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On the lattice diameter of a convex polygon
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Abstract

The lattice diameter, ‘(P), of a convex polygon P in R2 measures the longest string of integer
points on a line contained in P. We relate the lattice diameter to the area and to the lattice width
of P, wl(P). We show, e.g., that wl6 4

3‘ + 1, thus giving a discrete analogue of Blaschke’s
theorem. c© 2001 Elsevier Science B.V. All rights reserved.
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1. The area of lattice polygons

Let P be a convex, closed, non-empty lattice polygon, i.e., P=conv(P ∩ Z2). The
lattice diameter, ‘(P), measures the longest string of integer points on a line contained
in P

‘(P)=max {|P ∩ Z2 ∩ L| − 1: L is a line}:
Thus ‘(P)= 0, if and only if P consists of a single lattice point, and for the square
Q1 = [0; ‘]×[0; ‘] and for the special pentagon Q2 = conv({(x; y)∈Z2: 06 x; y6 ‘}∪
{(‘+ 1; ‘+ 1)}\{(0; 0)}) (for ‘∈Z+) one has ‘(Q1)= ‘(Q2)= ‘. (See Fig. 1.) This
de@nition is due to Stolarsky and Corzatt [5] who proved several properties of ‘(P).
The lattice diameter is invariant under the group of unimodular aBne transformations
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Fig. 1.

SL(2;Z); these are lattice preserving mappings R2 → R2 also preserving parallel lines
and area.
A simple consequence of the de@nition is the following fact on lattice points con-

tained in P which @rst appeared in the literature in Rabinowitz [10].

(P ∩ Z2) ∩ ((‘(P) + 1)z + (P ∩ Z2))= ∅ for every z ∈Z2; z �=(0; 0): (1)

To see this we note that the common point to P, Z2, and (‘(P)+1)z+P would be of
the form (‘(P)+1)z+ x with x∈ (P∩Z2) implying that the string of ‘(P)+2 integer
points x; x + z; : : : ; x + (‘(P) + 1)z all belong to P contradicting the de@nition of the
lattice diameter. Eq. (1) implies that {(‘(P) + 1)z + (P ∩ Z2)}z∈Z2 form a “packing”
in Z2 which shows, in turn, that P contains at most (‘(P) + 1)2 lattice points,

|P ∩ Z2|6 (‘(P) + 1)2: (2)

An elementary argument and (1) imply that (‘(P) + 1)Z2 + P is a packing in R2 by
translates of P so that

area(P)6 (‘(P) + 1)2: (3)

For higher dimension the volume of P is not bounded by a function of ‘(P); there are
empty simplices S ⊂ Rd (i.e., S ∩ Zd=vert(S)) having arbitrarily large volume (see
[11,4,12]), e.g., one can take (in R3) S =conv({(0; 0; 0); (1; 0; 0); (0; 1; 0); (1; 1; k)}).

Let a(k) denote the maximal area a convex lattice polygon P with ‘(P)6 k can
have. The square, i.e., Example Q1, implies a(k)¿ k2. Alarcon [1] observed that this is
far from being optimal, area(Q2)= k2+k−1=2. He also showed a(1)= 1:5, a(2)= 5:5,
a(3)= 11:5 and a(4)= 21, and improved (3) to a(k)6 k2 +2k−2 for k¿ 5. Our @rst
result is that a(k) is very close to the upper bound (3).

Theorem 1. For k¿ 5 there exists a convex lattice polygon Q3 with ‘(Q3)= k and
area(Q3)= k2 + 2k − 4.

The construction Q3 =Q3(k) is an octagon with vertices (−1; 0), (0; k − 1), (2; k),
(k − 1; k + 1), (k + 1; k), (k; 1), (k − 2; 0), and (1;−1), see Fig. 2. In fact, for k ¿ 5
the polygon Q3 is indeed an octagon with only these eight vertices on its boundary
and with (k + 1)2 − 8 interior points. For k =5 two of its boundary points, (2; k) and
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Fig. 2.

