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Abstract. A construction using finite affine geometries is given to show that the maximum
number of edges in a t-critical linear hypergraph is (1 — o(1))72. This asymptotically an-
swers a question of Roudneff [14], Aharoni and Ziv [1].

Key words. Linear hypergraphs, Finite affine geometries, t-critical hypergraphs

1. Linear Hypergraphs

A linear hypergraph # is an ordered pair # = (V, &), where V = V() is a finite
set of vertices and & = & () is a collection of subsets of V, called edges, such that
any two edges have at most one common vertex. The size of the hypergraph
means the number of its edges. A set T is a cover (or transversal) of A if it
intersects every edge. The minimum cardinality of a cover is the covering number,
it is denoted by ().

Let us denote the Desarguesian finite projective plane of order g by 2 = Z,. It
is obtained from a finite field of size ¢ (cf. [13]). It is a linear hypergraph of vertex
set of size g> + g + 1 (called points) and the same number of hyperedges (lines). It
is also intersecting (i.e., LN L' # & for every two lines L, L" € &(2)) thus every line
is a cover. It is well-known (and easy) that ©(%#)) = ¢+ 1.

Call a cover B C V(%,) non-trivial or a blocking set if it contains no line, i.e.,
LNB # Jand L ¢ B hold for every L € &(2). We are going to use the following
result of Blokhuis [4]. The size of a blocking set B of a Desarguesian #, with g an
odd prime is at least

1
B> 5 (3¢ +3) (1)
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The Desarguesian affine plane, .o/, of order ¢ is again a linear hypergraph on q?
vertices and with ¢> + g g-element hyperedges (for details see [13]). Its edge-set
can be partitioned into g + 1 parallel classes, &(t;) = %1 U--- ULy, such that
S ={L},L},... L} and these form a g-partition of the underlying set V' (.Z,)
into g-element parts. One has L} ijﬁ # for 1 <i< j<g+1 and for arbitrary
1<a, f<q. Take a line L} and choose an element from each parallel line
xP e Liﬁ (S # o), then the obtained (2¢ — 1)-element set forms a cover of the affine
plane. Jamison [12] and (independently) Brouwer and Schrijver [7] proved that
for the Desarguesian affine plane .o, with a prime order ¢ these are among the
smallest covers, i.e.,

() =29 — 1. (2)

The affine plane can be obtained from the projective plane Z, by deleting the
vertices of a line Lo from its vertex set, and by restricting the remaining ¢> + ¢
lines into V' (#,)\Ly, i.e., deleting one vertex (the one in LN Ly) from each of the
remaining lines L € &(%)\{Lo}. In this case Ly is called the line of infinity of
.

Proofs and further results about covers and especially about blocking sets in
projective geometries can be found in the excellent surveys by Blokhuis [5] and
Sz4nyi [16].

2. t-Critical Hypergraphs

A hypergraph is t-critical if omitting one edge always reduces its covering
number. Erdds, Hajnal and Moon [9] proved that any t-critical graph has at most
(T—;l) edges, with equality holding only for the complete graph on 7+ 1
vertices. As a generalization Roudneff [14] as well as Aharoni and Ziv [1] con-
jectured the same upper estimate for every t-critical linear hypergraph. Let /(z)
denote the maximum size of a t-critical linear hypergraph. It is easy to see that the
maximum degree of such a hypergraph is at most 7 and there are sets of size 1 — 1
that cover all but one of the edges, we obtain /() <t?> — t + 1. Sudakov [15]
proved the conjecture for t <5 and obtained an upper bound /(t) <> — 3t +5
for > 5.

The aim of this note is give an example showing that t-critical linear hyper-
graphs are much closer to finite geometries than to graphs. The construction given
in the next Section yields

Theorem 1. /(7) > > — O(%/).

For example, (starting with the affine geometry of order 7) we have

£(10) > 56 > (121)
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3. Construction

Using affine geometries we are going to define a linear, t-critical hypergraph .
Our construction is inspired by an example of Blokhuis [3] (given for a different
problem) which was inspired by a result of Drake [§], etc.

