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Abstract: Given graphs H1, . . . , Hk, let f (H1, . . . , Hk ) be the minimum
order of a graph G such that for each i, the induced copies of Hi in G cover
V (G ). We prove constructively that f (H1, H2)� 2(n(H1)� n(H2)ÿ 2); equality
holds when H1�H 2�Kn. We prove that f (H1,K n)� n� 2

���
�
p

(H1)n�O(1) as
n!1. We also determine f (K1,mÿ 1,K n) exactly. ß 2000 John Wiley & Sons, Inc. J
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1. INTRODUCTION

Entringer, Goddard, and Henning [2] determined the minimum order of a simple
graph in which every vertex belongs to both a clique of size m and an independent
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set of size n. They obtained a surprisingly simple formula for this value, which
they called f �m; n� (an alternative proof using matrix theory appears in [5]).

Theorem 1.1 [2]. For m; n � 2, f �m; n� � d� ������������mÿ 1
p � �����������

nÿ 1
p �2e.

Theorem 1.1 was motivated by a concept introduced by Chartrand et al. [1]
called the framing number. A graph H is homogeneously embeddable in a graph
G if, for all vertices x 2 V�H� and y 2 V�G�, there exists an embedding of H into
G as an induced subgraph that maps x to y. The framing number fr�H� is the
minimum order of a graph in which H is homogeneously embeddable. The
framing number of a pair of graphs H1 and H2, written fr�H1;H2�, is the mini-
mum order of a graph G in which both H1 and H2 are homogeneously embed-
dable. Thus fr�Km;Kn� � f �m; n�. Various results about the framing number were
developed in [1]. The framing number of a pair of cycles is studied in [7].

When the graphs to be homogeneously embedded are vertex-transitive, it
matters not which vertex of H is mapped to y 2 V�G� as long as y belongs to
some induced copy of H in G. Determining the framing number for a pair of
graphs becomes an extremal graph covering problem. We generalize this
variation to more than two graphs.

De®nition 1.2. A graph is �H1; . . . ;Hk�-full if each vertex belongs to induced
subgraphs isomorphic to each of H1; . . . ;Hk. We use f �H1; . . . ;Hk� to denote the

minimum order of an �H1; . . . ;Hk�-full graph.

Equivalently, a graph is �H1; . . . ;Hk�-full if for each i, the induced subgraphs
isomorphic to Hi cover the vertex set, so we think in terms of multiple coverings
of the vertex set.

Because every vertex in a cartesian product belongs to induced subgraphs
isomorphic to each factor, we have f �H1; . . . ;Hk� �

Q
i n�Hi�, where n�G�

denotes the order of G. In fact, f �H1; . . . ;Hk� is much smaller. Our constructions
in Section 2 yield f �H1; . . . ;Hk� � 2

P
i�n�Hi� ÿ 1�. Also, if k ÿ 1 is a prime

power and n�Hi� < k for each i, then f �H1; . . . ;Hk� � �k ÿ 1�2. By Theorem 1.1,
the ®rst construction is optimal when k � 2 for H1 � Kn and H2 � Kn. We also
provide a construction when H1 is arbitrary and H2 � Kn that is asymptotically
sharp up to an additive constant.

In Section 3, we prove a general lower bound in terms of the order of H2, the
maximum degree of H2, and the minimum degree of H1. In Section 4, we
determine f �K1;mÿ1;Kn� exactly (the related parameter f �Km;m;Kn� is studied in
[4]). In Section 5, we present several open problems.

Since f �H1; . . . ;Hk� � f �H1; . . . ;Hk�, all our results yield corresponding
results for complementary conditions. We note also that there is an �H1; . . . ;Hk�-
full graph for each order exceeding the minimum, since duplicating a vertex in
such a graph yields another �H1; . . . ;Hk�-full graph.

