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Abstract: A multigraph is (k,r )-dense if every k-set spans at most r edges.
What is the maximum number of edges exN(n,k,r ) in a (k,r )-dense
multigraph on n vertices? We determine the maximum possible weight
of such graphs for almost all k and r (e.g., for all r> k3) by determining
a constant m¼m(k,r ) and showing that exN(n,k,r )¼m n

2

� �
þ OðnÞ, thus

giving a generalization of Turán’s theorem. We find exact answers in many
cases, even when negative integer weights are also allowed. In fact, our
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main result is to determine the maximum weight of (k,r )-dense n-vertex
multigraphs with arbitrary integer weights with an O(n) error term.
� 2002 Wiley Periodicals, Inc. J Graph Theory 40: 195–225, 2002
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1. INTRODUCTION

Much work has been done in the last 40 years on the following problem
introduced by Erdó́s in 1963: what is the largest number exðn; k; rÞ of edges in a
graph on n vertices such that every set of k vertices spans at most r edges? In the
case when r ¼ k

2

� �
� 1, e.g., Turán’s Theorem [43,44] completely answers the

question. Many papers, such as [16,22,23,27,28], have led to a better under-
standing of Erdó́s’ problem, with much work being devoted to the asymptotic
behavior of exðn; k; rÞ when n grows. For example, [27,28] contains a discussion
of the cases in which the growth is linear or quadratic in n.

Recently, an integer-weighted version of the problem has been investigated.
Here integer weights are assigned to the edges and we ask for the largest total
weight exZðn; k; rÞ that a graph on n vertices can have such that every set of k
vertices spans a subgraph with total weight at most r. This problem, when nega-
tive weights are not allowed, can be viewed as a multigraph version of the original
problem of Erdó́s.

Clearly, exZðn; k; rÞ � exðn; k; rÞ. Recently, Bondy and Tuza [5] proved,
among other things, that in the Turán case r ¼ k

2

� �
� 1 equality must hold. Thus

allowing integer weights does not result in any gain. However, unlike in the graph
case where there is a unique extremal configuration, they found that in the integer-
weighted case there can be several non-isomorphic ways of achieving the extremum.
Additional cases are solved in the thesis of Kuchenbrod [33] and the exact value
of exZðn; k; rÞ is determined for k � 7.

In the present work, we asymptotically determine exZðn; k; rÞ for every choice
of k and r. We offer a conjecture for the exact value which we can prove in
‘‘slightly more than 50% of the cases.’’ More precisely, we provide upper and
lower bounds for exZðn; k; rÞ that differ by at most an OðnÞ-term, so our estimates
(usually of order �ðn2Þ) are asymptotically very tight. Frequently the construc-
tions we give do not require negative weights, so that in many cases we simul-
taneously solve the multigraph version of Erdó́s’ original problems as well.

This paper is organized as follows. In Section 2, we give a brief overview of
our results and we mention an application to the Turán theory of hypergraphs.
Section 3 contains a brief history of Erdó́s’ problem for graphs, and in Section 4,
we generalize the problem to weighted graphs. In Section 5, we state our main
results, such as the limits in the case of arbitrary integer weights. In Section 6, a
recursive upper bound is given. In Section 7, a construction is given with special
attention to the linear error term (which in some cases is not exactly known). In
Section 8, we provide exact answers for ‘‘slightly more than 50% of the cases.’’
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In Section 9, we continue our investigation by proving a lower bound which we
conjecture to be exact. In Section 10, we solve our density question for suffi-
ciently large n whenever the limit is 0. In Section 11, we apply our results for
integer weighted graphs to the multigraph case. We conclude the paper in Section 12
by proposing further questions.

2. OVERVIEW OF RESULTS

Since many problems in combinatorics have weighted versions, it seems natural
to study a weighted generalization of Erdó́s’ problem. The case in which the
edges can have non-negative integer weight corresponds naturally to a multigraph
question. We even allow negative (integer) multiplicities, when the solution
proves to be simpler. In this section we collect some consequences of our main
results.

Formally, an integer weighting of a graph G is a function on its edges
w :EðGÞ ! Z. The weight of a subset of vertices A is simply the total weight on
all of its induced edges, wðAÞ :¼

P
fwðeÞ : e 2 EðHÞ; e � Ag: A weighted graph

ðG;wÞ is (k,r)-dense if every set of k vertices has weight at most r. The weighted
Turán numbers are defined as

exZðn; k; rÞ :¼ maxfwðGÞ : jVðGÞj ¼ n; ðG;wÞ is ðk; rÞ-denseg:

Since every non-edge can be considered to be an edge of weight 0, it will
suffice to consider G ¼ Kn. We can refer to a graph by the corresponding f0; 1g-
weighting, where edges are weight 1 and non-edges are weight 0. Multigraphs
can also be viewed as weightings of Kn with non-negative integer weights.

In this work, a simple method is given to determine exZðn; k; rÞ asymptotically
for all positive k and r. Define mðk; rÞ as

mðk; rÞ :¼ min m :
X
i< k

b1 þ mic > r

( )
: ð1Þ

It is easy to see that m is a rational number and for fixed k it takes all

non-negative rationals with denominator at most k � 1. In Theorem 1, we obtain
the following asymptotic

exZðn; k; rÞ ¼ mðk; rÞ n

2

� �
þ OðnÞ: ð2Þ

Furthermore, we give exact answers for exZðn; k; rÞ for at least half of the pairs
ðk; rÞ for all n in Theorem 3. Additional exact answers for some of the remaining
cases can be found in Theorems 4, 6, and 8.

We also provide asymptotic results in the case when the weights are taken from
the set of natural numbers N ¼ f0; 1; 2; 3; . . .g. Let exNðn; k; rÞ denote the
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maximum of wðGÞ among all n-vertex ðk; rÞ-dense graphs with non-negative
weights (i.e., among all multigraphs without any specific bound on edge multi-
plicities). As a corollary to Theorem 9, we obtain that

exNðn; k; rÞ ¼ exZðn; k; rÞ � OðnÞ ð3Þ

holds for r � ðk � 1Þ k
2

� �
. Since exZðn; k; rÞ ¼ n

2

� �
þ exZðn; k; r � k

2

� �
Þ, we see

that the determination of exZ is necessary to solve the multigraph problem, exN,
for all k and r.

We conclude this section by presenting a recent application of our results to a
problem from the Turán theory for hypergraphs. Turán type problems for triple
systems are rather difficult and only very few results are known. The intricacy of
multigraphs lies between that of graphs and hypergraphs. Furthermore, it turns
out that the study of Turán type problems for multigraphs has consequences for
triple systems.

The Fano configuration F , i.e., the projective plane of order two, is a
hypergraph on seven vertices and seven triples where each pair of vertices is
contained in a unique triple. The following triple-system contains no Fano plane.
Partition the n-element underlying set into two almost equal sets. The hypergraph
consisting of all 3

4
n
3

� �
þ Oðn2Þ triples meeting both sets cannot contain a Fano

plane, since the Fano plane is not 2-colorable. The following old conjecture of
Erdó́s and Sós is proved in [14]. Any set of 3

4
n
3

� �
þ cn2 triples from an n-set,

where c is a suitable constant, must contain a copy of the Fano plane. Thus we
obtain

exðn;FÞ ¼ 3

4

n

3

� �
þ Oðn2Þ: ð4Þ

The crucial fact used in [14] in the proof of (4) is that exNðn; 4; 20Þ �
3 n

2

� �
þ b2

3
nc. This fact follows from our Theorem 8, and from the observation that

exNðn; 4; 20Þ � exZðn; 4; 20Þ ¼ 3 n
2

� �
þ exZðn; 4; 2Þ.

3. DENSITY RESULTS IN GRAPHS—A BRIEF HISTORY

In this Section, we survey a few basics of Turán theory to indicate the place of our
results which we give in the next two sections. We also use some part of the
theory later in the proofs.

In 1963, Erdó́s [17,18] proposed the following problem. Given the parameters
n, k, and r, determine the maximum number exðn; k; rÞ of edges a graph G on n
vertices can have if every k-vertex subgraph has at most r edges. He reviewed all
cases k � 5.

Let the Turán graph Tn;p be the balanced complete p-partite graph on n
vertices, i.e., the n vertices are grouped into p parts as evenly as possible and two
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vertices are joined if and only if they belong to distinct parts. Let tðn; pÞ denote
the number of edges in Tn;p. We have tðn; 2Þ ¼ bn2=4c, and in general

tðn; pÞ ¼ 1 � 1

p

� �
n

2

� �
þ OðnÞ:

Turán’s theorem [43,44] states that in the case ðk; rÞ ¼ ðk; k
2

� �
� 1Þ, i.e., if

G does not contain a complete graph on k vertices, Kk, as a subgraph, then G
can have at most tðn; k � 1Þ edges. Further, the only graph having this many
edges is Tn;k�1. The case exðn; 3; 2Þ ¼ bn2=4c was proved earlier by Mantel [36].
Dirac [16] generalized Turán’s theorem, for r ¼ k

2

� �
� t with 1 � t � k=2:

ex n; k;
k

2

� �
� t

� �
¼ tðn; k � tÞ:

The question of Erdó́s is still unanswered, but one can briefly summarize the
main results as follows. There are three types of answers, Gol’berg and Gurvich
[27] call them zones. The linear zone consists of pairs U1 :¼ fðk; rÞ :0 �
r < k � 1g, the polynomial zone U2 :¼ fðk; rÞ : k � 1 � r < bk2=4cg and finally
U3 :¼ fðk; rÞ : bk2=4c � r < k

2

� �
g is called the quadratic zone.