(k− 2; 0), are not vertices, it becomes a hexagon. Thus Pick’s theorem [9] on the area
of lattice polygons, i.e.,

area(P)= |int(P) ∩ Z2| − 1 +
|@(P) ∩ Z2|

2

implies area(Q3)= (k2 + 2k − 7) − 1 + 8
2 , as claimed. (This can be shown directly

as well.) Alarcon’s improvement of (3) also utilizes Pick’s theorem, he shows that a
maximal P has at least 4 vertices. We conjecture that Q3 is extremal, a(k)= k2+2k−4.

2. Slopes of diameters

Bang [2] solved Tarski’s plank problem by showing that if a compact convex set in
R2 can be covered by n strips of widths w1; w2; : : : ; wn then it can be covered with one
strip of width

∑
16i6n wi. Corzatt [5] conjectured the following discrete analogue. If

the set of lattice points contained in the lattice polygon P can be covered by n lines,
(P∩Z2) ⊂ (L1∪L2∪· · ·∪Ln), then there exists a set of covering lines L= {L′1; : : : ; L′n},
(P ∩ Z2) ⊂ (L′1 ∪ L′2 ∪ · · · ∪ L′n) such that the lines in L′ have at most four diSerent
slopes. This problem motivated Alarcon [1] to ask the maximum number of diameter
directions of a lattice polygon.
A non-zero vector u∈Z2 is a diameter direction for the convex lattice polygon P

if there is an integer z such that z; z + u; : : : ; z + ‘(P)u all belong to P. Such a u is
necessarily a primitive vector, i.e., its coordinates are coprime. Write N (P) for the
number of diameter directions of P. The triangle with vertices (−1;−1), (1; 0), (0; 1)
and baricenter (0; 0) has 6 diSerent diameter directions. Here we prove that

N (P)6 4;
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for all convex lattice polygons with ‘(P)¿ 1. This is done by a good description
(Theorem 2 below) of convex lattice polygons P that are maximal to containment
with respect to ‘(P)= ‘.
Write M‘ for the collection of maximal convex lattice polygons, i.e., P ∈M‘ if

‘(P)= ‘, and for any convex lattice polygon P′ properly containing P, ‘(P′)¿‘.
One more de@nition: given primitive vectors u, b∈Z2 (non-parallel) and z ∈Z2, the
half-open slab S(u; b; z) is de@ned as

S(u; b; z)= {z + �u+ �b: 06 �¡‘ + 1; −∞¡�¡+∞}:

Theorem 2. If P ∈M‘ then one of the following 3 cases holds.

(i) P has exactly two diameter directions; u1 and u2; say. They form a basis of Z2.
Further; there are points z1; z2 ∈Z2 and primitive vectors b1 and b2 such that
zi; zi + ui; : : : ; zi + ‘ui ∈P and

P=conv(Z2 ∩ S(u1; b1; z1) ∩ S(u2; b2; z2)): (4)

(ii) P has exactly three diameter directions; u1; u2; u3. Any two of them form a
basis of Z2 thus u3 = ± u1 ± u2. Further; there are points zi ∈Z2 and primitive
vectors bi (i=1; 2; 3) such that zi; zi + ui; : : : ; zi + ‘ui ∈P and

P=conv

(
Z2 ∩

⋂
16i63

S(ui; bi; zi)

)
: (5)

(iii) P has exactly four diameter directions. Then (mod SL(2;Z); i.e.; up to a lat-
tice preserving a>ne transformation) P is either the square Q1 or the special
pentagon Q2. (See again Fig. 1:)

The proof is postponed to Section 4.

3. Width and covering radius

The lattice diameter is the natural counterpart of the lattice width, wl(P), which is
de@ned as

wl(P)= min
u∈Z2u �= (0;0)

(
max
x;y∈P

u(x − y)
)
:

The lattice width is also invariant under the group of unimodular aBne transforma-
tions SL(2;Z). Thus wl(P)= 0 if and only if P can be covered by a single line. For
the square we have wl(Q1)= ‘ and for the special pentagon Q2 in Example 1, we
have wl(Q2)= ‘ + 1¿‘(Q2)= ‘. In general, in Section 5, we prove the following
consequence of Theorem 2.