Let g be an odd prime, ¢ > 7 and let r be the largest integer with (;) < ¢, and

1
let m:= (;) We have r:= E(l +\/8q+1)J =2q+0(1), and 4<r<m

< gq. Let .o/, be the Desarguasian affine geometry of order ¢ with the ¢*-element
vertex set ¥ and with parallel classes %1, ..., %1, % = {L!,...,L}. Consider
g + 1 complete graphs of order r with pairwise disjoint vertex sets V1, ..., ;1 also
disjoint to ¥y. Thus V' := (Jy;<,41 Vi has g*> +r(q + 1) elements. Label the edges
of the /’"th complete graph from 1 to m, we obtain {El.1 , Eiz, ...,E"}. Finally, define
the edge-set of # as

E(A) = {L]UE! for 1<i<q+1land 1< < m}
U{L/ for1<i<g+1andm< j<g}. (3)

We claim that s is a linear, t-critical hypergraph and the size of the minimum
cover is ¢t where this defined as

t:=q+(r—2)+(qg—m)=q+0(/q). (4)

This immediately implies for this value of ¢ that

() 2|6(H) =q* +q =1~ O0@). (5)

To see the linearity of # observe that its restriction to ¥} is the affine plane,
hence [ENE'NVy| <1 holds for every pair of edges E,E' € &(°). Similarly,
[ENE'N(NU---Uky)| <1. Thus, linearity of 2 follows from the fact that
if two of its edges E, E’ meet in Vy, EUE’' UV, # O, then ENV, and E' NV, belong
to distinct parallel classes hence E and E’ are disjoint in ¥} U - -- U I7;. Similarly,
if £ and E' meet in V; U --- U/, then they are disjoint in V.

It is obvious that t(#) <t¢, just consider the cover T :=L{U(V\E])U
{x{ :m < j < ¢} where x{ is an arbitrary point of L;.

Next we show that t(#°) >¢. Consider a cover T and suppose that |T| <¢ thus

3 . . .
|T| < z(q + 1). We are going to show that |T| > ¢. The restriction of # to V} is

just the affine plane, |l .o/, thus it is not possible that TN(¥N---
U¥41) = . Indeed, otherwise T is a cover for o7, too, and then (2) implies that
|T| >2g — 1, a contradiction. On the other hand, there must be a V; with 1 <
<g+ 1suchthat /;NT = J. Indeed, |T| < 2¢ implies that min; <, <41 |V;NT|< 1.
If it is exactly 1, say [/1NT|=1 and |V;NT|>1 for i> 1, then |(NU ---
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UW1)NT|>qg+1 hence |[IHhNT|< t—(g+1) <m—(r—1). Thus in this case
7o N T could not cover the (at least m — (r — 1)) edges of 2# obtained from ¥, and
uncovered by V1 NT.

Form a set T* by replacing each subset /; N T by an element y, for 1 <i<q + 1
whenever this set is non-empty, ¥; N7 # . Then T* is a cover of size at most |T|
of the projective plane corresponding to .oZ,. Blokhuis’ result (1) implies that 7*
contains a line L of the projective plane. Our argument in the previous paragraph
gives that L is not the line of infinity, thus it is of the form L/ U{y,}. We may
suppose that i = 1, i.e., L] T for some 1 < j<q. As L] meets ‘all the lines L of
the affine plane for i > 1, we may also suppose that (Vz Ka)NT =a.

In the case of 1 < j<m one needs at least (¢ — m) Vertices (inside (Jj.,, Lf) to
cover the hyperedges {L{ : k > m} and at least » — 2 more (inside <, L{ U V1)
to cover the hyperedges of the form L UEF for 1 <k<m, k+# j. In the case of
j > m one needs another (¢ —m — 1) vertices of 7 inside | J;.,, L¥ and at least
r — 1 more inside J,,,, L¥ U V1. In both cases we obtain |T| > .