Trivially, exðn; k; rÞ ¼ r for 0 � r < ðk � 1Þ=2. For 0 � r < k � 1 we have

exðn; k; rÞ ¼ v � 1 þ u � 1

u
ðx � vÞ

� �
; ð5Þ

where u ¼ bðk � 1Þ=ðk � r � 1Þc and v ¼ k � 1 � uðk � r � 2Þ. We have
1 � u � v � r þ 1. Here an example of an extremal ðk; rÞ-dense graph is the
disjoint union of one star on v vertices and as many stars on u vertices as possible,
plus one remainder star on at most u vertices. Note that (5) covers the case
0 < ðk � 1Þ=2 too, since in this case u ¼ 1.

In the polynomial range for ðk; rÞ 2 U2 we have

�ðn1þ1=ðkþ1ÞÞ � exðn; k; rÞ � Oðn2�2=kÞ:

As Erdó́s [17] already pointed out, determining exðn; k; k � 1Þ is in fact
equivalent to determining exðn;C2tÞ, the maximum number of edges of an
n-vertex graph containing no cycle of length 2t, where t ¼ bk=2c. This is again
basically equivalent to the problem of determining exðn; fC3;C4; . . . ;C2tgÞ, the
maximum number of edges of an n vertex graph of girth at least 2t þ 1. The upper
bound of Bondy and Simonovits [4] states exðn;C2tÞ ¼ Oðn1þ1

tÞ. This is
conjectured to give the correct order of magnitude. However, this is supported
by a construction only for t ¼ 2; 3; and 5 (see, e.g., Wenger [45], or Bollobás [3]).
Erdó́s gave a probabilistic lower bound exðn;C2tÞ > �ðn1þ1=2tÞ. In the remaining
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cases, the best lower bound is given by the so-called ‘‘Ramanujan graphs’’ of
Lubotzky, Phillips and Sarnak [35], Margulis [37], and Imrich [31]. Their con-
struction was slightly improved by Lazebnik, Ustimenko, and Woldar [34], who
used ideas from the theory of Lie algebras to prove that cn1þ 2

3t�2 < exðn;C2tÞ.
On the other hand, in the polynomial range a result of Kó́vári, T. Sós, and

Turán [32] implies that exðn; k; bk2=4c � 1Þ � exðn;Kbk=2c;dk=2eÞ ¼ Oðn2�2=kÞ.
Finally, in the quadratic zone, the Erdó́s–Stone–Simonovits [22,23] theorem

implies that

exðn; k; rÞ ¼ 1 � 1

q

� �
n

2

� �
þ oðn2Þ; for tðk; qÞ � r < tðk; q þ 1Þ: ð6Þ

Even more, it was recently summarized by Griggs, Simonovits, Thomas [28]
(in a crude form also in Gol’berg and Gurvich [27]) that for each q the range in
the above inequality can be again cut into three parts where the error term is
constant, linear, or polynomial. Let r ¼ tðk; qÞ þ a (where 0 � a < tðk; q þ 1Þ�
tðk; qÞ). Then for n > n0ðkÞ

exðn; k; rÞ ¼
tðn; qÞ þ a for 0 � a < b1

2
dk

q
ec;

tðn; qÞþ�ðnÞ for b1
2
dk

q
ec � a � dk

q
e� 2;

tðn; qÞ þ oðn2Þ for all other a’s:

8><
>:

They also present a method to determine the linear error term precisely, and in
the third zone the error term is super-linear. An interesting example of their
results for this case is the description of the maximal graph for k ¼ 6, r ¼ 11. It is
obtained from a complete bipartite graph K½A;B� where the parts A and B do not
necessarily have equal sizes, but jAj; jBj ¼ 1

2
n þ oðnÞ and one can add an

arbitrary graph of girth 5 on A. Obviously, this example carries at most 11 edges
in every 6 vertices, and it has 1

4
n2 þ�ðn3=2Þ edges. (For C4-free graphs see

Brown [6] and Erdó́s, Rényi and Sós [21].)
The density problem exðn; k; rÞ was investigated in several more papers. For

example, Erdó́s, Faudree, Jagota, and Łuczak [19] deal with the case when
k ¼ �ðnÞ and r ¼ Oðn2Þ.

A strongly related problem, the restricted multicoloring of the edges of the
complete graph Kn, was investigated by Ahlswede, Cai, and Zhang [1]. The
resulting formulas are very similar. For recent developments see Axenovich and
Kündgen [2].

Density problems in graphs are often difficult. Brown, Erdó́s and Sós [11,12]
proposed an even more difficult version—they investigated h-uniform hyper-
graphs, i.e., families of h-element sets. They introduced exhðn; k; rÞ, the maxi-
mum number of edges in an h-uniform hypergraph of order n such that no k

vertices span more than r edges. For example, a ð4; 2Þ-free family of triples is a
(partial) Steiner family, we have ex3ðn; 4; 1Þ � nðn � 1Þ=6. Also see Gurvich [29].
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A celebrated result of Ruzsa and Szemerédi [40] deals with ð6; 3Þ-free triple
systems

ex3ðn; 6; 2Þ ¼ oðn2Þ but lim
n!1

ex3ðn; 6; 2Þ=n2�c ¼ 1 for all c > 0:

Some generalizations and a proof involving Szemerédi’s regularity lemma can
be found in Erdó́s, Frankl, Rödl [20].

4. GENERALIZED DENSITY PROBLEM

Definition. A weighting of a graph G from a set of weights W � R is a function

w :EðGÞ ! W that assigns a weight to each edge. The weight of a subgraph H of
G is just the total weight on all of its edges, that is

wðHÞ :¼
X

fwðeÞ :e 2 EðHÞg:

The weight of a vertex set A is the weight of the subgraph induced by A,
wðAÞ :¼ wðGjAÞ. For example for every vertex v, wðfvgÞ ¼ 0 ¼ wð;Þ. We will
also define the weight of a vertex v by wðvÞ:¼

P
fwðuvÞ:uv 2 EðGÞg, but we

will only use this notion in Sections 9 and 10. A weighted graph ðG;wÞ is
ðk; rÞ-dense if every set of k vertices has weight at most r. In this language, we
define the weighted Turán numbers as

exWðn; k; rÞ :¼ supfwðGÞ : jVðGÞj ¼ n; ðG;wÞ is ðk; rÞ-denseg:

Since every non-edge can be considered to be an edge of weight 0, we will
always assume that 0 2 W , so that it will suffice to consider G ¼ Kn. From now
on, when we refer to a graph we mean the corresponding f0; 1g-weighting, where
edges are weight 1 and non-edges are weight 0. Multigraphs can be viewed as
N-weightings of Kn, where N ¼ f0; 1; 2; 3; . . .g.

The problem of determining exWðn; k; rÞ for various choices of W � R has
already been implicitly suggested in earlier work of Brown, Erdó́s, and Simo-
novits [7,8,9,10]. The special case W ¼ Z, which we will extensively study in this
paper, has been recently studied by Bondy and Tuza [5], and Kuchenbrod [33].

Bondy and Tuza show that in the Turán case negative weights don’t help:

exZ n; k;
k

2

� �
� 1

� �
¼ tðn; k � 1Þ ¼ exf0;1g n; k;

k

2

� �
� 1

� �
:

They prove that in this case, the Turán graph is the (up to isomorphism) unique
extremal weighting for n � 2k � 2 � 6, but that for n ¼ 2k � 3 � 6 there are
exactly 5 non-isomorphic extremal weightings. They also determine all extremal
weightings for exZðn; 3; rÞ: for example in the case r ¼ 2, the number of non-
isomorphic extremal weightings is of order c

ffiffi
n

p
.
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Kuchenbrod obtains results of the form exZðn; k; f ðkÞÞ ¼ f ðnÞ for several
functions f , among them f ðxÞ ¼ tðx; sÞ (s � 1), f ðxÞ ¼ bk� 2

k� 1
xc, f ðxÞ ¼

ðx � 1 � s
2
bx� 1

s
cÞbxþ s� 1

s
c (3 � s � k � 1) and f ðxÞ ¼ b2xþ 3

5
cd3xþ 7

5
e� db2xþ 3

5
c2=

4e. Using these results and solving several exceptional cases, he determines
exZðn; k; rÞ exactly for all k � 7.

We will determine the exact value of exZðn; k; rÞ in many additional cases.
We give a conjecture for its value in the remaining cases, which we can prove to
be exact up to an additive error term of n=2. Thus, asymptotically our answers are
very sharp, since usually exZðn; k; rÞ ¼ �ðn2Þ.

