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Abstract. The bandwidth of a graph is the minimum, over vertex labelings with distinct
integers, of the maximum difference between labels on adjacent vertices. Kuang and
McDiarmid proved that almost all »n-vertex graphs have bandwidth
n — (242 + o(1))log, n. Thus the sum of the bandwidths of a graph and its complement
is almost always at least 2n — (4 4+ 2v/2 + o(1))log, n; we prove that it is always at most
2n — 4log, n + o(log n). The proofs involve improving the bounds on the Ramsey and
Turan numbers of the “halfgraph”.
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1. The Problem

When the vertices of a graph are labeled injectively with integers, the dilation of
an edge is the difference between the labels on its endpoints. The bandwidth B(G)
of the graph G is the minimum, over all such labelings, of the maximum edge
dilation.

Chinn, Chung, Erdds, and Graham [3] investigated the sum B(G) + B(G),
where G denotes the complement of G. They proved that B(G) + B(G) > n —2
whenever G has n vertices (for n > 4). Equality holds when G is a 4-vertex path.
They also established the existence of constants c¢;,c; such that
B(G) + B(G) < 2n — ¢y logn for every n-vertex G and B(G) + B(G) > 2n — c;logn
for almost every n-vertex G.

Kuang and McDiarmid [17] improved the constant ¢;. They proved that
for the random graph generated with fixed edge probability p, almost all
graphs have bandwidth n — (2 4+ v/2 + o(1)) log, (1, n, where n denotes the
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number of vertices. With p = 1/2, the complement of a random graph is also a
random graph, and we obtain ¢, < 4 4+ 2v/2+ ¢ for any € > 0 and sufficiently
large n.

In this paper we increase the constant ¢; in the upper bound, proving that

Theorem 1. If f(n) is the maximum of B(G) + B(G) over n-vertex graphs, then

2n — [(4 +2v2)log, n—‘ < f(n) < 2n —4log, n + o(logn).

2. Related Extremal Graph Problems

The bandwidth problem can be expressed in terms of other classical extremal
graph problems involving the occurrence of fixed subgraphs. We use V' (G) and
E(G) for the vertex set and edge set of a graph G. We use [n] to denote the set of
the first n positive integers and P, to denote the graph that is an n-vertex path.

The halfgraph H, is the graph with 2r vertices defined by V(H,) = [2r] and
E(H,)={ij: j—i>r}. When we let ;=i for 1 <i<r and b;=r+; for
1 <j<r, we obtain the more common representation E(H,) = {a;b;: i < j},
which shows that H, is bipartite.

The first definition of H, leads to bandwidth via the observation that
H, = P5~!, where P¥ has vertex set [27] and edge set {ij: 1 < j—i < k} (this is the
kth power of Py,). The bandwidth of P¥ is k. In general, the bandwidth of an n-
vertex graph is at most & if and only if the graph is contained in P¥, since the set of
edges permitted in an optimal labeling forms P¥. For n > 2r > 2, this observation
becomes

B(G) <n—r—1ifand onlyif H. C G. (2.1)

Since the appearance of H, requires n > 2r, one direction needs no restriction on 7.

Thus B(G) is large if and only if G contains no large halfgraph, and B(G) is
large if and only if G contains no large halfgraph. Studying the maximum of
B(G) + B(G) amounts to studying what combinations of halfgraphs must appear
in G and G; this is a problem of Ramsey graph theory.

Given graphs 4, B, the Ramsey number R(4,B) is the smallest integer n such
that every red/blue-coloring of the edges of K, yields a copy of 4 in red or a copy
of B in blue. When n < R(4, B), the clique K,, can be decomposed into a subgraph
avoiding 4 and a subgraph avoiding B. When 4 and B are cliques, the numbers
R(k,1) = R(K,K;) are the classical Ramsey numbers. The general definitions and
results we use from Ramsey Theory appear in [14].

Proposition 2. If R(H,,H,) > n with n > max{2a,2b}, then f(n) >2n—a—b.
If f(n) > 2n — k, then there exist a, b with sum k such that R(H,, Hy) > n.
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Proof. If R(H,, H,) > n, then there is an n-vertex graph G such that H, Z G and
H, € G. When n > max{2a,2b}, (2.1) and the latter statement yield both
B(G) >n—aand B(G) > n—b. Thus f(n) >2n—a—b.

