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Abstract: A graph G on n vertices is called two-irregular if there are
at most two vertices having the same degree for all possible degrees.
We show that every graph with maximal degree at most n/8ÿO(n3/4) can
be embedded into a two-irregular graph. We obtain it as a corollary of
an algorithmic proof of a result about packing the graphs. This improves
the bound of O(n1/4) given by Faudree et al.ß 2001 John Wiley & Sons, Inc. J Graph Theory

36: 75±83, 2001
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1. INTRODUCTION

One of the most fascinating problems in graph theory is the problem of packing
of graphs, i.e., the problem of determining what graphs could be placed edge-
disjointly on the same set of vertices. An equivalent version is the following:
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when could a graph be embedded into another graph on the same set of vertices,
or, in other words, when is a graph a spanning subgraph of another? Sauer and
Spencer [4] showed that if a product of maximal degrees of two graphs is at
most half the order of the graphs, then these two graphs can be packed. Wozniak
[6] showed that every graph of order n and size at most nÿ 2 is 3-placeable in
Kn unless it is isomorphic to two special graphs, where 3-placeable means
that three copies of a graph could be placed edge-disjointly. There are many
other related results on packing of several graphs or packing special classes of
graphs, most of them are formulated in terms of the number of edges or the
maximal degree. We obtain a new type of criterion for graphs to be packed (or
embedded).

We claim that if the maximal degree of a graph is not too large then it could be
embedded in a graph with a certain prescribed degree sequence.

This question is motivated by a paper of Faudree et al. [2]. They show that
every graph with maximal degree at most O�n1=4� is embeddable into a two-
irregular graph of the same order. We improve their bound to n=8ÿ O�n3=4�.
Moreover, we show that if a graph G has maximal degree at most n=12 and a
graph H satis®es some special conditions, then for any permutation of vertices of
G there is a graph F with the same degree sequence as H, such that G and F are
packable with corresponding vertex order.

2. DEFINITIONS

For any two graphs G � �V ;E1� and H � �V ;E2�, let GnH � �V ;E1nE2� and
G [ H � �V;E1 [ E2�. The complement of a graph G is denoted as �G, the
subgraph of G induced by vertex set A as G�A�. For A;B � V ;A \ B � ; we
denote the induced bipartite graph of G as G�A;B�. Two graphs G and H are
said to be packed if there is a permutation of vertices �, such that for all u; v 2 V

when uv 2 E�G�; ��u���v� =2E�H�. We say that G is embedded in H;G � H,
if there is a permutation of vertices �, such that for all u; v 2 V when
uv 2 E�G�; ��u���v� 2 E�H�. A graph G is called two-irregular if it has no more
than two vertices having the same degree for each possible degree. We de®ne
the graph Bn � �V ;E�, the complement of half graph, as follows: V � A [ B,
A �fa1; . . . ; adn=2eg;B �fb1; . . . ; bbn=2cg;E� ffai; ajg : i; j 2f1; . . . ; dn=2egg[
ffbi; bjg : i; j 2f1; . . . ; bn=2cgg[ffai; bjg : i < j; i 2f1; . . . ; dn=2eg; j2f1; . . . ;
bn=2cgg. This graph has degrees d�ai� � nÿ iÿ 1; i 2 f1; . . . ; dn=2eg; d�bj� �
bn=2c ÿ 2� j; j 2 f1; . . . ; bn=2cg. This Bn is a two-irregular graph.

Given an underlying graph H and another graph H0 on the same vertex set let
the excessive degree of x 2 V with respect to H; dex�H0; x�, be d�H0; x� ÿ d�H; x�.
Let EX�H0� � fx 2 V : dex�H0; x� > 0g be the set of vertices with positive
excessive degrees. The graphs G and H have the same degrees if V�G� � V�H�
and d�G; x� � d�H; x� for every x 2 V. They have the same degree sequence if
there is a bijection f : V�G� ! V�H� such that d�G; x� � d�H; f �x��.
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3. RESULTS

Let H be a complement of a bipartite graph on n vertices with almost equal parts
A and B such that A � fa1; . . . ; adn=2eg;B � fb1; . . . ; bbn=2cg and for any
I � f1; . . . ; dn=2eg of size at least n=8, the set of vertices fai; bi : i 2 Ig induces
at most jIj2=2 edges in H�A;B�,

jE�H�AI ;BI ��j � jIj2=2: �1�
Theorem 1. Let G be a simple graph on n vertices with maximal degree
d � n=8ÿ O�n3=4�. Then G can be embedded into a graph F with the same

degree sequence as H.