It is an easy observation that exWðn; k; rÞ= n
2

� �
is a monotone non-increasing

sequence in n, that is for k � n0 < n, we have

exWðn; k; rÞ
n
2

� � � exWðn0; k; rÞ
n0

2

� � : ð7Þ

Indeed, for any ðk; rÞ-dense weighting w of Kn, we have

wðKnÞ
n
2

� � ¼
wðKnÞ n�2

n0�2

� �
n0

2

� �
n
n0

� � ¼
P

fwðAÞ : jAj ¼ n0;A � VðKnÞg
n0

2

� �
n
n0

� � � exWðn0; k; rÞ
n0

2

� � :

Hence the asymptotic density

exWðk; rÞ :¼ lim
n!1

exWðn; k; rÞ
n
2

� �
exists for all k and r � 0. From the monotonicity we also get the counting bound

exWðn; k; rÞ � exWðk; k; rÞ
k
2

� � n

2

� �
� r

k
2

� � n

2

� �
: ð8Þ

If W is dense in R then the counting bound is always achieved, equalities hold
in (8). We focus our interest on the case when all weights as well as r are integers.
For example, from the reformulation of the Erdó́s–Stone–Simonovits theorem,
(6), we obtain

exf0;1gðk; rÞ ¼ 1 � 1

q
; for tðk; qÞ � r < tðk; q þ 1Þ:

Thus the possible limit points form a well-ordered set under the usual ordering
of the reals when W ¼ f0; 1g. Recall that a set is well-ordered with respect to a
linear ordering if every non-empty subset has a least element, or equivalently
if every non-maximal element has a unique successor. Brown, Erdó́s, and
Simonovits [7,8] proved that the same is true in the case of multigraphs with
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maximum edge multiplicity 2, i.e., W ¼ f0; 1; 2g, (and also for digraphs [9,10,13]).
However, more recent results of Rödl and Sidorenko [39] about the Turán number
of multigraphs with edge multiplicities 4 or more state that in general the limit
points of ex½m�ðn;GÞ= n

2

� �
are not well-ordered. This makes it very unlikely that

the set exWðk; rÞ is well-ordered for W ¼ ½m� :¼ f0; 1; 2; . . . ;mg for any given
m � 4, but this problem and many others remain open.

Our main result in this paper is to determine exZðk; rÞ for all ðk; rÞ. For fixed k,
it takes all non-negative rationals with denominator at most k � 1. Furthermore,
we will give constructions of graphs with positive and negative integer weights
(i.e., functions w :EðKnÞ ! Z) and show that these constructions give the exact
answer for exZðn; k; rÞ for at least half the pairs ðk; rÞ. We also show that they are
asymptotically optimal and, in contrast to (6), our error term is always at most
OðnÞ.

We apply our results to determine exNðk; rÞ for infinitely many pairs ðk; rÞ.
The study of exNðn; k; rÞ, i.e., to study multigraphs without upper bound on the
multiplicities on the edges, was proposed by de Caen and Székely [15], who
needed the case ðk; rÞ ¼ ð4; 15Þ. However, the problem in general is more difficult
and several cases remain open. The case W ¼ N is particularly interesting, since
it is a generalization of Turán’s theorem for multigraphs.

5. MAIN RESULTS

Let N ¼ f0; 1; 2; 3; . . .g denote the non-negative integers. For a positive integer k

and a real m � 0, let RkðmÞ be the closed region in R2 bounded by the inequalities
1 � x � k � 1 and 0 � y � mx (see Fig. 1). This region contains exactly
jRkðmÞ \ Z2j ¼

P
i<kb1 þ mic integer lattice points. We will define mðk; rÞ to be

the smallest slope m so that RkðmÞ contains at least r þ 1 lattice points,

mðk; rÞ :¼ minfm : jRkðmÞ \ Z2j > rg: ð9Þ

For example, in the case k ¼ 11, r ¼ 32 the region R11ð1=2Þ in Fig. 1 contains
35 lattice points, 5 of them on its upper edge, showing that mð11; 30Þ ¼
mð11; 31Þ ¼ � � � ¼ mð11; 34Þ ¼ 1=2.

Our main result is that the slope m obtained from (9) yields the asymptotic
density in the case when W ¼ Z:

exZðk; rÞ ¼ mðk; rÞ: ð10Þ

Moreover, the region RnðmÞ is intimately related to the maximal weight of a
ðk; rÞ-dense graph:

0 � jRnðmÞ \ Z2j � exZðn; k; rÞ < n ð11Þ

holds for all n � k. Summarizing, we have the following.
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Theorem 1 (Asymptotic).

exZðn; k; rÞ ¼ mðk; rÞ n

2

� �
þ OðnÞ:

In other words, if we put r þ 1 lattice points in the region 0 < x; < k; y � 0,
‘‘as far down as possible,’’ then the smallest slope m of any line through the origin
that creates a region containing all these points gives the asymptotic density.
Obviously, m is always a rational number and can be written in reduced form,
m ¼ p=q with g.c.d.ð p; qÞ ¼ 1 and q > 0.

To further determine exZðn; k; rÞ, let ‘kð p=qÞ denote the number of lattice
points of Rkð p=qÞ on its upper edge, ‘kð p=qÞ ¼ bðk � 1Þ=qc. Place the r þ 1
lattice points into Rkð p=qÞ by using all points below the line y ¼ p

q
x. Then let

akðrÞ denote the number of points we have to use on the upper boundary. We have

1 � akðrÞ ¼ r þ 1 � ðjRkð p=qÞ \ Z2j � ‘kð p=qÞÞ

¼ r þ 1 �
X
i<k

p

q
i


 �
� ‘kð p=qÞ:

From now on, we abbreviate these two functions as ‘ and a.
In Section 6, we will give the upper bound for Theorem 1 by establishing

Theorem 2 (Upper bound for all values).

exZðn; k; rÞ �
X
i<n

p

q
i


 �
þ a � 1

bn�1
q
c

for a � ð‘þ 1Þ=2;

þa � ‘� 1 for a > ð‘þ 1Þ=2:

(

Figure 1. Rk(m) with (k, r )¼ (11,32), We have ‘¼ 5 and a¼ 3.
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The proof of Theorem 2 essentially uses the monotonicity of the density (7) in
the following form.

exZðn þ 1; k; rÞ�
nþ1

2

� �
n
2

� � exZðn; k; rÞ
$ %

¼ exZðn; k; rÞþ
2

n � 1
exZðn; k; rÞ

� �
ð12Þ

In Section 7, we will give a recursive construction for the lower bound in
Theorem 1. Furthermore, we will find the exact value for many cases in Section 8.

Theorem 3 (Exact answer for half of the cases). If 2a � ‘þ 1, then

exZðn; k; rÞ ¼
X
i<n

p

q
i


 �
þ a � 1:

Theorem 4 (Exact answer for small n). If 2a � ‘þ 1 and n � 2aq, then

exZðn; k; rÞ ¼
X
i<n

p

q
i


 �
þ n

q


 �
þ a � ‘� 2:

Note that bn�1
q
c ¼ dn

q
e � 1 so the upper bound for exZ in Theorem 4 follows

from Theorem 2. Theorem 4 gives exact answers only for small values of n;
n < 2k, and in the case a ¼ ð‘þ 1Þ=2 its range is included in fn :k � n < k þ qg.
This is the reason that in this case the two kinds of remainders in Theorem 2
coincide.

In Section 9, we will establish the lower bound that we believe to be optimal.

Theorem 5 (Lower bound).

exZðn; k; rÞ �
X
i<n

p

q
i


 �
þ exZðdn=qe; ‘þ 1; a � 1Þ:

Theorem 3 and 4 show that in the respective cases 2a � ‘þ 1 and n � 2aq

equality holds. We conjecture that equality always holds, in other words that the
linear term is itself of the form exZðn; k; rÞ, for r � k � 2. In Section 10, we give a
conjecture for the linear term, which we can prove for large n (see Theorem 6).
Proving both conjectures would completely settle the problem in the case when
we allow integer weights.

Note that for mðk; rÞ 6¼ 0, Theorem 1 yields the order of magnitude and the
leading coefficient of exZðn; k; rÞ (it is (1/2)mðk; rÞn2 þ OðnÞ) and it gives very
tight bounds. For the missing case, mðk; rÞ ¼ 0, we have the next result.

Theorem 6 (Exact value for m ¼ 0 and large n).
Suppose that 0 < r � k � 2 and n � ðu þ 1Þkr. Then

exZðn; k; rÞ ¼ r þ u � 1

u
ðn � k þ 1Þ

� �
;

where u ¼ bðk � 1Þ=ðk � 1 � rÞc.
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Figure 2 summarizes all upper and lower bounds we have in the linear case
when exZðn; k; rÞ ¼ OðnÞ.

Finally in Theorem 9 in Section 11, we address the multigraph case W ¼ N,
by observing that many of the constructions previously given do not use negative
weights and are therefore also optimal in this case.

6. PROOF OF THE GENERAL UPPER BOUND

In this section, we first study a recurrence relation. After that, the proof of
Theorem 2 will be immediate. In the next statement, let p; q; a, and ‘ as in
Section 5.
Theorem 7. Suppose that f ¼ fk;r is an integer function defined by the starting
value f ðkÞ ¼ r � 0 and for n � k > 0 by the recursion f ðn þ 1Þ ¼ bnþ1

n�1
f ðnÞc.