We consider only simple graphs, denoting the vertex set and edge set of a
graph G by V�G� and E�G�, respectively. The order of G is n�G� � jV�G�j. We
use NG�v� for the neighborhood of a vertex v 2 V�G� (the set of vertices adjacent
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to v), and we let NG�v� � NG�v� [ fvg. The degree of v is dG�v� � jNG�v�j; we
may drop the subscript G. For S � V�G�, we write dS�v� for jNG�v� \ Sj. The
independence number of G is the maximum size of a subset of V�G� consisting of
pairwise nonadjacent vertices; it is denoted by ��G�. When S � V�G�, we let
N�S� � Sv 2 S N�v� and let G�S� denote the subgraph induced by S.

2. GENERAL UPPER BOUNDS

Our upper bounds are constructive.

Theorem 2.1. If H1; . . . ;Hk are graphs, then f �H1; . . . ;Hk� � 2
Pk

i�1

�n�Hi� ÿ 1�.
Proof. We construct an �H1; . . . ;Hk�-full graph G with 2

Pk
i�1�n�Hi� ÿ 1�

vertices. For 1 � r � k, let Hr�k be a graph isomorphic to Hr. For
r 2 f1; . . . ; 2kg, distinguish a vertex ur in Hr, and let Nr � NHr

�ur� and
H0r � Hr ÿ ur. Construct G from the disjoint union H01 � . . .� H02k by adding, for
each r, edges making all of V�H0r� adjacent to all of Nr�1 [ � � � [ Nr�kÿ1, where
the indices are taken modulo 2k.

By construction, G has the desired order. For v 2 V�H0r� and 1 � j � k ÿ 1, we
have G�v [ V�H0r�j�� � Hr�j (again taking indices modulo 2k). Finally, V�H0r�
together with any vertex of V�H0rÿ1� induces a copy of Hr containing v. &

Figure 1 illustrates the construction of Theorem 2.1 in the case k � 2; an edge
to a circle indicates edges to all vertices in the corresponding set.

As mentioned earlier, Theorem 2.1 yields sharp upper bounds when k � 2 by
letting H1 � Kn and H2 � Kn. In general, as pointed out by a referee, the bounds
can be off from the optimal by at least a factor of two. To describe the

FIGURE 1. An (H1, H2)-full graph.
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construction that improves Theorem 2.1 in some cases, we use resolvable designs.
We phrase the constructions in the language of hypergraphs. A hypergraph
H � �V ;E� has vertex set V and edge set E consisting of subsets of V . H is
k-uniform if every edge has size k, and H is k-regular if every vertex lies in
exactly k edges. A matching M in H is a set of pairwise disjoint edges; M is
perfect if the union of its elements is V .

A Steiner system S�n; k; 2� is an n-vertex k-uniform hypergraph in which every
pair of vertices appears together in exactly one edge. It is resolvable if the edges
can be partitioned into perfect matchings. Ray-Chaudhuri and Wilson [8] showed
that the trivial necessary condition n � k (mod k2 ÿ k) for the existence of a
resolvable S�n; k; 2� is also suf®cient when n is suf®ciently large compared to k.

Theorem 2.2. If a resolvable Steiner system S�n; k ÿ 1; 2� exists and H1; . . . ;Ht

are graphs of order less than k, where t � �nÿ 1�=�k ÿ 2�, then

f �H1; . . . ;Ht� � n.

Proof. Duplicating vertices cannot decrease f , so we may assume that
n�Hi� � k ÿ 1 for each i. Let V and E be the vertex set and edge set of the
resolvable Steiner system S�n; k ÿ 1; 2�; we construct a graph G on vertex set V .
For 1 � i � t, consider the ith perfect matching Mi consisting of edges
Ei

1; . . . ;Ei
n=�kÿ1�. For j � 1; . . . ; n=�k ÿ 1�, add edges within each Ei

j to make a
copy of Hi.

Since every pair of vertices lies in only one edge of S�n; k ÿ 1; 2�, this
construction is well de®ned. To see that the construction is Hi-full, consider an
arbitrary v 2 V. Exactly one of the t edges containing v belongs to the ith
matching. This edge forms a copy of Hi containing v. &

In the special case when n � �k ÿ 1�2, such a resolvable Steiner system is an
af®ne plane, denoted Hkÿ1. It is well known (see, [3, page 672] or [9], for
example) that an af®ne plane Hkÿ1 exists when k ÿ 1 is a power of a prime. This
yields the following.

