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Abstract: A graph G on n vertices is called two-irregular if there are
at most two vertices having the same degree for all possible degrees.
We show that every graph with maximal degree at most n/8 — O(n**) can
be embedded into a two-irregular graph. We obtain it as a corollary of
an algorithmic proof of a result about packing the graphs. This improves
the bound of O(n"%) given by Faudree et al. 2001 John Wiley & Sons, Inc. J Graph Theory
36: 75-83, 2001
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1. INTRODUCTION

One of the most fascinating problems in graph theory is the problem of packing
of graphs, i.e., the problem of determining what graphs could be placed edge-
disjointly on the same set of vertices. An equivalent version is the following:
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when could a graph be embedded into another graph on the same set of vertices,
or, in other words, when is a graph a spanning subgraph of another? Sauer and
Spencer [4] showed that if a product of maximal degrees of two graphs is at
most half the order of the graphs, then these two graphs can be packed. Wozniak
[6] showed that every graph of order n and size at most n — 2 is 3-placeable in
K, unless it is isomorphic to two special graphs, where 3-placeable means
that three copies of a graph could be placed edge-disjointly. There are many
other related results on packing of several graphs or packing special classes of
graphs, most of them are formulated in terms of the number of edges or the
maximal degree. We obtain a new type of criterion for graphs to be packed (or
embedded).

We claim that if the maximal degree of a graph is not too large then it could be
embedded in a graph with a certain prescribed degree sequence.

This question is motivated by a paper of Faudree et al. [2]. They show that
every graph with maximal degree at most O(nl/ 4) is embeddable into a two-
irregular graph of the same order. We improve their bound to n/8 — O(n*/*).
Moreover, we show that if a graph G has maximal degree at most n/12 and a
graph H satisfies some special conditions, then for any permutation of vertices of
G there is a graph F with the same degree sequence as H, such that G and F are
packable with corresponding vertex order.

2. DEFINITIONS

For any two graphs G = (V,E,) and H = (V,E;), let G\H = (V,E|\E>) and
GUH = (V,E; UE,). The complement of a graph G is denoted as G, the
subgraph of G induced by vertex set A as G[A]. For A, BC V,ANB =1 we
denote the induced bipartite graph of G as G[A, B]. Two graphs G and H are
said to be packed if there is a permutation of vertices o, such that for all u, v € V
when uv € E(G),o(u)o(v)¢ E(H). We say that G is embedded in H,G C H,
if there is a permutation of vertices o, such that for all u,v € V when
uv € E(G),0(u)o(v) € E(H). A graph G is called two-irregular if it has no more
than two vertices having the same degree for each possible degree. We define
the graph B, = (V,E), the complement of half graph, as follows: V = A UB,
A :{al, ... ,a[,,m},B :{bl, e ,b[n/zj},E: {{a,-,aj} T, J E{l,. cy |_n/2-|}}U
[biby} ti, € e /20 Yy Oan by} s i < oi €41, nj2] ) jeq 1, ...
|n/2]}}. This graph has degrees d(a;)) =n—i—1,i € {1,..., [n/2]},d(b;) =
n/2| =2 +j,j€{l,...,|n/2]}. This B, is a two-irregular graph.

Given an underlying graph H and another graph H' on the same vertex set let
the excessive degree of x € V with respect to H, dex(H', x), be d(H',x) — d(H,, x).
Let EX(H') = {x € V :dx(H',x) > 0} be the set of vertices with positive
excessive degrees. The graphs G and H have the same degrees if V(G) = V(H)
and d(G,x) = d(H,x) for every x € V. They have the same degree sequence if
there is a bijection f : V(G) — V(H) such that d(G,x) = d(H, f(x)).
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3. RESULTS

Let H be a complement of a bipartite graph on n vertices with almost equal parts
A and B such that A ={ai,...,ap,/},B=1{b1,...,b,n} and for any
I C{1,...,[n/2]} of size at least n/8, the set of vertices {a;,b; : i € I} induces
at most |/|*/2 edges in H|A, B],

E(H[ALB))| < |I]*/2. (1)

Theorem 1. Let G be a simple graph on n vertices with maximal degree
d <n/8—0(m*). Then G can be embedded into a graph F with the same
degree sequence as H.

Corollary 2. If G is a simple graph on n vertices with maximal degree
d <n/8 — O(n¥*), then G is embeddable into a two-irregular graph having the
same degree sequence as B,.

Theorem 3. Let G be a graph on the same vertex set as H. Suppose that
maximal degree of G is d < n/12. Then there exists a graph F with every vertex
having the same degree as H and G C F.

Moreover, for Theorem 3 we give the algorithm for constructing a graph F
with the required properties.

4. PROOFS OF THE RESULTS

Proof of Theorem 1. Letdy= %d + 64/n. By aresult of Spencer [5] there exists
a partition of V(G)=A"UB',A'={d}, . .. ,a’Wz] }, B ={b,... ,b/WzJ} such that

IN(G,x)NA"| <dy and |N(G,x)NB|<d, forallxeV. (2)

Place G into the vertex set of H by identifying a; with a; and b; with b!. We obtain
GUH.