Then

f ðnÞ ¼
X
i<n

p

q
i


 �
þ a � 1

bn�1
q
c þ a � ‘� 1

for a � ð‘þ 1Þ=2;

for a > ð‘þ 1Þ=2:

(

Figure 2. The linear case; k¼ 12, r¼ 8, u¼ 3.
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This Theorem, in a slightly different form, is due to Gessel and Indik [26].
(We are greatful to M. Simonovits for this information.) Our proof here is slightly
more straightforward. Special cases appear in the literature in several places, even
in works related to Turán theory (e.g., Ahlswede, Cai, Zhang [1], Stechkin [41],
and Stechkin and Frankl [42]). Frequently it is stated and used in the form of
inequalities, i.e., if for some sequence of integers sk; skþ1; . . . one has

sk ¼ r and
snþ1

nþ1
2

� � � sn

n
2

� � for n � k; then sn � fk;rðnÞ

holds. For example, the case k ¼ 5, r ¼ 7 (i.e., f5;7ðnÞ ¼ ðn2 þ nÞ=2) was proved
in [24]. Guy [30] also suggested that these and similar recurrences may be worth
studying for their own sake.

Proof of Theorem 7. We will proceed by induction on n. Write f ðnÞ in the
form

Pn�1
i¼1 d

p
q

ie þ hðnÞ. It will suffice to establish

2

n � 1
f ðnÞ

� �
¼ p

q
n


 �
þ "; ð13Þ

where " ¼ 1 if q divides n and 2hðnÞ � bðn � 1Þ=qc ¼ lnðp
q
Þ and " ¼ 0 otherwise.

Simultaneously to (13), we use induction to prove that

0 � hðnÞ < bðn � 1Þ=qc: ð14Þ

We establish the following flow of implications (Theorem 7 for f ðnÞÞ ¼) ((14)
for hðnÞÞ ¼) ((13) for f ðnÞÞ ¼) (Theorem 7 for f ðn þ 1Þ). Here the first
implication is obvious. For the base case n ¼ k, we have

f ðkÞ ¼ r ¼
X
i<k

p

q
i


 �
þ a � 1 ¼

X
i<k

p

q
i


 �
þ a � 1 þ k � 1

q

� �
� ‘;

and thus (14) holds for hðkÞ.
The second implication we consider 2f ðnÞ=ðn � 1Þ. Observe that

2 f ðnÞ ¼
Xn�1

i¼1

p

q
i


 �
þ p

q
ðn � iÞ


 �� �
þ 2h � ðn � 1Þ p

q
n


 �

In the case when q does not divide n we also conclude that

Xn�1

i¼1

p

q
i


 �
þ p

q
ðn � iÞ


 �� �
þ 2h � ðn � 1Þ p

q
n


 �
þ 1

� �
� 2bðn � 1Þ=qc þ 2h:
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This inequality holds, since for i or n � i divisible by q, we can drop the
corresponding ceiling and save one. Thus

p

q
n


 �
� 2

n � 1
f ðnÞ

� �
� p

q
n


 �
þ 1 þ 2

h � bðn � 1Þ=qc
n � 1

� �
� p

q
n


 �
:

In the case, when q does divide n we get that

2 f ðnÞ ¼ ðn � 1Þ p

q
n


 �
þ 1

� �
� bðn � 1Þ=qc þ 2h;

so that for 2h < bðn � 1Þ=qc again

2

n � 1
f ðnÞ

� �
¼ p

q
n


 �
þ 1 þ 2h � bðn � 1Þ=qc

n � 1

� �
¼ p

q
n


 �
;

and for 2h � bðn � 1Þ=qc

2

n � 1
f ðnÞ

� �
¼ p

q
n


 �
þ 1 þ 2h � bðn � 1Þ=qc

n � 1

� �
¼ p

q
n


 �
þ 1:

Finally, consider the third implication.
In the case a � ð‘þ 1Þ=2, we have 2h ¼ 2a � 2 � ‘� 1 ¼ bðk � 1Þ=qc � 1 <

bðn � 1Þ=qc so that " ¼ 0 for all n. Thus hðnÞ ¼ a � 1 for every n � k.
In the case a > ð‘þ 1Þ=2, we have 2hðkÞ > bðk � 1Þ=qc, and by induction we

obtain that 2hðnÞ > bðn � 1Þ=qc, because bðn � 1Þ=qc þ " ¼ bn=qc, since " ¼ 0
unless n=q is an integer. &

Proof of Theorem 2. This is immediate from Theorem 7. For the base case,
we have exZðk; k; rÞ � r ¼ fk;rðrÞ. Then exZðn; k; rÞ � f ðnÞ is implied by the
monotonicity of exWðn; k; rÞ= n

2

� �
, see (12). &

Unfortunately, this upper bound does not always give the exact value of
exZðn; k; rÞ.

7. CONSTRUCTION OF DENSE GRAPHS FOR
INTEGER WEIGHTS

In this section, a recursive construction is given which yields the right lower
bound up to a OðnÞ error term. To get the best possible result, we formulate it in a
slightly more general way. One of our technical difficulties is that we do not know
exZðn; k; rÞ for all n > k � r þ 2 � 2 (i.e., when it is linear in n according to
Theorem 6), so we are going to introduce a linear error term function h.

The main idea is to obtain a structure similar to that of Tn;k with the right
properties. We distribute the vertices as equally as possible into q classes. The
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weights on the edges are determined by a q by q matrix Mðp=qÞ, that is
wðuvÞ ¼ Mi;j if u is in the i-th class and v in the j-th. In the Turán case Tn;k,
M ¼ Mððk � 1Þ=kÞ is the k by k matrix with all entries 1 except the main
diagonal which consists of zeros. Other examples for Mðp=qÞ are in Fig. 3.

These constructions will asymptotically yield the correct density p=q. However
in some cases, we can improve the construction, by adding a small forest-like
construction to the class with the highest negative weight, that is in Fig. 3 in the
top left corner. This will result in adding a linear number of edges.

To capture the behavior of this linear term, we will need the following.

Definition. A function h :N ! N is called a linear weighting function if it has

the following properties:

(L1) Monotonicity: hðxÞ � hðx þ 1Þ,
(L2) Lipschitz: hðx þ 1Þ � hðxÞ þ 1, and
(L3) For every n 2 N there exists a weighting w of Kn with integer weights

such that wðKnÞ ¼ hðnÞ and wðAÞ � hðjAjÞ for every vertex set A.

Notice that this forces hð1Þ ¼ 0 ¼ hð0Þ so that we only need to specify h for
x > 1. The zero function is an example of a linear weighting function and we will
give other examples in Section 8 and 9. We call these weighting functions linear,
since hðnÞ ¼ OðnÞ.

We will now give a recursive construction establishing the following.

Lemma 1. For every linear weighting function with hð‘þ 1Þ � a � 1

exZðn; k; rÞ �
X
i<n

p

q
i


 �
þ hðdn=qeÞ:

Using the zero function for h, which corresponds to the pure matrix construction
without adding a linear term, we immediately obtain the lower bound for
Theorem 1, finishing its proof. Notice that the difference between the lower
bound from Lemma 1 and the upper bound in Theorem 2 is less than n=q.
The reader may want to follow the proof in the matrix structure with the examples
provided in Fig. 3, assuming in the mean time that h is the zero function.

Figure 3. M (0/1), M (1/3), and M (3/8).
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Proof of Lemma 1. It suffices to consider the case where 0 � p < q, since in
general when p

q
¼ j þ p0

q
and r ¼ a � 1 þ

P
i<kd

p
q

ie ¼ a � 1 þ j k
2

� �
þ

P
i<kd

p0

q
ie ¼

r0 þ j k
2

� �
, we get that

exZðn; k; rÞ ¼ exZ n; k; r0 þ j
k

2

� �� �
¼ exZðn; k; r0Þ þ j

n

2

� �

�
X
i<n

p0

q
i


 �
þ hðdn=qeÞ þ j

n

2

� �
¼

X
i<n

p

q
i


 �
þ hðdn=qeÞ:

We will also use the fact that dxe ¼ ddxqe=qe, for x 2 R and q a positive integer.
Our recursive construction of a weight function w for Kn will satisfy the

requirement that for every set A of z vertices ð0 � z � nÞ, we get wðAÞ �P
i<zd

p
q

ie þ hðdz=qeÞ, with equality for z ¼ n. Hence the fact that w is indeed
ðk; rÞ-dense immediately follows by considering the case z ¼ k:X

i<k

p

q
i


 �
þ hðdk=qeÞ ¼ ðr � a þ 1Þ þ hð‘þ 1Þ � r:

We build the construction according to the size of the denominator q. In the
base case q ¼ 1, we get that p ¼ 0, so that it suffices to give a weighting with
wðAÞ � hðzÞ and equality for z ¼ n, but such a weighting is guaranteed by the
definition of h. The corresponding matrix is Mð0=1Þ.