If f(n)>2n—k, then there exists an n-vertex graph G such that
B(G) + B(G) > 2n — k. This requires the existence of a,b with sum k such that
B(G) > n—a and B(G) > n — b. By (2.1), this requires both H, Z G and H, Z G,
which yields R(H,, Hp) > n. O

For completeness, we sketch the proof of the lower bound on f(n). We have
noted that if B(G)>n—r almost always, then f(n)>2n—2r. We have
B(G) > n—rif and only if H, Z G. Since H, has 2r vertices and r(r + 1)/2 edges,
the standard Erddés-Rényi [4] random graph model with edge probability 1/2
yields P(H, C G) < n?27""/2 (see [3, 18]). When r > 4log, n, the probability is less
than 1/2, and the bound f(n) > 2n — [4log, n] follows.

Considering the densest subgraph of H, yields a better bound. Let H,.,, be the
subgraph obtained by discarding the 2m vertices of least degree (m from each
partite set). Presence of H, requires presence of H,,. Since H,, has 2r —2m
vertices and r(r + 1)/2 — m(m + 1) edges, in the random n-vertex graph G we have

P(H, € G) < P(Hy,, C G) < w2~ (7=2m)/2,

The densest subgraph and best bound are obtained by setting m = (1 — /2/2)r.
When 7 > (2 + v/2)log, n, the resulting bound on P(H, C G) is less than 1/2,
which yields the lower bound in Theorem 1. Using the second moment method,
Kuang and McDiarmid [17] obtained the precise threshold for the appearance of
H,, thus showing that B(G) = (2 + v2 + o(1))log, n almost always.

In terms of Ramsey numbers, the bound on P(H, C G) yields the following:

Theorem 3. R(H,,H,) > 2041)/(24+v2), O

Proposition 2 implies that f(n) =2n— min{a + b: R(H,, Hy) > n} if n>
max{2a,2b} for a pair (a,b) where the minimum occurs. When we set
r = [(2+ V2) log, n] — 1, Theorem 3 yields R(H,, H,) > n. When n > 34, we have
n>2 [(2+V2)logyn| —2, and then Proposition 2 implies that f(n) >
2n—2[(2+ V2) log, n] + 2 when n > 34. With Theorem 3, we also have

Corollary 4. For n > 34, f(n) = 2n — min{a + b: R(H,,, Hy) > n}. O

We henceforth assume that n > 34 (this threshold can be reduced by
improving the lower bounds on Ramsey numbers for small halfgraphs).

Upper bounds on R(H,, H,) that depend only on a + b yield upper bounds on
f(n). An easy bound comes from the classical Erdds-Szekeres (see [14]) upper
bound on Ramsey numbers: R(p,q) < (,;;52) < 27*4. This yields

R(H,, Hp) < R(2a,2b) < 4°*. (2.2)

By Proposition 2 and (2.2), we have f(n) < 2n — %logz n. We want to increase
the coefficient on log, n to 4. To this end, we define the function g by
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g(k) = max R(H,, Hp). (2.3)

Corollary 4 tells us that g(k) < n yields f(n) < 2n — k.

Let ex(n, F) denote the maximum number of edges in an F-free graph with n
vertices. This is often called the Turdn number of F. Kovari, T. S6s and Turan [16]
showed that

ex(n,Kiz) < = (k — 1)1/’%2*1/"%(/(— 1)n. (2.4)

N —

Let G be an n-vertex graph. If ex(n, K, 4) + ex(n,Kpp) < (3), then G contains K, 4
or G contains Kj . Since H, C K, ,, this yields R(H,, H;) < n. A careful examin-
ation of (2.4) shows that k = 2log, n — O(log,log, n) is small enough to yield
g(k) <n, and thus f(n) < 2n— (2 —o(1))log,n. This technique of using the
Turan number of a bipartite graph to prove an upper bound on its Ramsey
number is now standard in extremal graph theory (see [10], for example).

To further improve this upper bound, we need a tighter bound on the Turan
number of H,. Observe that H, is contained not only in K,, but even in the
subgraph obtained by removing K|,/ |,/2) from K, ,. Due to its similarity to the
halfgraph, we use the notation H'(r, ) to denote the subgraph of the biclique K,
obtained by deleting the edges of the biclique K; ;. In the next section, we obtain
an upper bound on ex(n, H'(r, 1)) implying that g(k) < n for k as large as about
4log, n. This yields the desired upper bound f(n) < 2n — 4log, n + o(log, n).

3. Turan Numbers and the Halfgraph

Before proving our upper bound on ex(n, H'(r,[)) in Theorem 6, we compare it
with earlier results.

