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Given graphs G and H, a coloring of E(G) is called an (H, q)-coloring if the
edges of every copy of H�G together receive at least q colors. Let r(G, H, q)
denote the minimum number of colors in an (H, q)-coloring of G. We deter-
mine, for fixed p, the smallest q for which r(Kn, n , Kp, p , q) is linear in n, the smallest
q for which it is quadratic in n. We also determine the smallest q for
which r(Kn, n , Kp, p , q)=n2&O(n), and the smallest q for which r(Kn, n , Kp, p , q)=
n2&O(1). Our results include showing that r(Kn, n , K2, t+1 , 2) and r(Kn , K2, t+1 , 2)
are both (1+o(1)) - n�t as n � �, thereby proving a special case of a conjecture
of Chung and Graham. Finally, we determine the exact value of r(Kn, n , K3, 3 , 8),
and prove that 2n�3�r(Kn, n , C4 , 3)�n+1. Several problems remain open.
� 2000 Academic Press
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1. GENERALIZING THE CLASSICAL PROBLEM
FOR MULTICOLORINGS

The classical Ramsey problem asks for the minimum n such that every
k-coloring of the edges of Kn yields a monochromatic Kp . For each n below
this threshold, there is a k-coloring such that every Kp receives at least 2
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colors. We can study the same problem by fixing n and asking for the mini-
mum k such that E(Kn) can be k-colored with each p-clique receiving at
least 2 colors. For integers n, p, q, a ( p, q)-coloring of Kn is a coloring of
E(Kn) in which the edges of every Kp together receive at least q colors. Let
f (n, p, q) denote the minimum number of colors in a ( p, q)-coloring of Kn .

This function was first studied in this form by Elekes, Erdo� s, and Fu� redi
(as described in Section 9 of [14]). Erdo� s and Gya� rfa� s [15] improved the
results about 15 years later, using the Local Lemma to prove an upper
bound of O(ncp, q), where cp, q=( p&2)�(( p

2)&q+1). They also determined,
for each p, the smallest q such that f (n, p, q) is linear in n and the smallest
q such that f (n, p, q) is quadratic in n. Many cases remain unresolved,
most notably the growth rate of f (n, 4, 3) and f (n, 5, 9). In [23] it is shown
that f (n, 4, 3)<eO(- log n), thereby proving that f (n, 4, 3) grows more slowly
than any power of n, but it remains open whether f (n, 4, 3)�log n � �. In
[4] it is shown that

1+- 5
2

n&3� f (n, 5, 9)�2n1+c�- log n,

which still leaves open the problem of determining the growth rate exactly.
In this paper we generalize this problem beyond cliques.

Definition. Given graphs G and H, and an integer q�|E(H)|, an
(H, q)-coloring of G is a coloring of E(G) in which the edges of every copy
of H�G together receive at least q colors. Let r(G, H, q) denote the mini-
mum number of colors in an (H, q)-coloring of G.

To recall some examples, we have r(K6 , K3 , 2)>2 and r(K5 , K3 , 2)=2.
Note that determining r(Kn , Kp , 2) is hopeless, since it is equivalent to

determining the classical Ramsey numbers for multicolorings. Let rk(H) be
the minimum n such that every k-coloring of E(Kn) yields a mono-
chromatic copy of the subgraph H. Then rk(Kp)=n is equivalent to the
statements r(Kn , Kp , 2)>k and f (Kn&1 , Kp , 2)=k.

Although the function r(Kn , H, q) was studied (in the form rk(H)) by
Erdo� s and Rado [16] as early as 1956, and the case r(Kn, n , Kp, p , q) was
considered by Chva� tal [11] in relation to Zarankiewicz's problem, our
results and techniques have a different flavor. In our investigation of
r(Kn, n , Kp, p , q), we always assume that p and q are fixed and n � �.