For q > 1, we get that p > 0, since g.c.d.ðq; 0Þ ¼ q > 1. So let q ¼
pðt þ 2Þ � p0 with 0 � p0 < p and 0 � t ¼ dq

p
e � 2. Let n0 ¼ dnp

q
e. Since g.c.d.

ð p; p0Þ ¼ 1, we can start with a weight function w0 for Kn0 with w0ðAÞ �P
i<zd

p0

p
ie þ hðdz=peÞ for all z-sets A and equality for z ¼ n0. From this we obtain

the required weight function w on Kn, by partitioning VðKnÞ ¼ VðKn0 Þ [V 0 and
defining

wðuvÞ ¼
0 u; v 2 V 0;
1 u 2 V 0; v 2 VðKn0 Þ;
w0ðuvÞ � t u; v 2 VðKn0 Þ:

8<
:

As an example Mð1=3Þ was constructed from Mð0=1Þ and Mð3=8Þ from
Mð1=3Þ in this fashion, with t ¼ 1 in both cases.

To see that this works, take any A � VðKnÞ of size z and let jA \ VðKn0 Þj ¼ x.
We obtain

wðAÞ ¼ xðz � xÞ � t
x

2

� �
þ w0ðA \ VðKn0 ÞÞ

� xðz � xÞ � t
x

2

� �
þ
Xx�1

i¼0

p0

p
i


 �
þ hðdx=peÞ

¼ xðz � xÞ þ 2
x

2

� �
þ
Xx�1

i¼0

�ðt þ 2Þi þ p0

p
i


 �
þ hðdx=peÞ
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¼ x ðz � 1Þ þ
Xx�1

i¼0

� q

p
i


 �
þ hðdx=peÞ ¼

Xx�1

i¼0

z � 1 � q

p
i


 �
þ hðdx=peÞ:

Next we observe that Xz�1

i¼0

p

q
i


 �
¼

Xdp
q
ðz�1Þe�1

i¼0

z � 1 � q

p
i


 �
;

since both sums count the number of lattice points in Rzð p=qÞ that are below
the line y ¼ p

q
x, except that the first sum is counting vertical first, while the

second one goes horizontal first. Furthermore dz � 1 � q
p

ie ¼ 0 exactly when
dp

q
ðz � 1Þe � i � dp

q
ze � 1. Hence if dz=qe � dx=pe, then by the monotonicity of

h and taking only the positive terms in the sum:

wðAÞ �
Xdp

q
ðz�1Þe�1

i¼0

z � 1 � q

p
i


 �
þ hðdz=qeÞ ¼

Xz�1

i¼0

p

q
i


 �
þ hðdz=qeÞ:

If dz=qe < dx=pe, then x > pdz=qe ¼ pddzp=qe=pe � dzp=qe, so that

wðAÞ �
Xdp

q
ðz�1Þe�1

i¼0

z � 1 � q

p
i


 �
þ

Xx�1

i¼dp
q
ze

z � 1 � q

p
i


 �
þ hðdx=peÞ

�
Xz�1

i¼0

p

q
i


 �
þ x � p

q
z


 �� �
ð�1Þ þ hðdx=peÞ:

Hence we are done if x � dp
q

ze � hðdx=peÞ � hðdz=qeÞ. However, hðdx=peÞ�
hðdz=qeÞ � dx

p
e � dz

q
e by the Lipschitz property of h. So we obtain the desired

result if x � dx

p
e � dp

q
ze � dz

q
e ¼ dp

q
ze � ddzp

q
e=pe. This is true, since the function

x � dx
p
e is non-decreasing on integers and we assumed that x > dzp=qe.

Finally, we need to check for equality when z ¼ n. In that case x ¼ n0 ¼ dnp

q
e

and thus, following the first chain of inequalities, we obtain:

wðKnÞ ¼
Xn0�1

i¼0

n � 1 � q

p
i


 �
þ hðdn0=peÞ

¼
Xdnp=qe�1

i¼0

n � 1 � q

p
i


 �
þ hðddnp=qe=peÞÞ

¼
Xdp

q
ðn�1Þe�1

i¼0

n � 1 � q

p
i


 �
þ hðdn=qeÞ

¼
Xn�1

i¼0

p

q
i


 �
þ hðdn=qeÞ:

This finishes the proof of Lemma 1. &
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The construction yields the Turán graph Tn;q when p ¼ q � 1. For p ¼ 1, we
get a graph that is almost bipartite: V ¼ V1 [ V2, jV1j ¼ dn=qe and all V1V2 edges
have weight 1, all edges within V2 have weight 0 and all edges within V1 have
weight 2 � q, as indicated for example by Mð1=3Þ. The constructions given by
Fig. 3 are all optimal in many cases. For example from Theorem 3 we will see
that Mð3=8Þ yields an optimal construction when ðk; rÞ ¼ ð9; 17Þ; ð10; 21Þ;
ð11; 25Þ; ð12; 30Þ; . . ..

8. SOME EXACT VALUES OF exZðn;k ; rÞ

Recall that a star is a graph K1;n where we will allow n � 0 in the context of this
paper. For each star we call the vertex of degree n its center, the other vertices are
the leafs. If n ¼ 1, we designate only one of the two vertices to be the center and
the other to be the leaf.

So far the zero function is the only linear weighting function we have seen. In
this section, we will explore other linear weighting functions, thus obtaining
quick proofs for Theorem 3 and 4. Consider haðxÞ ¼ min fx � 1; a � 1g. The first
two properties (L1) and (L2) of a linear weighting function are easily checked
and the required weighting is given by a star on min fx; ag vertices, with the
remaining vertices being isolated. Notice that h1 is the zero function.

Proof of Theorem 3. Using h ¼ ha, the lower bound is immediate from
Lemma 1, since a � 1 � hðdn

q
eÞ � hðdk

q
eÞ ¼ hð‘þ 1Þ � hðaÞ ¼ a � 1.

The upper bound for exZðn; k; rÞ follows from Theorem 2. &

In the case when a � ‘ � 2a � 1, we let

ha;‘ðxÞ ¼

x � 1 for x � a;
a � 1 for a � x � ‘þ 1;
x þ a � ‘� 2 for ‘þ 1 � x � 2a;
3a � l � 2 for 2a � x:

8>><
>>:

So ha;‘ðxÞ ¼ haðxÞ for x � ‘þ 1 and ha;‘ðxÞ ¼ 2a � ‘� 1 þ haðx � aÞ for
x � ‘þ 1. Since the monotonicity and Lipschitz property of ha;‘ are again straight
forward, we only have to verify condition (L3) to see that ha;‘ is a linear
weighting function. For this, we will use two stars on a vertices and connect their
centers by an edge of weight a � ‘ � 0. For x > 2a, the remaining vertices are
isolated, and for x < 2a, we take the obvious subgraph. It can be seen that this
satisfies condition (L3).

Proof of Theorem 4. The upper bound is exactly Theorem 2. The lower
bound follows from Lemma 1 with h ¼ ha;‘. It suffices to notice that
ha;‘ð‘þ 1Þ ¼ a � 1 and that 2a � dn=qe � dk=qe ¼ ‘þ 1. &
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9. PROOF OF THE LOWER BOUND

In this section, we prove Theorem 5. We use the construction of Section 7 to
obtain a probably optimal lower bound. To be able to apply Lemma 1, we show
that for fixed values of r and k, with 0 � r � k � 2, exZðx; k; rÞ is a linear
weighting function. However exZðx; k; rÞ is only defined for x � k, hence we
will let

hðxÞ ¼ hðx; k; rÞ ¼
x � 1 for x � r þ 1;
r for r þ 1 � x � k;
exZðx; k; rÞ for k � x:

8<
:

Observe that exZðk; k; rÞ ¼ r, so that h is well-defined. In the rest of this
section, we show that h is a linear weighting function. Once we know this (via
Lemma 2, 3, and 4) the proof of Theorem 5 is immediate.

Proof of Theorem 5. Since a � 1 � ð‘þ 1Þ � 2, we have that hðx; ‘þ 1;
a � 1Þ is a linear weighting function. Furthermore hð‘þ 1; ‘þ 1; a � 1Þ ¼ a � 1,
so that we can apply Lemma 1. Because dn=qe � dk=qe ¼ ‘þ 1 we get that in
the interesting range hðxÞ ¼ exZðx; ‘þ 1; a � 1Þ and the inequality follows. &

In the rest of this section (and in the next section, too), we suppose that
r � k � 2. We obtain p ¼ 0, q ¼ 1, a ¼ r þ 1, and ‘ ¼ k � 1. First, we consider
the case 2ðr þ 1Þ � k. Since this is the case of Theorem 3, we have hðnÞ ¼ hrðnÞ
and there is nothing to prove.

Also for 2ðr þ 1Þ > k and n � 2ðr þ 1Þ, Theorem 4 can be applied and we get
that hðnÞ ¼ hrþ1; k�1ðnÞ. Therefore all three properties (L1)–(L3) hold in this
range.

