1Þ m
2

� �
þ m:

Proof. Let n ¼ ðr � 1Þmðm � 1Þ þ ðm � 1Þ and consider any r-edge-color-
ing of Kn. Select the maximum number of vertex disjoint monochromatic m-
cliques with edges of color 1 and color the remaining vertices with color 1. (There
are at least ðm � 1Þ such vertices.) Now, divide the monochromatic m-cliques of
color 1 into ðr � 1Þ classes, each containing at most ðm � 1Þ copies. This is
possible, since the number of vertices remaining is at most ðr � 1Þmðm � 1Þ.
Then each class can be colored with a different color from f2; . . . ; rg and no
totally monochromatic Km is formed. &

We remark here that this proof can be modified to obtain a slightly better lower
bound on grðmÞ:

grðmÞ � rmðm � 1Þ þ 1:
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We can now conclude from Corollary 4.2 and Theorem 5.1 that

r � lim inf
m!1

frðmÞ
m2

� lim sup
m!1

grðmÞ
m2

� r2:

Theorem 5.2. For r � m � 3; frðmÞ �ðm � 1Þ r
2

� �
þ m

2

� �� �
þ ðm � 3Þðr � mÞ

þm.

For the proof, we use the following lemma due to Alon, Kahn, and Seymour, [2,
Corollary 1.4] and which is, in fact, a generalization of the classical Turán’s
theorem [11].

Lemma 5.1. If eðGÞ � 1
r
ðnðGÞ

2
Þ where n � ðm � 1Þðr

2
Þ, then there is an S �

VðGÞ, jSj � ðm � 1Þr � 2, and !ðGjSÞ < m, for r � 5.

The proof of Theorem 5.2 now follows by induction.

Proof. We prove the theorem by induction on r. The base case is Theorem 5.1
with r ¼ m � 5. So, assume r > m and consider an arbitrary r-edge-coloring of
Kn, where n ¼ ðm � 1Þ r

2

� �
þ m

2

� �� �
þ ðm � 3Þðr � mÞ þ m � 1. By the lemma,

there is a color class, say color 1, with a subset of the vertices, S such that S

contains no Km in color 1 and jSj � rðm � 1Þ � 2.
Delete S from VðKnÞ. We now have at most ðm � 1Þ r�1

2

� �
þ m

2

� �� �
þ ðm � 3Þ

ðr � 1 � mÞ þ m � 1 vertices remaining. By changing color 1 to 2 in this clique,
we can apply the induction hypothesis to partition the vertices into S2; S3; . . . ; Sr,
such that Si has no Km of color i. Adding S ¼ S1, we obtain the desired partition
for Kn. &

Using density results for prime powers (see e.g., [5, p.154]), Corollary 4.1, and
Theorem 5.2 now give us the following:

m � 1

2
� lim inf

r!1

frðmÞ
r2

� lim sup
r!1

grðmÞ
r2

� m2:

6. GENERALIZATION TO HYPERGRAPHS

Let Kk
n denote the complete k-uniform hypergraph on n vertices, i.e., we have a

ground set of n elements and we take all the k-sets to be edges. Often, we will
denote the ground set f1; 2; . . . ; ng by ½n�. An r-edge-coloring of Kk

n is a labeling
of the k-sets with f1; 2; . . . ; rg. Given a coloring of the vertices and edges of Kk

n, a
totally monochromatic m-clique, for k � m � n is a Kk

m, whose vertices and edges
(k-sets) all get the same color.

Clearly, the games that were defined in Section 1 can be played on hyper-
graphs, instead of graphs. The threshold value of n above which the adversary
wins for the Total Ramsey Game is again the classical hypergraph Ramsey
number Rk

rðmÞ.
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In the following sections, we investigate the Total Split Game on hypergraphs.
We first extend the previous definitions to hypergraphs.

Definition 6.1. An r-coloring of EðKk
nÞ is ðr;mÞ-splittable if there is a coloring

of VðKk
nÞ with r colors so that no totally monochromatic m-clique is produced.