In Section 2 we reprove a result of Chung and Graham [8] about
r(Kn , C4 , 2) and extend it to r(Kn , K2, t+1 , 2) and r(Kn, n , K2, t+1 , 2),
thereby proving a special case of a conjecture of theirs. Both of these
Ramsey numbers are asymptotic to - n�t as n � �. We also observe that
a recent result of Alon et al. [3] implies r(Kn, n , K3, 3 , 2)=n1�3(1+o(1)).
Here the corresponding colorings are obtained by algebraic constructions.
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Using the Local Lemma a very general upper bound is given in
Section 3. Following the Erdo� s�Gya� rfa� s results on cliques, for fixed p, in
Section 4 we determine the smallest q for which r(Kn, n , Kp, p , q) is linear
in n and the smallest q for which r(Kn, n , Kp, p , q) is quadratic in n; these
values are q= p2&2p+3 and q= p2& p+2, respectively. In Section 5 we
prove that the smallest q for which r(Kn, n , Kp, p , q)=n2&O(1) is q= p2&
wp�2x+1. In Section 6 we prove that the smallest q for which
r(Kn, n , Kp, p , q)=n2&O(n) is q= p2&w(2p&1)�3x+1. Our main tool is a
density result of Brown et al. [7] that gives estimates on the maximum
number of edges in a k-uniform hypergraph such that every u vertices span
at most v edges.

In Section 7 we determine the exact value of r(Kn, n , K3, 3 , 8) by relating
the allowable colorings to four-cycle packings of Kn, n ; this value is (3�4) n2

if n is even, and W(3�4) n2+n�4X if n is odd. Finally, in Section 8 we
investigate r(Kn, n , C4 , 3). We prove that 2n�3�r(Kn, n , C4 , 3)�n+1, and
study a related function defined by relaxing the requirements of a (C4 , 3)-
coloring. In a weak (C4 , 3)-coloring every copy of C4 either has at least 3
colors or has its edges alternately 2-colored. Using Steiner Triple systems
and a theorem of Pippenger and Spencer about edge-coloring k-uniform
almost regular hypergraphs with small codegree, we obtain bounds for the
minimum number of colors needed in a week (C4 , 3)-coloring of the edges
of Kn, n .

2. MULTICOLOR RAMSEY NUMBERS (q=2)

Let ex(G, H) be the maximal t such that there is a (not necessarily
induced) subgraph of G with t edges not having H as a subgraph, i.e., the
size of the largest H-free subgraph. Usually, ex(Kn , H) is called the Tura� n
number of H, and ex(Kn, n , Ka, b) is a symmetric version of the Zarankiewicz
number. The classical upper bound for the Zarankiewicz number, due to
Ko� va� ri et al. [22], has recently been improved in [19], where it is shown
that for 1�a�b

2 ex(Kn , Ka, b)�ex(Kn, n , Ka, b)�(b&a+1)1�a n2&(1�a)+an2&(2�a)+an. (1)

These are believed to be asymptotically optimal as n � �. Chung and
Graham [8] noticed that knowledge of the Tura� n number ex(Kn , G) can
be used to deduce a lower bound on the multicolored Ramsey number
r(G, H, 2) through the obvious inequality

r(G, H, 2)�
|E(G)|

ex(G, H)
�

|E(G)|
ex(Kn , H)

, (2)
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where n=|V(G)|. Summarizing (1) and (2) we obtain the following lower
bound on r(Kn, n , Kp, p , 2):

n1�p(1+o(1))�
n2

ex(Kn, n , Kp, p)
�r(Kn, n , Kp, p , 2). (3)

It was pointed out by Spencer [8] that a standard probabilistic argument
shows

r(G, H, 2)�r(Kn , H, 2)�
n2

ex(Kn , H)
log n. (4)

The following lemma connects the Ramsey numbers r(Kn, n , Ka, b , 2) and
r(Kn , Ka, b , 2) in the same way as the Tura� n numbers ex(Kn , Ka, b) and
ex(Kn, n , Ka, b) are related in (1) by Bolloba� s (cf. [5, p. 310]). Note that
r(Kn, n , Ka, b , 2)�r(K2n , Ka, b , 2) is obvious, but this lemma enables us to
determine the asymptotic values of some r(Kn, n , Ka, b , 2).

Lemma 2.1. Suppose that b�2. Then r(Kn, n , Ka, b , 2)�r(Kn , Ka, b , 2)+1.