Thus from now on we can assume that n > 2r þ 2 > k and hðnÞ ¼ exZðn; k; rÞ.
Notice that Theorem 2 yields (for all 0 < r þ 1 < k � n)

exZðn; k; rÞ � n þ r � k < n � 1: ð15Þ

Hence the Lipschitz property of h is an immediate consequence of (12).
We obtain

exZðn þ 1; k; rÞ � exZðn; k; rÞ þ b2exZðn; k; rÞ=ðn � 1Þc � exZðn; k; rÞ þ 1:

For the other two properties (L1), (L3), we need to prove three Lemmas. For a
given weighting w, let hwðxÞ ¼ maxfwðAÞ : jAj ¼ xg and recall that the weight of
a vertex was defined by wðvÞ ¼ wðfuv :u 2 VgÞ.

Lemma 2. If 0 < r þ 1 < k < 2r þ 2, k � n, exZðn; k; rÞ > exZðn � 1; k; rÞ
and w is a weighting of Kn achieving exZðn; k; rÞ then every vertex has positive
weight. Furthermore if n > 2r þ 2, then 0 ¼ hwð1Þ � hwð2Þ � � � � � hwðkÞ ¼ r.
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Proof. For a given vertex v the positivity of wðvÞ follows from

exZðn; k; rÞ > exZðn � 1; k; rÞ � wðKn � vÞ ¼ exZðn; k; rÞ � wðvÞ:

So now assume that n > 2r þ 2. The first equality is trivial and the second
one follows from the choice of w. For the chain of inequalities, suppose that
i is maximal such that hwðiÞ > hwði þ 1Þ and let A be a set achieving hwðiÞ.
Then for every vertex v 62 A, we have wðfuv : u 2 AgÞ � hwði þ 1Þ � hwðiÞ,
so that

i �
X
u2A

wðuÞ � 2hwðiÞ þ ðn � iÞðhwði þ 1Þ � hwðiÞÞ

¼ 2hwði þ 1Þ þ ðn � i � 2Þðhwði þ 1Þ � hwðiÞÞ
� 2r þ ðn � i � 2Þð�1Þ ¼ i þ ð2r þ 2 � nÞ < i;

a contradiction. &

Lemma 2 will enable us to prove

If 2r þ 2 < n < m and hðnÞ > hðmÞ; then also hðn � 1Þ > hðmÞ: ð16Þ

But then the monotonicity of h is straight forward. If hðn þ 1Þ< hðnÞ then we can
apply (16) repeatedly and obtain that hðn þ 1Þ < hð2r þ 2Þ. This is a contra-
diction, since we know that hðn þ 1Þ � hrþ1;k�1ðn þ 1Þ� hrþ1; k�1 ð2r þ 2Þ ¼
hð2r þ 2Þ.

To prove (16), we may assume that hðn � 1Þ < hðnÞ, since otherwise there is
nothing to show. Let w be any weighting achieving hðnÞ and extend this to a
weighting w0 of Km by making all new edges weight 0. Notice that for any set A of
k vertices in Km

w0ðAÞ ¼ wðA \ KnÞ � hwðjA \ KnjÞ � r

by Lemma 2. Hence w0 is ðk; rÞ-dense contradicting hðnÞ > hðmÞ.
The rest of the section is devoted to the proof of property (L3). It is clear that

in general, we may not be able to take just any weighting achieving exZðn; k; rÞ
for this purpose. For example, we need wðuvÞ ¼ wðfu; vgÞ � hð2Þ ¼ 1, so that
we can not have multiple edges.

We call a maximal vertex set A with the property wðAÞ � jAj � 1 a component.
Notice that components need not be disjoint, but every vertex is in some com-
ponent since wðfvgÞ ¼ 0.

Lemma 3. If 0 < r þ 1 < k < 2r þ 2 < n, exZðn; k; rÞ > exZðn � 1; k; rÞ,
and w achieves exZðn; k; rÞ, then every component A has jAj � r þ 1 and
wðAÞ ¼ jAj � 1.
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Proof. Let A be a component. Then (15) implies jAj < k and by Lemma 2
we get that jAj � r þ 1. Next notice that for every vertex v 62 A

wðfuv :u 2 AgÞ ¼ wðA þ vÞ � wðAÞ � ðjA þ vj � 2Þ � wðAÞ ¼ jAj � wðAÞ � 1;

so that for wðAÞ � jAj we would obtain

wðAÞ þ wðfuv : u 2 A; v 62 AgÞ � wðAÞ þ ðn � jAjÞðjAj � wðAÞ � 1Þ
¼ ðn � jAjÞðjAj � 1Þ � wðAÞðn � jAj � 1Þ
� ðn � jAjÞðjAj � 1Þ � jAjðn � jAj � 1Þ
¼ 2jAj � n < 0:

But that is impossible, since then wðKnnAÞ > wðKnÞ ¼ exZðn; k; rÞ. Depending
on jKnnAj this would be a contradiction either to the monotonicity of exZðn; k; rÞ
or Lemma 2. &

Definition. A weighting w is called simple if

(S1) wðeÞ � 1 for every edge e,

(S2) the edges of weight 1 induce a disjoint union of stars, and
(S3) wðvÞ > 0, unless v is isolated (i.e., only incident to edges of weight zero).

A set of vertices A is called simple if

(A1) A induces a star with center c,
(A2) For u 2 A and v 62 A we have wðuvÞ ¼ 0 unless u ¼ c and wðcvÞ < 0, and

(A3) wðcÞ > 0 for jAj > 1, wðcÞ ¼ 0 otherwise.

In a simple weighting the only edges of negative weight are between the
centers of stars. For example, the weightings provided for ha and ha;‘ are simple.
Simple sets are always disjoint, so that a weighting is simple if and only if every
vertex is in some simple set.

Lemma 4. If 0 < r þ 1 < k � n, then exZðn; k; rÞ can be achieved by a simple

weighting w. Moreover, hw has the Lipschitz property and is non-decreasing.

Lemma 4 will enable us to verify the third property for h by choosing w to be
the simple weighting guaranteed. Notice that h was chosen to increase as much as
possible initially. Therefore we get that hwðxÞ � hðxÞ for x � k, since hw also has
the Lipschitz property, is non-decreasing and satisfies hwðkÞ � r ¼ hðkÞ. Thus for
all sets A of size at most k, we have wðAÞ � hwðjAjÞ � hðjAjÞ. For jAj � k, we
trivially get wðAÞ � exZðjAj; k; rÞ ¼ hðjAjÞ.

Proof of Lemma 4. For a given simple weighting w, we see that
hwðx þ 1Þ � hwðxÞ þ 1 by taking a maximum weight set of size x þ 1 and
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removing a leaf of one of the stars. If the set consisted only of centers then all
internal edges were non-positive and we can remove any vertex. Similarly
hwðx þ 1Þ � hwðxÞ, since we can take a set achieving hwðxÞ and add an isolated
vertex or a leaf of some star. If only centers remain, then adding in any one of
those will increase hwðxÞ by Property (S3). Thus it only remains to construct such
a simple weighting w.

If 2r þ 2 � k � 1 or n � 2r þ 2, we can use the simple weightings from hrþ1

or hrþ1;k�1, respectively, so we may assume that n > 2r þ 2 > k.
In the case when exZðn; k; rÞ ¼ exZðn � 1; k; rÞ, we use the simple weighting w

for Kn�1 and add in an isolated vertex to obtain the simple weighting w0. We get
hw0 ðkÞ ¼ max fhwðkÞ; hwðk � 1Þg ¼ hwðkÞ � r, so that hw0 achieves exZðn; k; rÞ.

So we may also assume that exZðn; k; rÞ > exZðn � 1; k; rÞ. Hence, by Lemma 2,
every vertex has positive weight and hwðxÞ � r for x � k for every weighting
achieving exZðn; k; rÞ. Take a weighting w achieving exZðn; k; rÞ with a minimum
number of vertices not in any simple set. Let v be such a vertex, since if there is
no such vertex then w is simple and we are done. Let A be a component
containing v, so by Lemma 3 wðAÞ ¼ jAj � 1. We will create a new weighting w0

by making A simple. Replace w on A by a star centered at v and for y 62 A defining
w0ðxyÞ ¼ 0 if x 2 A � v and w0ðvyÞ ¼ �fwðuyÞ :u 2 Ag¼ wðA þ yÞ � wðAÞ �
ðjA þ yj � 2Þ� ðjAj � 1Þ ¼ 0. Hence w0ðKnÞ ¼ wðKnÞ and v is now in the simple
set A. Furthermore if S used to be a simple set, then SnA still is: if the center of
S was in A then S � A, since A was a component. Hence SnA is still a star.
Furthermore all new edges from SnA are non-positive, and all leafs still have
weight 0 on all outgoing edges.

Let K be a set on k vertices. If v 62 K, then

w0ðKÞ ¼ w0ðKnAÞ ¼ wðKnAÞ � hwðjKnAjÞ � r:

If on the other hand v 2 K, then let K 0 ¼ K [ A and observe that by (15)

w0ðKÞ þ jK 0j � k ¼ w0ðK 0Þ ¼ wðK 0Þ � jK 0j � k þ r:

In either case w0ðKÞ � r, so that hw0 ðkÞ � r, in contradiction to our choice
of w. &

10. MORE ON THE LINEAR TERM

The aim of this section is the proof of Theorem 6. Theorem 5 suggests that to
solve the problem of exZðn; k; rÞ for all values it will be crucial to study the purely
linear term. Lemma 4 tells us what good constructions will essentially look like,
and it also ‘‘simplifies’’ the proof of upper bounds. For example, it follows.