Finally, we show that # is critical, i.e., removing any edge E one has
(A \{E}) <t— 1. Indeed, removing L; UE; (for 1< j<m) one can define the
set T/ as follows. T,/ := (F\E/)UL" ' U{xf : k > m + 1}, where xf is an arbi-
trary element of LY. This T/ has t — 1 vertices and meets all edges of # but
L/UE/. Removmg L/ (for j>m) from # one can construct again a set 7/
covering all the other edges as follows. 7, := L' U(V\E! YU {x} : k > m, k # j}.

Proof of Theorem 1. It is well-known that primes are relatively dense among
integers, e.g., it follows from [11] that for every integer t > 79 one can find a prime
¢ in the interval 1 — 3% < ¢ <t —2,/. Then /(1) >¢* + q = 1> — O(«*/) fol-
lows from (4), (5) and from the strict monotonicity of 7, /(t— 1) < /(7).
(More is true, considering vertex disjoint examples we even get /(a + b) >
l(a)+£(D)). Q.E.D.

4. Generalized Construction from Double Critical Hypergraphs

In the same way as above one can prove the following statement. Let ¢ be an
odd prime, ¢ >7, and let .o, be the Desarguesian affine plane of order ¢ with
parallel classes .%; and vertex set V. Let & = {E!,... E™} be a linear, t-critical

. . 1
hypergraph with covering number ¢>1 such that m < ¢ and m — > E(q -5).

Consider g + 1 copies of . with pairwise disjoint vertex sets also disjoint to ;.
We obtain {E!,E?,...,E"} for 1 <i< g+ 1. Define the edge-set of # in the same
way as in (3), then A 1s a linear, t-critical hypergraph with

(A)=q+ =1+ (qg—m) (6)

The construction can be extended even to the case m = ¢ if the hypergraph &
is double critical. We call a t-critical hypergraph & double critical if for every
E € §() there exists another edge E’ such that removing both of them the
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covering number decreases by 2, t(¥\{E,E'}) = () — 2. The Desarguesian
affine plane .7, is double critical (¢ > 3, a prime number), and any vertex disjoint
union of t-critical hypergraphs yields double critical systems.

Replace the complete graph in the construction of the previous Section by an
(almost) optimal double critical linear hypergraph. Induction implies that for
T =q + o(,/q) (where g is a prime) one has

/(1) >1% — (24 o(1))V/2. (7)

This is the natural limit of our method in improving the error term for /(7).
However, our constructions are not necessary optimal (in some cases they are not
even maximal) so it might be that Sudakov’s upper bound is closer to the truth.

5. A Remark on Set-Pair Systems

The usual approach for dealing t-critical hypergraphs is by the so-called set-pair
method. Call a collection of pair of sets (4;, B:),_ 5, cross-intersecting of size m
if it consists of disjoint pairs 4;NB; =& for every i but otherwise AiNB; #J
holds for every i# j. It is called a cross-intersecting (a, b)-system if in addition
|4;] <a and |B;| <b hold for all 1 <i<m. The set-pair method was started by
Bollobas [6] who proved that the maximum size of a cross-intersecting (a, b)-

. b . .
system, is exactly (a - ) Since then (1965) several generalizations (e.g., Alon
a

[2]) and applications were proved, see the surveys [10] and [17] for more details.
. an (a,b)"-system if
|4i| <a and |B;NB;| < b hold for all 1 <i# j<m. Denote by f(a,b) the max-
imum possible size of an (a, ) -system. From every linear t-critical hypergraph
A, with &(A#) = {By,...,B,} one can construct a (t — 1,2)*-system of size m in
the following natural way. By definition, for any edge B; there exists a subset 4; of
size at most t — 1 meeting all edges of # except B;.
The conjecture in [1] was originaly formulated in the stronger form f(a,b)

< (a Z b > The Construction in Section 3 shows that it does not hold for 5 = 2

and a > ag. In general, the best upper bound is due to Sudakov [15], f(a,b) <a’.
It follows from the recursion f(a,b)<af(a,b— 1)+ 1. It might give the right
order of magnitude of f.
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