Corollary 2. If G is a simple graph on n vertices with maximal degree

d � n=8ÿ O�n3=4�, then G is embeddable into a two-irregular graph having the
same degree sequence as Bn.

Theorem 3. Let G be a graph on the same vertex set as H. Suppose that

maximal degree of G is d � n=12. Then there exists a graph F with every vertex
having the same degree as H and G � F.

Moreover, for Theorem 3 we give the algorithm for constructing a graph F
with the required properties.

4. PROOFS OF THE RESULTS

Proof of Theorem 1. Let d0� 1
2

d� 6
���
n
p

. By a result of Spencer [5] there exists
a partition of V�G�� A0 [ B0;A0 � fa01; . . . ; a

0
dn=2eg, B0 � fb01; . . . ; b

0
bn=2cg such that

jN�G; x� \ A0j � d0 and jN�G; x� \ B0j � d0 for all x 2 V : �2�
Place G into the vertex set of H by identifying ai with a0i and bi with b0i. We obtain
G [ H.

De®ne a class of graphs, H1, such that every member Q 2 H1 has the same
vertex set V�Q� � V�H� and satis®es the following conditions:

C1. Q contains G and H�A;B�.
C2. Q is a subgraph of G [ H.
C3. Q is obtained by deleting the same number of edges of HnG in A and in

B, so it has the same excess with respect to H on A and B, i.e.,P
x2A dex�Q; x� �

P
x2B dex�Q; x�.

C4. Q majorizes the degrees of H, dex�Q; x� � 0 for every x 2 V.

Notice that H1 is not empty since G [ H satis®es C1±C4. HenceX
x2V

dex�Q; x� �
X
x2 v

dex�G [ H; x�
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for every member Q of H1. Let H1 2 H1 minimize the total excessX
x2V

dex�H1; x� �
X
x2V

dex�Q; x� for all Q 2 H1: �3�

We note that a minimal element of H1 (with respect to simultaneous edge
deletion) is suf®cient for our purposes. Finding such a minimal member of H1 is
easy from an algorithmic point of view, as we shall see later in Section 5. &

Claim 1. The edges of G together with the deleted edges (i.e., the pairs from
HnH1) form a complete graph on the vertices of positive excessive degrees either
in A or in B. That is, one of the following holds:

(a) xy 2 E�G� [ E��H1� for all x; y 2 EX�H1� \ A,
(b) xy 2 E�G� [ E��H1� for all x; y 2 EX�H1� \ B.

Proof of Claim 1. Suppose that there are a; a0 2 EX�H1� \ A and
b; b0 2 EX�H1� \ B such that aa0; bb0 =2E�G� and aa0; bb0 2 E�H1�. Then, by
deleting the edges aa0 and bb0 from H1 we obtain another member of H1 with
smaller total excess (3), a contradiction.

From now on, we assume that (a) holds. Case (b) can be handled in the same
way.

Claim 2. The number of vertices with positive excessive degree in
A; jEX�H1� \ Aj is at most d. The total excess of H1 in A is at most �d � 1�2=
4, that is X

x2A

dex�H1; x� � �d � 1�2=4:

Proof of Claim 2. It follows from C1 and C2 that H1 is obtained from G [ H

by deleting some edges of H in parts A and B which are not edges of G. In
particular, H1�A;B� � �G [ H��A;B�. Thus, we could express the excessive degree
of x 2 A \ EX�H1� in H1 as the number of GnH edges joining x to B minus the
number of deleted edges starting from x. We have

dex�H1; x� � d�H1; x� ÿ d�H; x�
� d�H1�A�; x� � d�H1�A;B�; x� ÿ d�H�A�; x� ÿ d�H�A;B�; x�
� ÿd��H1�A�; x� � d��GnH��A;B�; x�
� ÿd��H1�A�; x� � d�G�A;B�; x�:

From this we conclude that

d��H1�A�; x� � d�G�A;B�; x� ÿ dex�H1; x�:
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Adding d�G�A�; x� to both sides gives

d��G [ �H1��A�; x� � d�G; x� ÿ dex�H1; x�: �4�

Let us note that one can prove in the same way that for all x 2 B

d��G [ �H1��B�; x� � d�G; x� ÿ dex�H1; x�: �5�

Let q be the maximal excessive degree in A,

q � maxfdex�H1; x� : x 2 EX�H1� \ Ag: �6�

Claim 1(a) implies that x is joined to all vertices of EX�H1� \ A by edges of
G [ �H1, thus we have

jEX�H1� \ Aj � 1� d��G [ �H1��A�; x� � 1� d ÿ q: �7�

Therefore,X
x2A

dex�H1; x� �
X

x2EX�H1� \A

dex�H1; x� � �d ÿ q� 1�q � �d � 1�2=4:

If q � 0, then there is nothing left to prove anymore �EX�H2� � ;�, and for q � 1
the ®rst half of the claim follows from (7).

Now lets de®ne the class of graphs H2. Each member of Q 2 H2 is constructed
from H1 by adding some edges between A and B and deleting the same number of
edges in each of the parts A and B such that Q satis®es the conditions D1±D6below.

D1. Q�A� and Q�B� are subgraphs of H1�A� and H1�B� respectively and Q
contains G and H�A;B�. �Recall that �G [ H��A;B� � H1�A;B�:�

D2. d�H; x� � d�Q; x� � d�H1; x�, so 0 � dex�Q; x� � dex�H1; x� for every
x 2 V .

D3. jE��H1nQ��A��j � jE��H1nQ��B��j � jE��QnH1��A;B��j,
so
P

x2A dex�Q; x� �
P

x2B dex�Q; x�.
D4. There are no new edges in Q incident to the vertices of positive excessive

degree in A, Q��EX�H1� \ A�;B� � H1��EX�H1� \ A�;B�:
D5. De®ne d1 � bd=2c. There are at most d1 new edges at every vertex of B,

d�QnH1; x� � d1 for every x 2 B.
D6. Total excess of H2�A� is the total excess of H1�A� minus the number of

added (i.e., QnH1) edges, hence
P

x2A d�H2nH1; x��
P

x2A�dex�H1; x�ÿ
dex�H2; x��:

Let H2 2 H2 minimize the total excessive degreeX
x2V

dex�Q; x� �
X
x2V

dex�H2; x� for all Q 2 H2:
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Claim 3. Total excessive degree of H2 is zero,
P

x2V dex�H2; x� � 0.

Proof of Claim 3. Suppose that there are two vertices a 2 A and b 2 B with
positive excessive degrees. We are going to ®nd a0 2 A and b0 2 B such that
deleting aa0 and bb0 (from H1nG� and adding a0b0 (from G [ H) produces another
member of H2 with smaller total excess, a contradiction. We have EX�H2� �
EX�H1�, so a 2 EX�H1� \ A.

De®ne A0 as a set of vertices a0 2 A with zero excessive degree such that aa0

could be deleted,

A0 � fa0 : aa0 2 �E�H2�nG�; a0 2 A a0 =2EX�H2�g:

The last condition for A0�a0 =2EX�H2�� is implied by the ®rst, since Claim 1 gives
EX�H1� \ A � fag [ N�G [ �H1; a�. We are going to show that

jA0j � dn=2e ÿ d ÿ 1: �8�

We have

AnA0 � fag [ N��G [ �H1��A�; a� [ N���H2n�H1��A�; a�:

Obviously, d���H2n�H1��A�; a� � d�H1nH2; a�. Then D4 implies that this is equal to
dex�H1; a� ÿ dex�H2; a�. Now by D2 we have

d���H2n�H1��A�; a� � dex�H1; a�: �9�

Adding (4) (with x � a) to (9) we have d��G [ �H2��A�; a� � d, implying
jAnA0j � d � 1 and (8) follows.
De®ne B0 as a set of vertices b0 2 B satisfying strict inequality in D5 such that bb0

can be deleted,

B0 � fb0 : bb0 2 �E�H2�nG�; b0 2 B; d�H2nH1; b
0� < d1g:

Let t be the number of vertices for which the equality of D5 is achieved,

t � jfy0 2 B : d�H2 n H1; y
0� � d1gj: �10�

We are going to show that

jB0j � bn=2c ÿ d ÿ d1 ÿ t ÿ 1: �11�

We have

BnB0 � fbg [ N��G [ �H1��B�; b� [ N���H2n�H1��B�; b�
[ fb0 2 B : d�H2nH1; b

0� � d1g:
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As before we have d���H2n�H1��B�; b� � d�H1nH2; b�. This is equal to dex�H1; b�ÿ
dex�H2; b� � d��H2nH1��B;A�; b�. Thus, D2 and D5 imply that this is at most

d���H2n�H1��B�; b� � dex�H1; b� � d1:

Adding (5) to this inequality (with x � b), we obtain

d��G [ �H2��B�; b� � d � d1:

Together with (10) we have

d��G [ �H2��B�; b� � jfb0 2 B : d�H2nH1; b
0� � d1gj � d � d1 � t;

and (11) follows.
De®ne I � fi : ai 2 A0; bi 2 B0g;AI � fai : i 2 Ig;BI � fbi : i 2 Ig. The in-

equalities (8) and (11) give

jIj � jA0j � jB0j ÿ dn=2e � bn=2c ÿ 2d ÿ d1 ÿ t ÿ 2: �12�

Now, let us estimate the number of edges of H2 between AI and BI . There are
three types of edgesÐedges of H, edges of G and edges of H2n�G [ H�.

Using the density property (1) of H we have

jE�H�AI ;BI ��j � jIj2=2: �13�

Using (2) we have

jE�G�AI ;BI ��j � jIjd0: �14�

Concerning the H2n�G [ H� edges between A and B, their number is at most
�d � 1�2=4 by D2 and Claim 2. By de®nition, at least d1t of these join A to BnB0,
so we have

jE��H
2
n�G [ H���AI ;BI ��j � �d � 1�2=4ÿ d1t: �15�

Now, summing up (13), (14) and (15) and applying (12), an easy calculation
leads to

jE�H2�AI;BI��j < jIj2:

Thus, for d � n=8ÿ O�n3=4� there exists a nonedge a0b0 =2E�H2�; a0 2 AI � A0;
b0 2 BI � B0. This concludes the proof of Claim 3. &

Now we can take H2 as the graph F in Theorem 1.
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For the proof of Theorem 3 we mimic the proof of Theorem 1 starting with an
arbitrary placement of the graph G and letting the constant d0 be equal to d. The
details are left to the reader.

5. ALGORITHM

To construct a graph F for the Theorem 3, we apply a two-step augmentation
algorithm.

Step 1. We build graphs fH�i g on the same set of vertices as H as follows. Let
H�0 � G [ H. Suppose that H�i has been built. If there is an edge aa0 in A and edge
bb0 in B such that a; a0; b; b0 have positive excessive degrees in H�i and aa0; bb0 are
not the edges of G, then delete them and set E�H�i�1� � E�H�i �n�faa0g [ fbb0g�.
Repeat this procedure as long as possible. Assume that the last graph obtained is
H�k . It is easy to see that this graph H�k satis®es all the properties of graph H1 in
the Theorem 3. Therefore Claim 1 (say(a)) and Claim 2 hold.

Step 2. We build graphs fF�i g on the same set of vertices as follows. Let
F�0 � H�k . Suppose that F�i is built. If there is x 2 A and y 2 B with positive
excessive degrees and there are x0 2 A; y0 2 B, such that xx0 and yy0 are the edges
of F�i but not the edges of G, and x0y0 is not the edge of F�i , then delete xx0 and
yy0 and add x0y0, i.e., set E�F�i�1� � E�F�i �n�fxx0g [ fyy0g� [ x0y0. Repeat this
procedure as long as possible. Denote the last graph obtained by F�l . It is easy to
see that its satis®es D1±D6, and we are done.
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