Let f k
r ðmÞ be the minimum n for which there is an r-coloring of EðKk

nÞ that is not

ðr;mÞ-splittable.

If we give the adversary a hypergraph whose edges have been colored with an
ðr;mÞ-splittable coloring, the adversary can color the vertices without producing
any totally monochromatic m-cliques and win the Total Split Game. Once the
number of vertices in the hypergraph is at least f k

r ðmÞ, however, we can find an r-
coloring of the k-sets of Kk

n with the property that every coloring of the vertices
with r colors produces a totally monochromatic m-clique. This defeats the ad-
versary, so f k

r ðmÞ is the threshold value of n beyond which we win the Total Split
Game on Kk

n. Our results in the next section suggest that when r and m are fixed,
this value decreases as k increases. To investigate the threshold, we extend the
definition of balanced colorings to hypergraphs.

Definition 6.2. An r-coloring of EðKk
nÞ where every set of size dn

r
e has a mono-

chromatic m-clique in every color is an ðr;mÞ-balanced coloring. Let gk
rðmÞ be

the minimum n for which there is an r-coloring of EðKk
nÞ that is ðr;mÞ-balanced.

As mentioned before, an ðr;mÞ-balanced coloring is not ðr;mÞ-splittable, and
hence f k

r ðmÞ � gk
rðmÞ.

7. LOWER BOUNDS FOR HYPERGRAPHS

We first observe that the same argument as in Theorem 5.1 gives the following.

Theorem 7.1. f k
r ðmÞ � mðr � 1Þ

�
m�1
k�1

�
þ m:

Proof. Let n ¼ mðr � 1Þbm�1
k�1

c þ ðm � 1Þ and consider any r-coloring of
EðKk

nÞ. We exhibit a coloring of the vertices to show that the edge-coloring is
ðr;mÞ-splittable.

Select the maximum number of vertex-disjoint copies of Kk
m so that in each

copy all the edges are of color 1. Color the remaining vertices with color 1 (there
are at least ðm � 1Þ such vertices). Now, partition the disjoint copies of Kk

m whose
edges all have color 1 into ðr � 1Þ classes C2;C3; . . . ;Cr, each containing at most
m�1
k�1

of these copies. Color the vertices in Ci with color i. In forming a totally
monochromatic Kk

m in color i for i > 1, at most k � 1 vertices can be taken from
any of the copies of Kk

m that are edge-monochromatic in color 1. Hence from Ci

we can pick at most m � 1 vertices all of whose k-sets have color i, and no totally
monochromatic copy of Kk

m is formed. &

A slight modification of the above argument, as remarked before, also gives us
the following.
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Theorem 7.2. gk
rðmÞ > rmbm�1

k�1
c.

We do not have a hypergraph extension of Theorem 5.2. For the special case
when m ¼ k, however, we use the following result of Alon [1, Prop. 2] to obtain a
large stable set.

Lemma 7.1. If H is a k-uniform hypergraph on n vertices such that eðHÞ �
1
r

n
k

� �
, then H has an independent set of size at least k

3
r1=k.

We can now prove the following lower bound on f k
r ðkÞ by induction on r.

Theorem 7.3. If r � k � 3, then f k
r ðkÞ > k2

3ðkþ1Þ ðr1þ1=k � k1þ1=kÞ þ k2.

Proof. We use induction on r, with the base case being r ¼ k ¼ 3. In this
case, the desired lower bound follows from Theorem 7.1.

For the induction step, assume r > k and consider an arbitrary r-edge-coloring
of Kk

n with n ¼ k2

3ðkþ1Þ ðr1þ1=k � k1þ1=kÞ þ k2. We will give an r-coloring of the
vertices so that no totally monochromatic edge is formed. Consider the hyper-
graph formed by the set of edges whose color appears least. Let this be color 1.
By Lemma 7.1, this hypergraph has an independent set S1 of order at least k

3
r1=k.

Color the vertices of S1 with color 1; this produces no totally monochromatic
edges.