Proof. Let c: E(Kn) � [m] be an edge-coloring of Kn without a
monochromatic Ka, b . Let V(Kn)=[v1 , ..., vn] and V(Kn, n)=A _ B, with
A=[a1 , ..., an], B=[b1 , ..., bn]. Then the following edge-coloring
c$: E(Kn, n) � [m+1] is a (Ka, b , 2)-coloring. Let c$(a i , b j)=c(vi , vj) if i{ j
and m+1 if i= j. K

Corollary 2.2. r(Kn, n , K2, 2 , 2)=n1�2(1+o(1)) and r(Kn, n , K3, 3 , 2)=
n1�3(1+o(1)).

Proof. The lower bounds for these Ramsey numbers follow from (3)
while the upper bounds are implied by Lemma 2.1 and the following two
asymptotics. Chung and Graham [8] proved r(Kn , K2, 2 , 2)=n1�2(1+o(1))
by constructing a k-coloring of the edges of Kk2&k+1 if k&1 is a power of
a prime, such that no monochromatic C4 occurs. A (K3, 3 , 2)-coloring
implying r(Kn , K3, 3 , 2)=n1�3(1+o(1)) was recently given by Alon et al.
[3]. K

Chung and Graham [8] conjectured that r(Kn, n , Ks, t+1 , 2) is
asymptotic to (n�t)1�s for fixed t+1�s�2 and proved it for Ks, t+1=C4 .
Chung [9] proved the case s=2 for some special values of t using a com-
plicated argument based on high-dimensional projective geometries over
finite fields; however, the values of t grew with n and were not fixed. The
proof in [8] for C4 used Singer's theorem on the existence of difference
sets. Below we prove the conjecture for s=2 and fixed t�1 using a simple
self-contained argument.
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Theorem 2.3. Let t be a positive integer. Then the Ramsey numbers
r(Kn, n , K2, t+1 , 2) and r(Kn , K2, t+1 , 2) are both asymptotic to - n�t as
n � �.

Proof. A lower bound r(Kn, n , K2, t+1 , 2)>- n�t&O(n1�4) follows from
(2) using (1) (or using the original bound by Ko� va� ri et al. [22] which was
extended to multicolored graphs by Chung and Graham [8].)

To prove r(Kn , K2, t+1 , 2)�(1+o(1)) - n�t we give a coloring based on
the construction from [18], where it was proved that ex(n, K2, t+1)=
1
2 - t n3�2+O(n4�3) for any fixed t�1. Then the asymptotics for the Ramsey
numbers r(Kn, n , K2, t+1 , 2) follow from Lemma 2.1.

Let q be a prime power such that (q&1)�t is an integer, and let
n=(q&1)2�t. We define a coloring c of the edges of Kn by (q&1)�t+
O(- q log q) colors such that no monochromatic copy of K2, t+1 occurs.
Then the upper bound for the Ramsey number for all n follows from the
fact that for every sufficiently large n there exists a prime q satisfying q#1
(mod t) and - nt&n1�3<q<- nt (see [21]).

Let F be the q-element finite field, h # F an element of order t, H=
[1, h, ..., ht&1]. H is a t-element subgroup of F"[0]. Let H1 , ..., H(q&1)�t be
the cosets of H. These cosets give the decomposition F"[0]=H1 _ } } }
_ H(q&1)�t . The vertices of Kn are labeled by the t-element orbits
of (F"[0])_(F"[0]) under the action of multiplication by powers of h.
Thus the vertex set consists of equivalence classes in (F"[0])_(F"[0]),
n=(q&1)2�t, where (a, b)t(x, y) if there is an : # H such that a=:x
and b=:y. The class represented by (a, b) is denoted by (a, b). Color
the edge joining two classes (a, b) and (x, y) with color i if ax+by # Hi .
This relation is symmetric, and compatible with the equivalence classes, i.e.,
ax+by # Hi , (a, b)t(a$, b$), and (x, y)t(x$, y$) imply a$x$+b$y$ # Hi .
Note that the edges ((a, b) , (x, y) ) with ax+by=0 are still uncolored.