Define a class of graphs, Hj, such that every member Q € H, has the same
vertex set V(Q) = V(H) and satisfies the following conditions:

C1. Q contains G and H[A, B].

C2. (Q is a subgraph of GUH.

C3. Q is obtained by deleting the same number of edges of H\G in A and in
B, so it has the same excess with respect to H on A and B, i.e.,

ZxGA deX(Q7x) = erB deX(Qﬂx)'
C4. O majorizes the degrees of H, dex(Q,x) > 0 for every x € V.

Notice that H; is not empty since G U H satisfies C1-C4. Hence

D dex(Q,x) £ dex(GUH, x)

xeV X€EvV
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for every member Q of H,. Let H; € H; minimize the total excess

Zdex(Hlax) < ZdeX(an) for all Q € Hl' (3)

xeV xeV

We note that a minimal element of H; (with respect to simultaneous edge
deletion) is sufficient for our purposes. Finding such a minimal member of H; is
easy from an algorithmic point of view, as we shall see later in Section 5. m

Claim 1. The edges of G together with the deleted edges (i.e., the pairs from
H\H,) form a complete graph on the vertices of positive excessive degrees either
in A or in B. That is, one of the following holds:

(a) xy € E(G) UE(H,;) for all x,y € EX(H,) NA,

(b) xy € E(G) UE(H,) for all x,y € EX(H;) N B.

Proof of Claim 1. Suppose that there are a,d’ € EX(H;)NA and
b,b' € EX(H;) N B such that ad’,bb'¢ E(G) and ad',bb’ € E(H,). Then, by
deleting the edges aa’ and bb’ from H; we obtain another member of H; with
smaller total excess (3), a contradiction.

From now on, we assume that (a) holds. Case (b) can be handled in the same
way.

Claim 2. The number of vertices with positive excessive degree in
A,[EX(H;) NA] is at most d. The total excess of H; in A is at most (d + 1)/
4, that is

> dex(Hy,x) < (d +1)°/4.

x€A

Proof of Claim 2. 1t follows from C1 and C2 that H, is obtained from G U H
by deleting some edges of H in parts A and B which are not edges of G. In
particular, H,[A, B] = (G U H)[A, B]. Thus, we could express the excessive degree
of x € ANEX(H,) in H, as the number of G\H edges joining x to B minus the
number of deleted edges starting from x. We have

dex(Hy,x) = d(Hy,x) —d(H,x)
:d(Hl[A],x)+d(H1[A Bl,x) — d(H[A],x) — d(H[A, B], x)
—d(H,[A], x) + d((G\H)[A, B, x)
(H1[A]

H
—d(H,[A],x) + d(G[A, B], x).

| /\

From this we conclude that

d(H][A],X) < d(G[A B} ) dex(Hl,x).
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Adding d(GJA], x) to both sides gives
d((G U Hy)[A],x) < d(G,x) — de (Hy, ). (4)
Let us note that one can prove in the same way that for all x € B
d((G U HY)[B),x) < d(G,x) — dex (Hy, ). (5)
Let g be the maximal excessive degree in A,
q = max{dex(Hy,x) : x € EX(H;) NA}. (6)

Claim 1(a) implies that x is joined to all vertices of EX(H;) NA by edges of
G U H,, thus we have

[EX(H)) NA| < 1+d((GUH)ALx) < 1+d—q. (7)
Therefore,
Y de(Hix)= Y dex(Hy,x) < (d—q+1)g < (d+1)°/4.
xX€A x€EX(H)NA

If g = 0, then there is nothing left to prove anymore (EX(H,) = (), and for g > 1
the first half of the claim follows from (7).

Now lets define the class of graphs H,. Each member of Q € H, is constructed
from H; by adding some edges between A and B and deleting the same number of
edges in each of the parts A and B such that Q satisfies the conditions D1-D6below.

D1. QJA] and Q[B] are subgraphs of H;[A] and H,[B] respectively and Q
contains G and H[A, B]. (Recall that (GU H)[A, B] = H,|A, B].)

D2. d(H,x) <d(Q,x) <d(Hj,x), so 0 <de(Q,x) < dex(Hy,x) for every
xeV.

D3. |E((H\Q)WA])| = |E(H\Q)B])| = [E(Q\H))[A, B]).
80 > en dex(Q,X) = 3 cp dex(Q, X).

D4. There are no new edges in Q incident to the vertices of positive excessive
degree in A, Q[(EX(H,) NA),B] = H[(EX(H,) NA), B].

D5. Define d; = |d/2]. There are at most d; new edges at every vertex of B,
d(Q\H;,x) < d, for every x € B.

D6. Total excess of Hy[A] is the total excess of H;[A] minus the number of
added (i.e., Q\H,) edges, hence > ., d(H>\Hi,x) =), . 4s(dex(H1,x)—
dex (Hz,x)).

Let H, € H; minimize the total excessive degree

D dex(Q,x) 2> dex(Ha,x) for all Q € Hy.

xevV xeV
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Claim 3. Total excessive degree of H, is zero, ) .y dex(Ha,x) = 0.