Corollary 2.3. If Hkÿ1 exists and n�Hi� < k for each i, then f �H1; . . . ;Hk� �
�k ÿ 1�2.

When n�Hi� � k ÿ 1 for each i, Corollary 2.3 improves the bound in Theorem
2.1 (asymptotically) by a factor of two. When k � 2 and H2 � Kn, a slightly
different construction gives nearly optimal bounds for each H1 as n!1. In
Theorem 3.1, we shall prove that this construction is asymptotically optimal.

Theorem 2.4. If H has order m and positive minimum degree �, then

f �H;Kn� < n� 2
�����
�n
p � 2� when n � 9��mÿ � ÿ 1�2.

Proof. Let x be a vertex of minimum degree � in H. We construct an �H;Kn�-
full graph G in terms of a parameter r that we optimize later. Let V�G� � U [W ,
where U � U1 [ � � � [ Ur and W � W1 [ � � � [Wr. Let W be an independent set
of size nÿ 1� s, where s � dn=�r ÿ 1�e. Let each Wi have size sÿ 1 or s (set
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jWrj � sÿ 1 and put the remaining n vertices equitably into r ÿ 1 sets). For each
i, set G�Ui� � H�N�x��, and make all of Ui adjacent to all of Wi.

Each Ui [ w with w 2 Wi induces NH �x�; we add edges to complete copies of
H. Let m0 � mÿ � ÿ 1. For j 2 f1; 2; 3g, let Tj consist of m0 vertices, one chosen
from each of U� jÿ1�m0�1; . . . ;Ujm0 . This requires r � 3m0. Add edges within each
Tj so that G�Tj� � H ÿ N�x�. For each Ui that contains a vertex of Tj, add edges
from Ui to Tj�1 (indices modulo 3 here) so that G�Ui [ Tj�1� � H ÿ x. For
3m0 � 1 � i � r, add edges from Ui to T1 so that G�Ui [ T1� � H ÿ x. This
completes the construction of G, as sketched in Fig. 2; dots represent the vertices
of
S

Tj, and arrows suggest the edges from Ui to Tj�1.
To show that G is �H;Kn�-full, it suf®ces to consider u 2 Ui and w 2 Wi. By

construction, we have G�fwg [ Ui [ Tj� � H for some j. The vertices of W ÿWi

together with u or w form an independent set of size at least n� sÿ 1ÿ s�
1 � n.

We now choose r to minimize the order of G, which equals nÿ 1� �r�
dn=�r ÿ 1�e. Calculus suggests the choice r � d �������

n=�
p e � 1. This satis®es the

requirement that r � 3m0 when n � 9��mÿ � ÿ 1�2. With this value of r, the
order of G is at most n� ��2� �������

n=�
p � � �����

�n
p

, which equals the bound claimed.
&

FIGURE 2. Structure of an (H,K n)-full graph.
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In the optimized construction, each jWij is about rjUij. This re¯ects the use
of W to form the large independent set. When n is smaller than 9��m0�2, we
still obtain an improvement on Theorem 2.1 by setting r � 3m0, where m0 �
mÿ � ÿ 1. The resulting �H;Kn�-full graph has order nÿ 1� dn=�3m0 ÿ 1�e�
3�m0, which is less than 2�n� m� when n is bigger than about 3�m0.

3. A LOWER BOUND

In this section we prove a lower bound that holds when the maximum degree of
H2 is less than half the minimum degree of H1.

Theorem 3.1. Let H1 and H2 be graphs such that H1 has minimum degree �,
and H2 has order n and maximum degree �. If 2� < �, then

f �H1;H2� � n� 2
����������������������������������
�n����� ÿ 2��

pl m
ÿ �� ÿ��:

Proof. Let G be an �H1;H2�-full graph, and choose A � V�G� such that
G�A� � H2. Let v be a vertex in V�G� ÿ A with the most neighbors in A. Since G

is �H1;H2�-full, v belongs to a set B � V�G� such that G�B� � H2. Let
C � V�G� ÿ �A [ B�. Let k � jAÿ Bj; we obtain a lower bound on jCj in terms
of k.