For every bipartite graph F that is not a forest, there is a positive constant ¢(F)
such that Q(n'*¢) < ex(n, F) < O(n*=¢); this was observed by Erd8s [unpublished]
and appears in [16]. For a given F, the first problem in studying ex(n, F') is thus to
find the right exponent (if such exists). It is conjectured ([7,9]) that
ex(n, Ky ) = ©(n*~'/%). This was proved for K;, in Erdds-Rényi-Sos [5] and (si-
multaneously and independently) in Brown [2]. For K33 it appears in Brown [2].
For K;; with k£ > /!, results appear in Kollar-Ronyai-Szabo [15], later improved
for £ > (I — 1)! in Alon-Roényai-Szabé [1].

Erdés [6] also proved that when » > [ > 1, there exists a constant ¢, ; such that
ex(n, H'(r,1)) < ¢, yn* "/0=1)_ His proof is somewhat complicated and does not
give a sufficiently good constant in the range where we need (when both » and /
are about log, n).

Another upper bound for ex(n, H'(r, [)) follows from the method of Erdés and
Simonovits [9]. They proved that ex(n, Q) < O(n®), where Q is the 8-vertex
3-dimensional cube. Similarly, the correct order of growth for ex(n,H'(r, 1)) fol-
lows from the main result in Fiiredi [13]. However, in all of these articles the
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authors concentrated on large values of n compared to k. In the range we need,
these results seem not to imply our bound.

In the proof, we extend (’;) to nonnegative real x for each nonnegative integer
t. When ¢ = 0, we take (%) = 1 for all real x > 0. When 7 > 1, we take (%) = 0 for
0<x<rt—1, and for x>¢r—1 we view (}) as a real polynomial
x(x—1)...(x —t+1)/t! of degree ¢ in x. The resulting functions are convex. Thus
the mean of values of this function at several points is at least the value at the

mean argument. In particular,
m

S ("4).

i=1

We will also use the following simple lemma, which was proved and applied in [12]
to a related problem.

Lemma 5 ([12]). Ifv,t > 1 areintegers andc,xy,xi,...,x; > 0are real numbers, then
Z (x,-) < C(x()) implies Z x; < xoc! WV (1= 1o, O
1<i<v ! ! 1<i<v
SISV <i<v

Theorem 6. ex(n, H'(r,1)) <1(r+1— 1)/ 0p2 10D 4 Lo — | — 1)n,

Proof. Let G be an n-vertex graph not containing H'(r,/); we bound e = |E(G)].
Let d(x) denote the degree of a vertex x, and for 4 C V(G) let d(4) denote the
number of common neighbors of 4.

Let t = r — I, and let X be the number of copies of K(¢,¢) in G. We form such a
subgraph by choosing a #-set 4 and choosing ¢ of its common neighbors. Each
copy arises twice. Thus X =137, (4.

We first find a lower bound on X. By'(3.1),

% ; (d(:t)) N % (") (Z d(f)/ (?)),

Since d(4) counts the stars with leaf set 4, the total > d(4) is the number of stars
with ¢ edges in G. These can alternatively be counted by choosing ¢ neighbors for
each choice of the central vertex. Applying (3.1) to the resulting sum yields

S = 3 <d<x>> N n(z d(x)/n)_

t t
xeV(G)

Together, these computations yield

X > % (%) (" (26/0/(7)). (3.2)

t t
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We next find an upper bound on X. Let o7 = {4 € V<lG) :d(A4) < r}. Consider
copies of K, in which at least one of the partite sets belongs to .«Z. The number of
these is at most |«Z|(",").

Now consider a copy of K;, with partite sets 4, B such that 4, B¢ .«/. Our main
observation is that the prohibition of H'(r,l) yields d(4) <2r—t—1. If
d(4) > r+r—1t =21+t then 4 has at least 2/ common neighbors outside B, and
after avoiding (at most) / of the » common neighbors of B there remain at least /
common neighbors of 4 to complete a copy of H'(r,I). The same argument
applies to d(B). Thus each such copy of K, is generated twice when we arbitrarily
choose t common neighbors of a ¢-set outside .«7. Thus the number of copies of K,
with neither partite set in 7 is bounded by 1 ((7) — |.z|) (*"/7").

Together, the two upper bounds yield

xe(maf (7)) o

Since the ratio of 1 (*/~") to (") is exactly (’*lﬂl’ *’)) /(:"]), always the second

term in the maximization is larger.
Comparing (3.2) and (3.3) yields

n<2et/”)/(’;) <2 —1—1.

Letv=x9=mn,letx; =...=x, =2e¢/n, and let c = 2r — t — 1. Lemma 5 now
yields

2e < (2r—t— D)2 Vg (1= Dn. O

4. Proof of the Upper Bound

The pair (r,r) is one instance of (a,b) such that a+b=2r, and thus
R(H,,H,) < g(2r), where g is as defined in (2.3). Theorem 6 enables us to prove an
upper bound on g(2r) and thus an upper bound on R(H,, H,) that differs from the
lower bound in Theorem 3 by a factor of less than 2 in the exponent.