Let Gi denote the graph consisting of the edges colored i. We claim that
Gi contains no copy of K2, t+1 . The proof follows [18]. We show that for
(a, b), (a$, b$) # (F"[0])_(F"[0]), (a, b)t% (a$, b$) these two vertices have
at most t common neighbors in Gi . Consider the equation system

ax+by=u
(5)

a$x+b$x=v.

We claim it has at most one solution (x, y) for every u, v # Hi . Indeed, the
solution is unique if the determinant of the system, det( a

a$
b
b$), is not 0.

Otherwise, there exists an : such that a=:a$, b=:b$. If there exists a solu-
tion of (5) at all, then multiplying the second equation by : and subtract-
ing it from the first one we get on the right hand side u&:v=0. We know
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that (u�v) # H hence : # H, contradicting the fact that (a, b) and (a$, b$) are
not equivalent. Finally, there are t2 possibilities for u, v # Hi in (5). The set
of solutions form t-element equivalent classes, so there are at most t classes
(x, y) joined simultaneously to (a, b) and (a$, b$).

Now turn to the still uncolored edges ((a, b) , (x, y) ) with ax+by=0.
Let G0 be the graph formed by them. We are going to finish the proof of
the Theorem by coloring the edges of G0 by an additional O(- q log q)
colors. Partition the underlying set of Kn into equivalence classes, V1 , ...,
Vq&1 , of size (q&1)�t as follows: (a, b) and (x, y) are in the same class
if a�b=x�y. If (a, b) # Vi and (x, y) # Vj (i{ j) and the edge
((a, b) , (x, y) ) is in G0 , then clearly every edge between Vi and Vj is also
in G0 , and no edge in G0 has only one endpoint in Vi _ Vj . If some edge
with both endpoints in Vi is in G0 , then all edges with both endpoints in
either Vi or Vj are in G0 . Hence the graph G0 consists of vertex disjoint
unions of complete bipartite graphs K(q&1)�t, (q&1)�t joining a Vi to a Vj

completely, and perhaps also some complete graphs. For these graphs we
can use (4) together with the lower bound for ex(Kn , K2, t+1) from [18] to
color the edges of each of them simultaneously using the same set of at
most O(- q log q) new colors such that each color class is K2, t+1 -free. K

The applications of symmetric block designs to construct K2, t+1 -free
graphs is not new. To cite one example, Parsons [24] extended the
``Friendship Theorem'' of Erdo� s et al. [17] and used symmetric (v, k, *)-
block designs admitting a polarity to obtain certain Ramsey numbers.

3. A GENERAL UPPER BOUND

Erdo� s and Gya� rfa� s obtained an upper bound for f (n, p, q) from the
Local Lemma. Using the same method, we obtain an upper bound for
r(G, H, q). We always assume that G has n vertices and that H has v ver-
tices and e edges. Below we present the symmetric version of the Lemma.
For a proof, see [2].

Theorem 3.1 (Lova� sz Local Lemma). Let A1 , A2 , ..., An be events in an
arbitrary probability space. Suppose that each event Ai is mutually inde-
pendent of a set of at least n&D other events, and suppose that Pr(Ai)�p
for all 1�i�n. If 3pD�1, then Pr(�i Ai )>0.

Theorem 3.2. For graphs G, H with n=|V(G)|, v=|V(H)|, e=|E(H)|,
and 1�q�e, there is a constant c=c(H, q) such that

r(G, H, q)<cn(v&2)�(e&q+1).

71GENERALIZED RAMSEY THEORY



Proof. If q=1, the result is trivial, so assume that q�2. Color the
edges of G independently with t colors, where the colors are assigned with
equal probability. The probability that a given copy of H receives at most
q&1 colors is bounded by

P=\ t
q&1+\

q&1
t +

e

<tq&1 \q&1
t +

e

.

Furthermore, the coloring of a fixed H is independent of the colorings of
all other H 's except those that intersect it in at least one edge. The number
of these is at most

D=e \ n
v&2+<env&2.

Choosing t sufficiently large we obtain 3PD<1, e.g., let

t�(3(q&1)e e)1�(e+1&q) n(v&2)�(e&q+1). (6)

The Local Lemma therefore implies that if t is at least this large, then an
(H, q)-coloring with t colors exists. We also obtained that c(H, q)�
(3(q&1)e e)1�(e+1&q). K

Corollary 3.3. r(Kn, n , Kp, p , q)�c(Kp, p , q) n(2p&2)�( p2&q+1).