Let e be the number of edges with endpoints in both C and A \ B, and let
d � jN�v� \ Aj. Our lower bound on C arises from the computation below. The
®rst inequality counts e by the nÿ k endpoints in A \ B; each lies in a copy of H1

but has at most 2� neighbors outside C. The second inequality counts e by the
endpoints in C, using the choice of v. For the third inequality, note that v has at
most � neighbors in B and then at most k more in Aÿ B.

�nÿ k��� ÿ 2�� � e � djCj � �k ���jCj:

Using the resulting lower bound on jCj, we have

jV�G�j � jA [ Bj � jCj � n� k � �nÿ k��� ÿ 2��
k ��

� nÿ �� ÿ�� � �k ��� � �n����� ÿ 2��
k ��

:

This expression is minimized by k �� � �����������������������������������n����� ÿ 2��p
, yielding the

desired bound. &

Corollary 3.2. If H1 has minimum degree �, then f �H1;Kn� � n�2
�����
�n
p � O�1�

as n!1.

Proof. For � > 0, the upper bound follows from Theorem 2.4, while the
lower bound follows by setting H2 �Kn in Theorem 3.1. Now suppose that � � 0
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and let m � n�H1�. Let ��G; v� denote the maximum size of an independent set
containing vertex v in a graph G. Let s � minv 2V�H1���H1; v�.

We claim that f �H1;Kn� � nÿ s� m for n � s. For the lower bound, let u be a
vertex of H1 such that s � ��H1; u�. Completing an independent n-set for a vertex
playing the role of u in a copy of H1 requires adding at least nÿ s vertices to the
m vertices of H1. Since H1 has at least one isolated vertex, adding these as
isolated vertices yields an �H1;Kn�-full graph, thus proving the upper bound also.

&

By taking complements, one immediately obtains the following corollary.

Corollary 3.3. If H1 has minimum degree �, then f �H1;Kn� � n�2
�����
�n
p � O�1�

as n!1.

4. STARS VERSUS INDEPENDENT SETS

In this section we determine f �H1;H2� when H1 is a star of order m and H2 is an
independent set of order n. Let Sm � K1;mÿ1. The problem is rather easy when
n < m.

Claim 4.1. For n < m, f �Sm;Kn� � n� mÿ 1, achieved by Kn;mÿ1.

Proof. The center of an m-star must lie in an independent n-set avoiding its
neighbors, so f �Sm;Kn� � n� mÿ 1 for all n. When n < m, the graph Kn;mÿ1 is
�Sm;Kn�-full. &

The problem behaves much differently when n � m. First we provide a
construction.

Lemma 4.2. For n � m � 2,

f �Sm;Kn� � n�min
k

max k � nÿ 1

k

� �
; 2mÿ 3ÿ k

� �
:

FIGURE 3. Construction of an (Sm,K n)-full graph.
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Proof. We de®ne a construction G with parameters r and k. Let V�G� be the
disjoint union of X and Y , where jXj � r and jYj � nÿ 1� k. Let G�X� �
Kdr=2e;br=2c, and let Y be an independent set. Give k neighbors in Y to each vertex
in X, arranged so that G is bipartite and has no isolated vertices.

With k � 1, the size chosen for Y ensures that each vertex lies in an
independent n-set. Keeping G bipartite requires nÿ 1 � k. This ensures that each
vertex of X lies at the center of an induced star of order k � 1� br=2c. Thus we
require

r=2 � mÿ 1ÿ k: �A�

Ensuring that the stars cover Y requires

�r ÿ 1�k � nÿ 1: �B�

Given n � m � 2, we choose r; k to minimize nÿ 1� k � r, the order of G.
Rewrite (A) as r ÿ 1 � 2mÿ 3ÿ 2k. Both (A) and (B) impose lower bounds on
r ÿ 1 in terms of k;m; n; we set r ÿ 1 � maxfd�nÿ 1�=ke; 2mÿ 3ÿ 2kg. This
yields the one-variable minimization in the statement of the lemma. &

In fact, the construction of Lemma 4.2 is optimal for all n � m. We begin the
proof of optimality with a lower bound that differs from the upper bound by at
most 1.