Proof of Claim 3. Suppose that there are two vertices a € A and b € B with
positive excessive degrees. We are going to find ¢’ € A and b’ € B such that
deleting ad’ and bb' (from H,\G) and adding a'b’ (from G U H) produces another
member of H, with smaller total excess, a contradiction. We have EX(H,) C
EX(H;), so a € EX(H;) N A.

Define A’ as a set of vertices ' € A with zero excessive degree such that ad’
could be deleted,

A'={d :ad € (E(H;)\G),d € A d ¢ EX(H,)}.

The last condition for A’(a’ ¢ EX(H;)) is implied by the first, since Claim 1 gives
EX(H,) NA C {a} UN(G U Hy,a). We are going to show that

A > [nf2] —d — 1. (8)
We have
A\A" = {a} UN((GUH,)[A],a) UN((H,\H,)[A],a).

Obviously, d((H,\H)[A],a) = d(H\\H>,a). Then D4 implies that this is equal to
dex(Hy,a) — dex(Ha,a). Now by D2 we have

d((H\H\)[A], a) < dex(H, a). ©)
Adding (4) (with x=a) to (9) we have d((GUH,)[A],a) <d, implying
|A\A'| <d+ 1 and (8) follows.
Define B’ as a set of vertices b’ € B satisfying strict inequality in D5 such that bb’
can be deleted,

B'={b :bb € (E(H,)\G), V' € B, d(H,\H,,b") < d,}.
Let ¢ be the number of vertices for which the equality of D5 is achieved,
t={y € B:d(H, \ Hy,y') =d}|. (10)

We are going to show that

|B'| > |n/2] —d —d) —t— 1. (11)
We have

B\B' ={b} UN((G U H1)[B],b) UN((H:\H1)[B],b)
@] {b/ €B: d(Hz\H],b/) = dl}
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As before we have d((H,\H,)[B],b) = d(H,\Ha, b). This is equal to dey(H;,b)—
dex(H2,b) + d((H2\H,)[B,A], b). Thus, D2 and D5 imply that this is at most

d((H,\H)[B],b) < dex(Hy,b) + d;.
Adding (5) to this inequality (with x = b), we obtain
d((GUH,)[B],b) <d+d,.
Together with (10) we have
d((GUH,)[B],b) + {V' € B:d(H,\H;,b') = d}| <d+d; +1t,
and (11) follows.
Define I ={i:a;€A',bje B},Aj={a;:i€l},B={b;:icl}. The in-
equalities (8) and (11) give
1] > A+ B — [n/2] > [n/2] —2d —dy — 1 —2. (12)
Now, let us estimate the number of edges of H, between A; and B;. There are

three types of edges—edges of H, edges of G and edges of H,\(G U H).
Using the density property (1) of H we have

E(H[ALBI)| < |11°/2. (13)
Using (2) we have

[E(GAL, Bi])| < [I]do. (14)
Concerning the H,\(G U H) edges between A and B, their number is at most

(d + 1)*/4 by D2 and Claim 2. By definition, at least d; 7 of these join A to B\B,
so we have

E((H\(GUH))[A1,B)])| < (d +1)°/4 — dt. (15)

Now, summing up (13), (14) and (15) and applying (12), an easy calculation
leads to

|E(H (A1, Bi))| < 1.

Thus, for d < n/8 — O(n**) there exists a nonedge a'b’' ¢ E(H,),a’ € A; C A,
b' € B; C B'. This concludes the proof of Claim 3. ]

Now we can take H, as the graph F in Theorem 1.
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For the proof of Theorem 3 we mimic the proof of Theorem 1 starting with an
arbitrary placement of the graph G and letting the constant dy be equal to d. The
details are left to the reader.

5. ALGORITHM

To construct a graph F for the Theorem 3, we apply a two-step augmentation
algorithm.

Step 1. We build graphs {H; } on the same set of vertices as H as follows. Let
H; = G U H. Suppose that H; has been built. If there is an edge aa’ in A and edge
bb' in B such that a,d’, b, b’ have positive excessive degrees in H; and aa’, bb' are
not the edges of G, then delete them and set E(H;}, ) = E(H;)\({ad'} U {bD'}).
Repeat this procedure as long as possible. Assume that the last graph obtained is
Hj . It is easy to see that this graph H; satisfies all the properties of graph H; in
the Theorem 3. Therefore Claim 1 (say(a)) and Claim 2 hold.

Step 2. We build graphs {F;} on the same set of vertices as follows. Let
Fy = H}.. Suppose that F; is built. If there is x € A and y € B with positive
excessive degrees and there are X' € A,y’ € B, such that xx’ and yy’ are the edges
of F; but not the edges of G, and x'y’ is not the edge of F;, then delete xx’ and
yy' and add x'y', i.e., set E(F}, ) = E(F/)\({xx'} U{yy'}) Ux'y’. Repeat this
procedure as long as possible. Denote the last graph obtained by F;. It is easy to
see that its satisfies D1-D6, and we are done.
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