Theorem 8. If r � k � 2 then exZðn; k; rÞ � b r
r þ 1

nc with equality when

r ¼ k � 2.
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Proof. Since k � r þ 1, the result is clear for n ¼ k. For n > k there is
nothing to show when exZðn; k; rÞ ¼ exZðn � 1; k; rÞ. Otherwise, we use Lemma 4
to obtain a simple weighting achieving exZðn; k; rÞ and observe that every simple
set is also a component. Hence by Lemma 3, every one of the stars has at most
r þ 1 vertices. Therefore the most edges we can have is taking disjoint stars on
r þ 1 vertices without negative weights and this is reflected in the formula.
Furthermore for r ¼ k � 2, this weighting is achievable. &

We conjecture that the weighting function g given by a disjoint union of one
star on v vertices and as many stars on u vertices ð1 � u � vÞ as possible, plus
one remainder star on at most u vertices, is essentially optimal. (All other edges
have weight 0, i.e., this is a simple weighting as it was defined in the previous
section.) Let

gðx; u; vÞ :¼ x � 1 for x � v;
v � 1 þ bu� 1

u
ðx � vÞc; for v � x:

�

Lemma 5. For the case 0 < r þ 1 < k < 2r þ 2

exZðn; k; rÞ � max fhrþ1;k�1ðnÞ; gðn; u; vÞg;

where u ¼ bðk � 1Þ=ðk � r � 1Þc and v ¼ k � 1 � uðk � r � 2Þ.

Proof. It was shown in Section 8 with a construction that hrþ1; k�1ðnÞ is a
lower bound. Concerning the second term, consider the simple weighting defined
before the Lemma. Since v � u ¼ k � 1 � uðk � r � 1Þ � 0, we get v � u. Also
we have u � 1. Finally, one can check that this is indeed ðk; rÞ-dense by
observing that for x � v

gðx; u; vÞ ¼ v � 1 þ u � 1

u
ðx � vÞ

� �
¼ r þ u � 1

u
ðx � k þ 1Þ

� �
;

and that k � v, so that gðk; u; vÞ ¼ r. &

We believe that equality always holds. We were able to prove, with some case
analysis, that for k < 11 equality holds in Lemma 5 for all n � k. In the rest of
this section, we show that Lemma 5 also gives the optimum when n is sufficiently
large.

Proof of Theorem 6. If k � 2r þ 2, that is when u ¼ 1, then the result
follows from Theorem 3. So we may assume that 0 < r þ 1 < k < 2r þ 2 and
hence u � 2.

By Lemma 4, there exists an optimal simple weighting w. As in Lemma 2,
let hðxÞ denote the maximum possible weight an x-element set can have, where
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we dropped the subscript, since the underlying weight function is now fixed.
For example hð0Þ ¼ hð1Þ ¼ 0, hð2Þ ¼ 1. We already know from Lemma 5 that

hðnÞ ¼ exZðn; k; rÞ � r þ u � 1

u
ðn � k þ 1Þ

� �
: ð17Þ

The proof of the upper bound for hðnÞ consists of two steps. First, we will
prove in Lemma 6 that the weighting w contains at least k vertices in good
u-stars, that is stars on u vertices without negative edges at the center vertex.
Then Lemma 7 below will finish the proof of Theorem 6. &

Lemma 6. If 0 < r þ 1 < k < 2r þ 2, n � ðu þ 1Þkr and w is a simple
weighting satisfying ð17Þ then at least k vertices are in good u-stars.

Proof. Let A be the set of components (in the sense of Lemma 3) given by
w. Every component A 2 A induces a star and we denote its center by vA.
Furthermore, let nA denote the absolute value of the total sum of negative weights
of the edges adjacent to the center vA. The total contribution of the edges with
at least one vertex in A to the weight of Kn is exactly wðvAÞ ¼ ðjAj � 1Þ � nA.
For components on more than one vertex this should be strictly positive, hence

nA � jAj � 2 for jAj � 2: ð18Þ

From Lemma 4, we know that the function hðxÞ is non-decreasing with
hðkÞ � r, so that every star has at most r edges, that is jAj � r þ 1. Now divide A
into four parts:
A0 ¼ fA 2 A : jAj < ug (small stars, including isolated vertices),
A1 ¼ fA 2 A : jAj ¼ u and nA > 0g (bad u-stars),
A2 ¼ fA 2 A : jAj ¼ u and nA ¼ 0g (good u-stars), and
A3 ¼ fA 2 A : jAj > ug (big stars).
Let Vi ¼ [Ai be the set of all the vertices in the corresponding part. Our first

aim is to prove that there are only few big stars:

jV3j � rðk � 1Þ: ð19Þ

Indeed, split A into r parts B1; . . . ;Br such that each Bi contains no negative
edge. This can be done, since by (18) nA � r � 1. (We can define these parts
recursively, putting the first member of A into B1. So suppose we have already
split some members of A. For the next member, call it A, we can always find
some Bi such that A is not joined to [Bi by a negative edge, since at most r � 1
negative edges are incident to vA.) We claim that the members of Bi \ A3 cover at
most k � 1 points, which immediately gives (19).

Indeed, suppose to the contrary that there exist A1; . . . ;At 2 Bi \ A3 such that
jA1 [ � � � [ Atj � k. Consider a minimal such union, i.e., jA1 [ � � � [ At�1j < k.
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Then there exists a k-set K containing A1 [ � � � [ At�1 and the center of At and
contained in A1 [ � � � [ At. Thus wðKÞ ¼ k � t. This is at most r, implying that
t � 1 � k � r � 1 and hence

jA1 [ � � � [ At�1j=ðt � 1Þ � ðk � 1Þ=ðk � r � 1Þ:

This implies that jAij � u (for some i � t � 1), a contradiction.
Next we observe that for all stars A 2 A0 we have wðAÞ � ðu � 2Þ=ðu � 1Þ,

whereas for all A 2 A1 [ A2 we get wðAÞ � ðu � 1Þ=u. Thus if we count every
edge of negative weight with a factor of 1/2 at each of its endpoints we obtain

hðnÞ ¼ wðKnÞ � jV0j
u � 2

u � 1
þ jV1j

u � 1

u
� 1=2

u

� �
þ jV2j

u � 1

u
þ jV3j

r � 1

r
:

For u � 3, using (19) it follows that

hðnÞ � ðn � jV3jÞ
u � 2

u � 1
þ jV2j

1

uðu � 1Þ þ jV3j
r � 1

r

� ðn � rðk � 1ÞÞ u � 2

u � 1
þ jV2j

1

uðu � 1Þ þ ðk � 1Þðr � 1Þ:

Since (17) implies that hðnÞ � r � 1 þ u�1
u
ðn � k þ 1Þ, in this case

jV2j � uðu � 1Þðr � 1Þð2 � kÞ þ ðu � 1Þ2ðn � k þ 1Þ � uðu � 2Þðn � rðk � 1ÞÞ
¼ n � ukr þ ðu � 1Þk þ u2ðr � 1Þ þ 1 � k:

If u ¼ 2, then hðnÞ � ðn � rðk � 1ÞÞ 1
4
þ jV2j 1

4
þ ðk � 1Þðr � 1Þ. It follows

similarly that

jV2j � 4ðr � 1Þ þ 2ðn � k þ 1Þ � ðn � rðk � 1ÞÞ � 4ðk � 1Þðr � 1Þ
¼ n � 3kr þ 7ðr � 1Þ þ 2k þ 1 � k: &

Lemma 7. If 0 < r þ 1 < k < 2r þ 2, k � n and w is an optimal simple
weighting containing at least k vertices in good u-stars, then for all 0 � x � n

hwðxÞ � r þ u � 1

u
ðx � k þ 1Þ

� �
:

Proof. We proceed by induction on x. For x ¼ 0, a simple computation yields
that 0 � r þ bðu � 1Þð�k þ 1Þ=uc. For x > 0, it is sufficient to prove the upper
bound for numbers of the form x ¼ k þ ju where j is a (not necessarily positive)
integer, i.e.,

hðk þ juÞ � r þ jðu � 1Þ: ð20Þ
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Indeed, the Lipschitz property of h (implied by Lemma 4), implies the remain-
ing values.

So consider a set K on k þ ju elements with wðKÞ ¼ hðk þ juÞ. We may suppose
that K meets the minimum number of stars, say with vertex sets A1; . . . ;Ac.
Abbreviate the center of Ai by vi and observe that each vi is contained in K (for
1 � i � c). Indeed, if vi 62 K, but y 2 Ai \ K then wðK � yÞ ¼ wðKÞ, and the
result follows by induction. Thus we can also assume that A1 [ � � � [ Ac�1 �
K � A1 [ � � � [ Ac.

First we prove (20) for j � 0. Observe that by the choice of K and the fact
that there are at least k vertices in good u-stars we can find jjj good u-stars
A0

1; . . . ;A0
j j j disjoint from K. As wðKÞ þ j j jðu � 1Þ ¼ wðK [ A0

1 [ � � � [ A0
j j jÞ � r

we obtain (20).
To prove (20) for positive j, suppose to the contrary, that wðKÞ > r þ jðu � 1Þ.