Remove S1 and recolor all the remaining edges of color 1 with a color from
f2; . . . ; rg, arbitrarily. We now have an ðr � 1Þ-edge-colored hypergraph on at
most k2

3ðkþ1Þ ððr � 1Þ1þ1=k � k1þ1=kÞ þ k2 vertices (since k
ðkþ1Þ ðr1þ1=k�ðr � 1Þ1þ1=kÞ

� r1=k). By the induction hypothesis, we can partition the vertices into sets
S2; S3; . . . ; Sr such that the vertices in Si all receive color i and Si contains no
totally monochromatic edges in color i. Thus S1; S2; . . . ; Sr forms an r-vertex-
coloring of Kk

n that splits all monochromatic edges.
We have shown that every r-edge-coloring of Kk

n is ðr; kÞ-splittable, and the
result follows. &

8. ALGEBRAIC CONSTRUCTION FOR UPPER BOUND

We provide an upper bound for f k
r ðmÞ by constructing an ðr;mÞ-balanced

coloring.

Theorem 8.1. f k
r ðmÞ � gk

rðmÞ � q2�1
t

where q � 1 mod t is a power of a prime
such that q � rðm þ 1Þ � 1 and t < k.

Proof. To obtain the coloring, we consider an algebraic construction defined
in [8].

Let Fq be the q-element finite field. Let � be a primitive element; � is a
generator of the multiplicative group of nonzero elements of Fq. Since q � 1
mod t, we have that h ¼ �ðq�1Þ=t is an element of order t, and H ¼ f1; h;
h2; . . . ; ht�1g forms a t-element subgroup of Fq � f0g.

232 JOURNAL OF GRAPH THEORY



We define a relation � on ðFq � FqÞ � fð0; 0Þg. Let ða; bÞ � ða0; b0Þ if there
exists some h� such that a0 ¼ h�a and b0 ¼ h�b. It is immediate that � is an
equivalence relation. Each equivalence class consists of t pairs ða; bÞ from
ðFq � FqÞ � fð0; 0Þg. Let ha; bi denote the class containing ða; bÞ. There are q2�1

t

equivalence classes, and these will form the vertex set V of our complete
k-uniform hypergraph.

Define Lðha; biÞ ¼ fhx; yi : ax þ by 2 Hg. Given ða; bÞ with b 6¼ 0, for any
given x and h� the equation ax þ by ¼ h� has a unique solution for y. Thus, there
are tq solutions ðx; yÞ, but these come in equivalence classes, so jLðha; biÞj ¼ q.

We view Lðha; biÞ as a line passing through q points of V . Füredi [8] showed
that every two lines intersect in at most t points. For each line Lðha; biÞ, the
set fLðh�ia; �ibiÞ : 1 � i < q�1

t
g is a set of pairwise disjoint lines containing

Lðha; biÞ. We call such a set of pairwise disjoint lines a parallel class. Since each
line covers q elements of V , each parallel class covers all but q�1

t
elements of V .

From the set of q2�1
t

lines, we can form q þ 1 parallel classes P1; . . . ;Pqþ1 and
use these to define an r-coloring of the k-sets in V . A k-set receives color i if it is
contained in some Lðha; biÞ in class Pi, for 1 � i � r. The remaining k-sets are
colored arbitrarily. This is well-defined, since two lines intersect in at most
t points, and we have t < k by hypothesis.

We claim that this coloring is ðr;mÞ-balanced. Take S � V such that jSj �
dn

r
e � q2�1

tr
. Consider color class i. Since each parallel class omits q�1

t
elements of

V , the lines in class Pi together contain at least q2�1
tr

� q�1
t

points of S. Since
each class contains at most q�1

t
parallel lines, some line must contain at least

ðq2�1
tr

� q�1
t
Þ t

q�1
points from S. Since ðq2�1

tr
� q�1

t
Þ t

q�1
¼ qþ1

r
� 1 � m, this yields

an m-clique in color i. &

It is a well-known result in number theory that for fixed t and every x 2 N,
there is a prime number congruent to 1 mod t between x and x þ oðxÞ, (see
e.g., [5], p. 154). If we set t ¼ k � 1 and let r and k be fixed while m grows, then
this number-theoretic result together with Theorem 7.1 and 8.1 yields

r

k � 1
� lim inf

m!1

f k
r ðmÞ
m2

� lim sup
m!1

gk
rðmÞ
m2

� r2

k � 1
:

9. SOME EXACT RESULTS WHEN k ¼ m

Theorem 9.1. f k
2 ðkÞ ¼ 2k for k 6¼ 5; 7.