Theorem 3. wl(P)6 � 4
3‘(P)�+ 1 and for given ‘ this upper bound is best possible.
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The following example, Q4, shows that here equality can hold if ‘ is of the form
3t + 1. The polygon Q4 =Q4(t) is a triangle with vertices (0; 0), (4t + 2; 2t + 1), and
(2t+1; 4t+2); it has lattice diameter ‘=3t+1 and lattice width wl(Q4)= 4t+2. For
the other values of ‘ we obtain equality by considering the triangle (0; 0), (t; 2t + 1),
(2t + 1; t + 1). Its width is 2t + 1 and its diameter is �(3t + 1)=2�.
The following example, Q5, shows that there are other completely diSerent polygons

with almost equality in Theorem 3. Let Q5 =Q5(‘) be a hexagon with vertices (0; 0),
( 13‘;− 1

3‘), (‘; 0), (
4
3‘;

2
3‘), (‘; ‘), and ( 13‘;

2
3‘). We have ‘(Q5)= ‘, and wl(Q5)= 4

3‘
for every ‘∈Z+, ‘ is divisible by 3.
Schnell [13] showed (in a slightly diSerent form) another upper bound for the lattice

width of an arbitrary convex, closed planar region C

wl(C)6 4
3 area(C)�2(C); (6)

where �2 := �2(C) is the covering radius, i.e., the smallest positive real x such that
the union of the regions of the form z + xC for z ∈Z2 covers the plane. For more
about covering minima see Kannan and Lov$asz [8], or the survey of Gritzmann and
Wills [7].
Although (6) frequently gives a better bound than Theorem 3, there are several exam-

ples, like Q6 below, when ‘(P) is smaller than area(P)�2(P). Let Q6 =Q6(t) be a tilted
square of side length

√
160t with vertices (t;−3t), (13t; t), (9t; 13t), (−3t; 9t), where

t ∈Z+. It contains the inscribed square (0; 0), (10t; 0), (10t; 10t), (0; 10t) and its cover-
ing radius is �2 = 1=(10t). On the other hand, it is easy to see that area(Q6)�2 = 16t is
at least 1:2 times larger than ‘(Q6)= �(40=3)t�. We conjecture that in general Schnell’s
bound is at most (1 +

√
2)=2=1:207 : : : times larger than ‘(C).

Another upper bound for the lattice width is due to Fejes-T$oth and Makai [6]

wl(C)6
√

8
3 area(C): (7)

This is also sharp for some cases, like for the triangle (0; t); (t; 0); (−t;−t), but again
Q6 shows that it could exceed the bound of Theorem 3 by more than 50%.

4. The maximal polygons, the Proof of Theorem 2

We start with a statement that applies to every convex lattice polygon.

Lemma 1. Assume P is a convex lattice polygon and u∈Z2; u �=(0; 0). Then there
is a longest segment [z; v] contained in P and parallel with u such that z is a vertex
of P. Further; for every such longest segment [z; v]; v lies on an edge [v1v2] of P so
that the line through z and parallel with [v1v2] is tangent to P.

The proof is simple and can be found in [3].
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Fig. 3.

Consider now P ∈M‘ (with ‘¿ 1) and let u be a diameter direction for P. Apply
Lemma 1 to get a longest segment [z; v] with z a vertex. As [z; v] is a longest segment
in direction u, z; z + u; : : : ; z + ‘u∈P ∩ Z2. Thus [z; v] contains a lattice diameter.
Applying a suitable lattice preserving aBne transformation we may assume u=(0; 1),

z=(0; 0) and v2 − v1 = b=(bx; by) with 06 2by6 bx, here [v1; v2] is the edge of P
speci@ed by Lemma 1. We conclude that P lies in the half-open slab S(u; b; z), see
Fig. 3.
As the area of the z; v1; v2 triangle is at most area(P)6 (‘+1)2 by (3) and the area

of the z + (‘ + 1)u; v1; v2 triangle is at least 1
2 , we obtain that P is contained in the

slightly narrower half-open slab

S ′(u; b; z) :=
{
z + �u+ �b: 06 �¡‘ + 1− 1

2‘ + 2
; −∞¡�¡+∞

}
: (8)