Corollary 7. If r is sufficiently large, then R(H,,H,) < g(2r) < (3r + 1)27/2.
Proof. By the definition of ¢(2r), there exist a,b with a+ b = 2r such that

g(2r) = R(H,, Hp). Let G be an n-vertex graph such that H, ¢ G and H, Z G. It
suffices to show that n < (37 + 1)2'/2, when r is sufficiently large.

Because H, ¢ G and H, C H'(a, |a/2]), Theorem 6 yields

e(G) < ex(n,H,) < ex(n,H'(a,|a/2])) < " (%) wﬁJrE Uq B 1)'

n
-2 n
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The right side yields the bound

e(G) < %2 (ﬁ>2/a+%. (4.1)

n

Summing (4.1) and its analogue for G yields

n — 2 3N\ na w? 3\ ab
— <2 (2 na (2 n
(5) e(G)+e(G>—2<n> +4+2(n> 3
This simplifies to

+ P, (4.2)

where ¢ = 3r/n.

We may assume that r < 2log,(n/3r), since otherwise the desired inequality
holds. Since ¢ < 1, differentiating the function f defined by f(x) = ¢*/* shows that
f is concave for x > —Inc. If min{a,b} > In(n/3r), then concavity implies
that the upper bound in (4.2) is at most 2¢*(@*). We obtain 1 — L < 2(¥) 2w
which rearranges to yield n < 3r272(—2)""* < (3r 4 1)2772.

It remains only to eliminate the case @ = min{a, b} < In(n/3r). We obtain a
contradiction to (4.2) by showing that the right side is too small. Since ¢*/* is a
monotone increasing function, we obtain an upper bound by using a < In(n/3r)
and b < 2r. We also use our restriction to » < 2log,(n/3r). These yield

2B < 21— (N3 _ (1 /lom(n/3) 02 < ~(1/2) 2 _ 1 < 7072

CZ/a < CZ/ln(n/_’)r) — e—2]n(n/3r)/ln(n/3r) — e—2 < .1354

When n > (37 + 1)2//2, this contradicts (4.2) for » > 3, which eliminates this case
and completes the proof. O

As observed in Section 2, g(k) < n yields f(n) < 2n — k. Thus Corollary 7
yields the desired upper bound f(n) < 2n — 4log, n + O(log,log, n).

5. Conclusion and Open Problems

Our upper and lower bounds for R(H,, H,) are much closer together than the best
known upper and lower bounds for R(K,,K,). One might expect that tighter
bounds on R(H,, H,) are hopeless without improving the bounds for R(K,, K, ). It
would be interesting to find a direct relationship between these two functions.

Our method can be generalized for decompositions of K, into k edge-disjoint
n-vertex graphs, with & fixed. Over such decompositions, max(B(G;)+
B(Ga) + -+ B(Gy)) = kn — ©(logn). It would be interesting to narrow the gap in
the coefficient of logn.
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If we can allow the number of pieces in the decomposition to grow arbitrarily
n

with n, then the maximum sum is (2), achieved by decomposition into (g) indi-
vidual edges. The maximum can reach O(n?) when the number of pieces is linear,
which is not surprising given the result for fixed k. For example, when we
decompose K, into stars of sizes 1 through n — 1, the sum of the bandwidths
is [4][=]. How small can k be in terms of n to achieve various growth rates for
the bandwidth sum?

When [ =r — 1, the graph H'(r,[) is a double star with two adjacent vertices
of degree r. It is easy to see that ex(n,H'(r,r—1))=(r—1)(n—r+1) (for
r > rp), so in this case the bound in Theorem 6 is asymptotically optimal within a
factor of 2. For r — [ = 2, Theorem 6 gives

1

ex(n,H'(r,r —2)) < 3 (2r — 3)2n32 4 O(n).

The best lower bound from [13] gives

ex(n, H'(r,r — 2)) > ex(n,Kz,) = (1 +0(1)) = (r — 1)/’

N —

so in this case Theorem 6 is asymptotically optimal within a factor of v/2. It would
be interesting to find the correct asymptotic behavior for each r — /.

It is easy to see that ex(n, H3) = ex(n,K»2) + O(1); we expect that equality
holds for sufficiently large n. For larger fixed », we conjecture that
ex(n, H,) ~ ex(n, K[,/2,1,/21). In other words, is the Turan number of H, about the
same as the Turan number of its largest complete bipartite subgraph?
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