Proof. From Theorem 6, we get that f k
2 ðkÞ � 2k.

We need to exhibit a 2-coloring of the k-sets of ½2k� such that every 2-coloring
of the vertices creates a totally monochromatic edge. We note that such an edge-
coloring can be equivalently described as having the following properties:
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(i) every k-set and its complement get the same color,
(ii) every ðk þ 1Þ-set contains a k-set of each color.

For even k, we can explicitly describe this coloring of the k-sets as follows: fix
a k-set, A. The color of the k-set, F is jF \ Aj mod 2. Since jF \ Aj þ j�F \ Aj ¼
jAj ¼ k, which is even, property (i) is ensured. If B is any ðk þ 1Þ-set, then
B 	 ½2k� implies that there is an x 2 A \ B and a y 2 �A \ B. Then, B � x and
B � y are k-sets of B with different colors and we get property (ii).

For k ¼ 3, a non-ð2; kÞ-splittable coloring can be obtained by giving the triples
123; 124; 135; 146; 156 and their complements color 0 and all remaining triples
color 1. A little case analysis shows that property (ii) also holds, and the result
follows.

For k � 9, we will use the Lovász Local Lemma, (see e.g., [3, p.53]), to show
that a suitable random coloring has properties (i) and (ii). Consider all the k-sets
of ½2k� that contain the element 1 and color them with 2 colors randomly and
independently. Extend this to a coloring of all k-sets by giving any uncolored k-
set the color of its complementary k-set. This ensures that (i) holds.

For each ðk þ 1Þ-set, B, let FB be the event that all k-sets of B get the same
color. Then, PrðFBÞ ¼ 2�k. FB is mutually independent of all events FB0 , such that
2 < jB \ B0j < k. Thus, FB is mutually independent of all but at most ðk þ 1Þ
ðk � 1Þ þ kþ1

2

� �
events. By the Local Lemma, a 2-coloring with no ðk þ 1Þ-set

having all k-sets of the same color exists if
kð3kþ1Þ

2
2�k e < 1, which is true if

k � 9. &

Theorem 9.2. gk
rðkÞ ¼ rk þ 1 for r � kþ1

4 ln ðkþ1Þ.

Proof. From Theorem 7.2, we know that gk
rðkÞ � rk þ 1. We need to exhibit

an r-coloring of the k-sets of ½rk þ 1� with the property that every ðk þ 1Þ-set
contains a k-set of each color.

Consider a coloring where each k-set from ½rk þ 1� is colored with one of the r
available colors randomly and independently. For each ðk þ 1Þ-set, B, let FB be
the event that not all colors are present on the k-sets of B. Then, PrðFBÞ �
r 1 � 1

r

� �kþ1
. FB is mutually independent of all events FB0 , unless jB \ B0j ¼ k.

Thus there are at most ðk þ 1Þkðr � 1Þ events of which FB is not independent.
Applying the Local Lemma again, we find that a balanced r-coloring exists if
r � kþ1

4 ln ðkþ1Þ. &

In order to have an ðr; kÞ-balanced coloring, every set of order n=rd e must
contain at least r edges. This implies that if n ¼ rk þ 1, then r � k þ 1. So, it
remains to be determined if gk

rðkÞ is also rk þ 1 for values of r between kþ1
4 ln ðkþ1Þ

and k þ 1.
Recall that f k

r ðkÞ � gk
rðkÞ always. We now show that rk þ 1 is also a lower

bound for f k
r ðkÞ whenever r is at least 3.