It follows from (1) that (±(‘ + 1); k) �∈ P for all k ∈Z. Assume now that some
q=(qx; qy)∈Z2 with qx ¿‘+ 1 belongs to P. The triangle T := conv{(0; 0); (0; ‘); q}
meets the line x= ‘+1 in a segment of length ‘(qx−‘−1)=qx. This segment must be
lattice point free, so its length is less than 1, implying qx ¡‘+3 for ‘¿ 2. The case
‘6 2 is obvious, so from now on we always suppose ‘¿ 2. A simple computation
reveals that T contains a lattice point from the line x= ‘+1 unless q=(‘+2; ‘+1).

We treat @rst this case q=(‘+2; ‘+1)∈P (which leads to case (iii) as we shall see
soon). First conv{(0; 0); v; q} ⊂ P shows (0; ‘); (1; ‘); : : : ; (‘; ‘)∈P and (0; 0); (1; 1); : : : ;
(‘; ‘)∈P. So (0,1), (1,0) and (1,1) are diameter directions. As the line x= ‘ + 1
contains no lattice point of P we have (‘ + 1; ‘ + 1) and (‘ + 1; ‘) �∈ P ∩ Z2. As
(‘+ 2; ‘+ 1)∈P this implies that (k; ‘+ 1) �∈ P and (k; k − 1) �∈ P for all k6 ‘+ 1.
We obtain that for all (x; y)∈P ∩ Z2 other than (‘ + 2; ‘ + 1) we have y6 ‘ and
x6y. Further, (k;−1) �∈ P and (k; ‘ + 1 + k) �∈ P for all k ∈{−1;−2; : : : ;−(‘ + 1)}.
Also, (−‘; 0) �∈ P since otherwise (−‘; 0); (−‘ + 2; 1); : : : ; (‘ + 2; ‘ + 1) all belong to
P implying ‘(P)¿‘. Fig. 4 shows the room left for P after these restrictions.
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Fig. 4.

The maximality of P implies now that P equals conv{(‘ + 2; ‘ + 1); (0; 0);
(−‘ + 1; 0); (−‘ + 1; 1); (0; ‘)}. This is one of the special cases of (iii), the lattice
preserving aBne transformation (x; y) → (x−y+‘; y) carries P to the “almost-square”
special pentagon Q2 of Fig. 1.
From now on we assume that |x|6 ‘ for all (x; y)∈P. Thus P is con@ned to the

parallelogram of Fig. 3 bounded by the lines x= ± ‘ and two other lines parallel to
b. There are only six lattice directions in this parallelogram which can have a chord
containing ‘+1 integer points. They are (0; 1), (1; 0), (1; 1), (1;−1), (2; 1) and (2;−1).
To simplify matters we state

Claim 2. If u1 and u2 are diameter directions with det(u1; u2)= 2 of P ∈M‘ then the
diameter segments [z1; z1 + ‘u1] and [z2; z2 + ‘u2] meet either at their midpoints or
one segment is o@ by ui. In these cases (mod SL(2;Z2)) P is either the square Q1 or
the almost square; Q2; cf. Fig. 1.

Proof. As we have seen above, we may suppose that u1 = (0; 1), P ⊂ Q as in Fig. 3
and u2 = (2; 1) or u2 = (2;−1). The latter case leads to the square with vertices (−‘; ‘),
(0; 0), (‘; 0), and (0; ‘). When u2 = (2; 1) the diameters are {(0; 0); (0; 1); : : : ; (0; ‘)}
and {(−‘; i); (−‘ + 2; i + 1); : : : ; (‘; i + ‘)} ⊂ P. Considering the string of ‘ + 2
lattice points from (−1; i − 1) to (‘; i + ‘) it follows that (−1; i − 1) �∈ P. Since
(−1; 1)∈ conv((−‘; i); (0; 0); (0; ‘)) ⊂ P, it follows i6 1. Using a symmetric argument
we obtain that i∈{−1; 0; 1} and can @nish the proof as in the case q=(‘+2; ‘+1)∈P
above.