By hypothesis, we have hðk þ ð j � 1ÞuÞ � r þ ð j � 1Þðu � 1Þ. Then the
Lipschitz property implies that hðk þ juÞ � hðk þ ð j � 1ÞuÞ þ u, hence we have
wðKÞ ¼ r þ jðu � 1Þ þ 1 and hðk þ ð j � 1Þu þ iÞ ¼ r þ ð j � 1Þðu � 1Þ þ i for
0 � i � u.

Let M ¼ A1 [ � � � [ Ac. This set contains K, and we let jMj ¼ jKj þ m. As M

can be obtained from K by adding m vertices of degree (and weight) one we have
that wðMÞ ¼ wðKÞ þ m. Then, again, the Lipschitz property implies that

hðk þ ð j � 1Þ u þ iÞ ¼ r þ ð j � 1Þðu � 1Þ þ i for all 0 � i � u þ m: ð21Þ

Let qi denote the sum of the absolute values of the weights of the edges from vi

to the other centers vt (1 � t � c). We have that wðMnAiÞ ¼ wðMÞ � ðjAij � 1Þ
þqi > wðMÞ � jAij. This and (21) imply that jAij > u þ m. Thus we can use the
hypothesis that our result is true for M n Ai. We obtain that

r þ jðu � 1Þ þ m þ 1 ¼ hðjMjÞ ¼ wðMÞ ¼ wðMnAiÞ þ ðjAij � 1Þ � qi

� r þ u � 1

u
ðk þ ju þ m � jAij� ðk � 1ÞÞ

� �
þ jAij� 1 � qi:

Multiplying by u, dropping the floors, and rearranging terms we get that

u þ 1 þ m þ uqi � jAij:

Adding this up for all i we obtain

cðu þ 1Þ þ cm þ 2uQ �
X

jAij ¼ k þ ju þ m; ð22Þ

where Q is the absolute value of wðfv1; . . . ; vcgÞ. On the other hand, from (21)
and from the structure of M we can calculate Q as follows:

r þ jðu � 1Þ þ 1 þ m ¼ wðMÞ ¼ jMj � c � Q ¼ k þ ju þ m � c � Q:
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Rearranging we have Q þ c ¼ ðk � r � 1Þ þ j: Subtracting ðu þ 1Þ times this
equality from the two sides of (22) we obtain that

ðc � 1Þm þ Qðu � 1Þ þ ð j � 1Þ � ðk � 1Þ � ðu þ 1Þðk � r � 1Þ:

However, here on the left-hand side, all the three terms are non-negative
(c; u; j � 1 and m;Q � 0) and the right hand side is negative. This contradiction
shows that our assumption hðk þ juÞ > r þ jðu � 1Þ was wrong, finishing the
proof of (20). &

11. DENSITY PROBLEMS FOR MULTIGRAPHS

In this section, we return to our starting point. We will determine as a corollary
the asymptotic density for non-negative integer weights for infinitely many cases.
We investigate exWðn; k; rÞ for W ¼ N and for W ¼ ½i� :¼ f0; 1; 2; . . . ; ig. Let
jjMðp=qÞjj denote the absolute value of the smallest (non-positive) entry of the
matrix Mð p=qÞ defined in Section 7.

Theorem 9. Suppose that r ¼ r0 þ j k
2

� �
with 0 � r0 < k

2

� �
, mðk; r0Þ ¼ p=q and

jjMðp=qÞjj � j. Then

exNðk; rÞ ¼ ex½ jþ1�ðk; rÞ ¼ j þ p=q:

Proof. Indeed, the upper bound of Theorem 2 is also valid for these cases. The
lower bound follows from the observation that the construction in Lemma 1
(using the zero function for h) has maximum weight 1 and minimum weight
�jjMð p=qÞjj and we can add weight j to every edge. &

In fact, we have a stronger result. In the range of Theorem 9 we have

lower bound of Lemma 1 � ex½ jþ1�ðn; k; rÞ � exNðn; k; rÞ
� upper bound of Theorem 2: ð23Þ

Here the gap between the upper and lower bounds is less than n.
It can be checked that for 0 � p < q

jjMð p=qÞjj � q � p � 1: ð24Þ

This is best possible for example when p ¼ 1 or p ¼ q � 1, but in general we
expect that the negative weight is only Oðlog qÞ.

Proof of (24). Induction on p. For p ¼ 0 and q ¼ 1, the construction has all
weights 0 and the bound holds with equality. For p > 0, let q ¼ ðt þ 2Þp � p0 with
0 � p0 < p. We have a negative weight of at most jjMð p0=pÞjj � p � p0 � 1.
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Thus, for 0 < p < q, we have a negative weight of at most p � p0 � 1þ
t � pðt þ 2Þ �p0 � p � 1 ¼ q � p � 1: &

A ðk; rÞ-dense graph G for W ¼ N has no edges of weight more than r.
The following observation says that its maximum weight can be bounded by
‘ :¼ br=bk2=4cc.

exNðk; rÞ ¼ ex½‘�ðk; rÞ: ð25Þ

Proof. Indeed, let H be the graph formed by the edges of weight at least
‘þ 1. This graph does not contain the complete bipartite graph Kbk=2c;dk=2e as a
subgraph. Hence a theorem of Kó́vári, Sós, and Turán [32] implies that
jEðHÞj ¼ Oðn2�2=kÞ. So the edges of high weight contribute only oðn2Þ to the total
weight of G. &

One can formulate the following consequence of (25).

exNðk; rÞ ¼ ex½2i�1�ðk; rÞ for r � i
k

2

� �
:

We conjecture that 2i � 1 can be replaced by i or i þ 1.
For fixed k, Theorem 9 immediately implies the value of exNðk; rÞ for all but

finitely many r. For values k � 2 < r < bk2=4c, (25) implies that exNðk; rÞ ¼ 0,
while exZðk; rÞ � 1=ðk � 1Þ. So for these values of ðk; rÞ, negative weights help.
The first such case is ðk; rÞ ¼ ð4; 3Þ, given by Mð1=3Þ.

We close this section by reviewing exNðn; k; rÞ for k � 5.
The cases for k ¼ 3, have been settled in [5] where it is shown that

exðn; 3; 1Þ ¼ bn=2c and exðn; 3; 2Þ ¼ bn2=4c which together with the trivial
exðn; 3; 0Þ ¼ 0 shows that all these values can be obtained by non-negative
weights: A matching, Tn;2, the empty graph and for higher values of r we take
translates of those.

For k ¼ 4 and r � 3, we can have at most one edge of weight 2 in the posi-
tive weight case. exNðn; 4; 0Þ ¼ 0, exNðn; 4; 1Þ ¼ 1, and exNðn; 4; 2Þ ¼ b2n=3c
follows immediately. For r ¼ 3, we also get that the weight 1 edges cannot
contain a C4, so that exNðn; 4; 3Þ � exðn;C4Þ ¼ 1

2
n3=2 þ Oðn4=3Þ by a result of

Erdó́s, Rényi, and Sós [21] and independently Brown [6]. Hence exNð4; rÞ ¼ 0
for all r � 3, but exZð4; 3Þ ¼ 1=3 which is the only case for k ¼ 4 with
exNðk; rÞ < exZðk; rÞ. For all the remaining cases r > 4, we get equality here,
e.g., exZð4; 4Þ ¼ 1=2 ¼ exNð4; 4Þ and exZð4; 5Þ ¼ 2=3 ¼ exNð4; 5Þ.

For k ¼ 5, the only cases where exZð5; rÞ could be bigger than exNð5; rÞ are
r ¼ 4; 5; 14. The arguments for r ¼ 4; 5 are similar to those above, as the edges
of weight 1 cannot contain a K2;3, so that exNð5; 4Þ ¼ exNð5; 5Þ ¼ 0, whereas
exZð5; 4Þ ¼ 1=4 and exZð5; 5Þ ¼ 1=3. Finally, we have exZð5; 14Þ ¼ 5=4 while
one can prove that exNð5; 14Þ ¼ exf0;1;2gð5; 14Þ ¼ 7=6. But this, and other results
about exN, are the subject of another work [25].

222 JOURNAL OF GRAPH THEORY



12. OPEN QUESTIONS

Besides the obvious open questions concerning exZðn; k; rÞ (e.g., closing the OðnÞ
gap in general, determining the exact values for all n in the linear case) one can
ask what we can say about extremal graphs. The results from [5] show that even
in the simplest nontrivial case (i.e., k ¼ 3) there can be many different extremal
graphs. In our proof of the general result we use induction, and it looks very
difficult to build the extremal structure into the induction hypothesis. So to study
the exact structure of the extremal graphs, new ideas will be needed.
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[11] W. G. Brown, P. Erdó́s, and V. T. Sós, Some extremal problems on r-graphs,
New directions in the theory of graphs (Proc Third Ann Arbor Conf, Univ
Michigan, Ann Arbor, Mich, 1971), 53–63, Academic Press, New York 1973.
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