Theorem 9.3. f k
r ðkÞ � rk þ 1 for r � 3.
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Proof. Take any r-coloring of EðKk
nÞ where n ¼ rk. We give an r coloring of

the vertices so that no totally monochromatic k-set is formed. Since the number of
vertices equals the number of colors times the edge size, it suffices to assign each
color only to vertices of an edge that received a different color. This avoids creat-
ing a totally monochromatic k-clique.

Choose a k-set and assign its vertices a color different from the color assigned
to it by the edge-coloring. Eliminate this color. Continue choosing disjoint k-sets
and coloring their vertices in this way until all but three colors from ½r� are used.
Let 1,2,3 denote the colors remaining, and let V denote the set of 3k vertices
remaining.

If some k-set A in V is not colored from f1; 2; 3g, then we first color the
remaining 2k vertices by picking some two disjoint k-sets and giving their
vertices colors from f1; 2; 3g so that the vertices do not get the same color as the
k-set. The third color can be assigned to the vertices of A. So, we may assume that
every k-set in V is colored from f1; 2; 3g. If there are two disjoint k-sets with
different colors, then we can assign the colors from f1; 2; 3g to the vertices of k-
sets so that the color on no k-set is the same as the color on its vertices. So, we
may assume that every pair of disjoint k-sets in V has the same color. Let A be a
k-set in V , we may assume that it has color 1. All the k-sets in V � A also have
color 1. So, give all the vertices of A color 2 and all the vertices of V � A color 3.
Note that in this final case, we did not use all the colors on vertices. &

Theorem 9.2 and 9.3 immediately imply the following.

Corollary 9.1. f k
r ðkÞ ¼ rk þ 1 for 3 � r � kþ1

4 ln ðkþ1Þ.

10. FURTHER PROBLEMS—SPLITTABLE COLORINGS
BEYOND CLIQUES

The Total Split Game can be generalized by requiring the adversary to split
graphs other than cliques.

Let F ¼ ðF1;F2; . . . ;FrÞ be a list of graphs. The Total Split Game TSðr;F ; nÞ
is defined as follows. In the first round, we color the edges of Kn with r colors. In
the second round, the adversary colors the vertices with r colors, completing a
total coloring. We win if this total coloring contains a totally monochromatic
copy of Fi in color i, for some i. If F ¼ ðKm; . . . ;KmÞ, then this is the same as the
Total Split Game discussed earlier.

An r-edge-coloring favors the adversary if there is some r-vertex-coloring that
splits every copy of Fi whose edges all have color i.

Definition. Given a list of graphs F ¼ ðF1;F2; . . . ;FrÞ and an n-vertex clique
Kn, an r-coloring of the edges of Kn is called F -splittable if there is a partition of

the vertex set of Kn into V1; . . . ;Vr such that the graph induced by Vi has no
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monochromatic copy of Fi in color i, for each i. Let frðFÞ be the minimum n for
which there is an r-edge-coloring of Kn that is not F -splittable.

Let KðFÞ denote the family obtained by replacing each graph in F by a clique
of the same order, then clearly, frðFÞ < frðKðFÞÞ. Similarly, if Kð!ðFÞÞ is the
family obtained by replacing each graph in F by the largest clique it contains as a
subgraph, we see that frðFÞ � frðKð!ðFÞÞÞ.

The Total Split Game also generalizes naturally to edge-colorings of arbitrary
graphs. Since an arbitrary graph with n vertices has fewer edges to color than Kn,
it is easier to split all copies of Fi in each color i, since there tend to be fewer of
these copies. The definition of F -splittable for edge-colorings of a graph G is as
for G ¼ Kn given above. By analogy with frðFÞ, when G is a family of graphs, we
introduce f ðG;FÞ to mean the minimum of nðGÞ such that G 2 G and G has a
non-splittable coloring. Note that G and F must be chosen appropriately for the
parameter to exist.

So, similar to the generalizations of Ramsey and Turán theory from cliques to
other graphs, the above ideas of splittable colorings pose a series of new extremal
problems.
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