Lemma 4.3. For n � m � 2,

f �Sm;Kn� � n�min
d

max d ÿ 1� n

d

l m
; 2mÿ 2ÿ d

n o
:

Proof. We strengthen the general argument of Theorem 3.1. Let G be an
�Sm;Kn�-full graph. Let d be the maximum of jN�v� \ Tj such that v 2 V�G� and
T is an independent n-set in G. Let A be an independent n-set and x a vertex such
that jN�x� \ Aj � d.

As in the proof of Theorem 3.1, we choose B to be an independent n-set
containing x, let C � V�G� ÿ �A [ B�, and let k be the size of Aÿ B. With � � 1
and � � 0, the argument applied there to the edges joining C and A \ B yields

nÿ k � djCj � kjCj:

Since d � k, we obtain jV�G�j � n� d ÿ 1� dn=de.
To complete the proof, we must show that jV�G�j � n� 2mÿ 2ÿ d. As

observed in the proof of Claim 4.1, f �Sm;Kn� � n� mÿ 1 always. Thus we may
assume that d < mÿ 1. In proving a lower bound, we may also assume that G is a
minimal �Sm;Kn�-full graph. In particular, if we delete any edge of G, then the
resulting graph is not Sm-full. Let R1; . . . ;Rt be a collection of induced stars of
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order at least m that cover V�G�. By the minimality of G, the vertices that are not
centers of these stars form an independent set. We consider two cases.

Case 1: The centers of R1; . . . ;Rt form an independent set. In this case, G is a
bipartite graph with bipartition X;Y , where X is the set of centers of R1; . . . ;Rt

and Y is the set of leaves of R1; . . . ;Rt. By the de®nition of d and the restriction to
d < mÿ 1, we have jY j < n. Let x be the center of R1, let I be an independent
n-set containing x, and let j � jI \ Xj. Each vertex of I \ X has at least mÿ 1
neighbors in Y ÿ I. Since jY ÿ Ij < nÿ �nÿ j� � j and there are at least j�mÿ 1�
edges from I \ X to Y ÿ I, some y 2 Y ÿ I is incident to at least mÿ 1 of these
edges. This gives y at least mÿ 1 > d neighbors in I, contradicting the choice of
d. Thus this case cannot occur when d < mÿ 1.

Case 2. The centers of R1; . . . ;Rt do not form an independent set. By the
minimality of G, each edge of G is needed to complete some induced star of order
at least m centered at one of its endpoints. We may assume that the centers x of R1

and y of R2 are adjacent and that R1 needs the edge xy to reach order m. This
implies that y is not adjacent to any leaf of R1. In particular, the mÿ 2 or more
additional vertices that complete R2 are distinct from those in R1, and
jV�R1� [ V�R2�j � 2mÿ 2.

Now let I be an independent n-set containing x. The vertices of R1 [ R2 in I are
all neighbors of y, and hence there are at most d of them. Thus jV�G�j �
nÿ d � 2mÿ 2. &

When d in the formula of Lemma 4.3 equals k in the formula of Lemma 4.2,
the resulting values differ by at most one. A closer look at the one-variable opti-
mization shows that the lower bound and the upper bound differ by at most one.

Theorem 4.4. For n � m � 2, the construction of Lemma 4.2 is optimal.

Proof. We prove that the lower bound of Lemma 4.3 can be improved to
match the upper bound of Lemma 4.2.

Choose A;B;C; d; k as in the proof of Lemma 4.3. If d � k ÿ 1 or if
there are at most �d ÿ 1�jCj edges between C and A \ B, then we obtain
jCj � �nÿ k�=�k ÿ 1�, which yields jV�G�j � n� k ÿ 1� �nÿ 1�=�k ÿ 1�.
Also 2mÿ 2ÿ d � 2mÿ 2ÿ k. Setting k0 � k ÿ 1 now yields jV�G�j �
n�maxfk0 � d�nÿ 1�=k0e; 2mÿ 3ÿ k0g. Hence the construction is optimal
unless there is another construction satisfying d � k and having more than
�d ÿ 1�jCj edges between C and A \ B (thus there is a z 2 C with dA\B�z� � d).
More precisely, for every independent set A of size n, every vertex x =2A with
dA�x� � d, and every independent set B of size n containing x, the following
holds:

B � Aÿ N�x� ���

Choose z 2 C with dA\B�z� � d, and let B0 be an independent set of size n
containing z. Letting �z;A;B0� play the role of �x;A;B� in ��� implies that
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B0 � Aÿ N�z� � Aÿ B. On the other hand, letting �z;B;B0� play the role of
�x;A;B� in ��� implies that B0 � Bÿ N�z� � Bÿ A. This implies that
�Aÿ B� [ �Bÿ A� is an independent set, a contradiction. &

It is worth noting what the result of the one-variable optimization is in terms of
m and n. In particular, the construction achieves a lower bound resulting from
Theorem 1.1 when n > 1� �4=9��mÿ 2�2.

Remark 4.5. If n > 1� �4=9��mÿ 2�2, then f �Sm;Kn� � n� d2 �����������
nÿ 1
p e. If

m � n � 1� �4=9��mÿ 2�2, then f �Sm;Kn� � n� d1
4
�3� ÿ

�������������
�2 ÿ 8

p
� �����������nÿ 1
p e,

where 2mÿ 3 � � �����������
nÿ 1
p

with � > 3.

Proof. By Theorem 4.4, it suf®ces to minimize over k in Lemma 4.2. The
term 2mÿ 3ÿ k is linear. The term k � d�nÿ 1�=ke is minimized when
k � d �����������

nÿ 1
p e, where it equals d2 �����������

nÿ 1
p e. (When k � d �����������

nÿ 1
p e, we let

nÿ 1 � k2 ÿ r with r < 2k ÿ 1; both formulas yield 2k ÿ 1 when r � k and 2k
when r < k.)

When 2mÿ 3ÿ d �����������
nÿ 1
p e � d2 �����������

nÿ 1
p e, the construction yields f �Sm;Kn� �

n� d2 �����������
nÿ 1
p e. Since every vertex of an induced star belongs to an induced edge,

Theorem 1.1 yields f �Sm;Kn� � f �K2;Kn� � n� d2 �����������
nÿ 1
p e.

For smaller n, the construction is optimized by choosing x so that
x� �nÿ 1�=x � 2mÿ 3ÿ x and letting k � bxc. The number of vertices is then
2mÿ 3ÿ k. For large m and n, we can approximate the result by ignoring the
ceiling function and de®ning � by 2mÿ 3 � � �����������

nÿ 1
p

. The solution then occurs
at x � 1

4
�� �

�������������
�2 ÿ 8

p
� �����������nÿ 1
p

, and we invoke Theorem 4.4. &

5. OPEN PROBLEMS

We list several open questions. The ®rst is the most immediately appealing,
suggested by comparing Theorem 1.1 and Theorem 2.1.

FIGURE 4. Final proof of the lower bound.
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1. Among all choices of an m-vertex graph H1 and an n-vertex graph H2, is it
true that f �H1;H2� is maximized when H1 is a clique and H2 is an
independent set?

2. Let G be an Sm-full graph in which the deletion of any edge produces a
graph that is not Sm-full. Is it true that G must be triangle-free?1

3. Among random graphs, what order is needed so that almost every graph is
�H1; . . . ;Hk�-full?

4. Distinguish a root vertex in each of H1; . . . ;Hk. An �H1; . . . ;Hk�-root-full
graph is an �H1; . . . ;Hk�-full graph in which each vertex appears as the root
in some induced copy of each Hi. Is it possible to bound the minimum order
of such a graph (for arbitrary choice of roots) in terms of f �H1; . . . ;Hk�?
(suggested by Fred Galvin)

5. Similarly, one could require induced copies of each Hi so that for each
v 2 V�G� and x 2 Hi, some copy of Hi occurs with v playing the role of x.
The minimum order of such a graph is the framing number fr�H1; . . . ;Hk�.
How large can fr�H1; . . . ;Hk� be as a function of f �H1; . . . ;Hk�? (suggested
by Mike Jacobson)
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