Assume now that P has exactly k diameter directions, u1; : : : ; uk . Assume that P is not
aBnely equivalent to Q1 neither Q2. Then by the above Claim det(ui; uj)=±1 for any
two diameter directions. This implies that k6 3. The diameters are zi; zi+ui; : : : ; zi+‘ui
(i=1; : : : ; k) with suitable directions bi of the edge opposite to zi of P (see Lemma 1).
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De@ne

Q=
⋂

16i6k

S(ui; bi; zi):

Clearly P ⊂ Q. We claim ‘(Q)= ‘, so again by the maximality of P, P=conv(Q∩Z2),
@nishing the proof.
Assume, on the contrary, that there exists a lattice point q∈ (Q\P), and suppose

that among these points q is one of the closest to P. Add this point to P, consider
P′ := conv(P ∪ {q}). So q is the only new lattice point in P′, P′ ∩ Z2 =P ∩ Z2 ∪ {q}.
The maximality of P implies that ‘(P′)¿‘(P), thus q creates a new longer diameter
segment q; q + u; : : : ; q + (‘ + 1)u∈P′ ∩ Z2 with u �=(0; 0). As ‘ + 1 of these points
belong to P, we obtain that u is a diameter direction of P, too. However S(ui; bi; zi)
contains no segments of direction ui longer than ‘. Thus u has to be diSerent from
u1; : : : ; uk , contradicting that P has exactly k diameter directions. Evidently, since P is
not in@nite, there are at least two diameter directions, k =2 or 3.

5. Bounding the width, the Proof of Theorem 3

As wl is an integer for a lattice polygon we have to prove only wl¡ ( 43 )(‘ + 1).
We give a sketch for the convex set

Q=
⋂

16i6k

Si;

where Si = S ′(ui; bi; zi) are the half-open slabs in (4) and (5) of Theorem 2
modi@ed in (8). Denote the width of the slabs by L. By (8) we have
L= ‘ + 1− 1=(2‘ + 2)¡‘ + 1.
Applying a suitable SL(2;Z2) mapping we may assume that u1 = (1; 0), u2 = (0; 1)

and u3, if exists, is (1; 1) or (−1;−1). We will use the fact (which is easy to establish)
that the lattice width of Q is realized in one of the directions (0; 1), (1; 0), (1; 1), and
(−1; 1). The lattice width of Q in direction q∈Z2 is wl(q; Q) :=maxx;y∈Q q(x − y).
In case (i) of Theorem 2 (see Fig. 5) x= u follows from computing the area of Q

in two ways. Similarity of triangles implies z : x=(L− x) : y. We get

wl((1; 0); Q)=L+ y − x; wl((0; 1); Q)=L+ z − x;

wl((−1; 1); Q)= 2L+ y − 2x − z; wl((1; 1); Q)= 2L+ z − 2x − y:
(9)

Then

wl(Q)=min(L+ y − x; L+ z − x)=L− x +min
(
y;

(L− x)x
y

)

and a simple analysis shows

wl(Q)6
1 +

√
2

2
L ≈ 1:207 : : : L:
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In case (ii) see Fig. 6.
For the left-hand-side hexagon note that the position of S3 does not inUuence the

width of Q as long as S3 cuts oS two opposite vertices of the parallelogram S1 ∩ S2.
So we may place S3 so as to contain the isosceles and right angle triangle of Fig. 6.
ReUecting inwards the three small triangles and comparing areas gives

1
2m1L+ 1

2m2L+ 1
2m3

√
2L6 1

2L
2

implying

min(m1; m2;
√
2m3)6 1

3L:

Further, wl((1; 0); Q)=L+m2, wl((0; 1); Q)=L+m1, and wl((−1; 1); Q)=L+
√
2m3.

So wl(Q)6 4
3L.

For the other hexagon of Fig. 6 the computations in (9) can easily be applied.

Fig. 5.

Fig. 6.
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