4. THRESHOLDS FOR LINEAR AND
QUADRATIC R(Kn, n , Kp, p , q)

For fixed p, we find the smallest q for which r(Kn, n , Kp, p , q) is linear in
n, and the smallest q for which r(Kn, n , Kp, p , q) is quadratic in n. It turns
out that these values are fairly close.

Theorem 4.1. Suppose that q=e&v+3 and that H is connected. Then

n&1
2v&4

�r(Kn , H, q)<cn,

and r(Kn , H, q&1)�c$n1&1�(v&1) for some constants c=c(H, q) and
c$=c(H, q&1).

Proof. The upper bounds follow from Theorem 3.2. For the lower
bound, it is sufficient to show that in an (H, q)-coloring of Kn each color
class contains at most (v&2) n edges. Let S be a spanning tree of H.
A monochromatic copy of S can be completed to a copy of H with a total
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of at most e&(v&1)+1=q&1 colors. Thus each color class of E(Kn)
contains at most ex(Kn , S) edges. It is well-known (and easy, see [5]) that
ex(Kn , S)�(v&2) n. K

Note that the Erdo� s�So� s Conjecture (i.e., ex(Kn , S)�(v&2) n�2; for
latest developments, see Ajtai et al. [1]) would yield a twice larger lower
bound.

The above proof can easily be modified to give the following. Let S be
a spanning tree of the bipartite graph H. Then n2�ex(Kn, n , S)�
r(Kn, n , H, e&v+3). Let Sa, b denote the double star, a spanning tree of
Ka, b with an adjacent pair of degrees a and b. By considering edges with
an endpoint at a vertex of small degree, it is easy to see that
ex(Kn, n , Sa, b)<2n(b&1) for b�a. Thus we have the following.

Corollary 4.2. Fix p�2. If q= p2&2p+3, then r(Kn, n , Kp, p , q) is
linear in n, in particular, n

2p&2<r(Kn, n , Kp, p , q)<c(Kp, p , q) n. On the other
hand, r(Kn, n , Kp, p , q&1)�c(Kp, p , q&1) n1&1�(2p&1), where the values of c
come from Theorem 3.2.

Remark. It can easily be shown from (6) in the proof of Theorem 3.2
that c(Kp, p , q&1)<3p p+2.

Next we compute the threshold for quadratic r(Kn, n , Kp, p , q).

Theorem 4.3. Let q= p2& p+2, p�3. Then r(Kn, n , Kp, p , q)�
C(n2&n), where C=(wp�2x2+wp�2x+1)�(wp�2x3+wp�2x2+wp�2x+1). If
p�6 and n>p3�2, then n4�3&2n2�3+1�r(Kn, n , Kp, p , q&1)�c$n2&2)�p for
c$�2c(Kp, p , q&1).

Proof. Let E(Kn, n)=C1 _ } } } _ Cr be a (Kp, p , q)-coloring. Then every
color class has at most p&1 edges; hence r(Kn, n , Kp, p , q)�n2�( p&1) is
immediate. Next we improve the coefficient 1�( p&1) to C. Here C is
slightly less then 1�wp�2x and (as it will be shown in Theorem 7.1) gives the
right coefficient of n2 for p=3.

Denote the partite sets of Kn, n by X and Y. Let ei denote the size of Ci ,
let Vi be the set of vertices incident to an edge of Ci , and let Ei=Kn, n | V i

be the edges contained in Vi . Call a color class Ci large if ei�wp�2x+1.
Let l+m be the number of large color classes. Suppose that l of these,
C1 , ..., Cl are matchings, but for each Ci with l<i�l+m one can find a
vertex vi incident to at least two edges of color i. For the rest of the colors
Cl+m+1 , ..., Cr we have ei�wp�2x.

We claim that �l<i�l+m ei�n. Indeed, if l<i< j�l+m, then the ver-
tices of degree at least 2, vi and vj belong to the same partite set X or Y.
Assume that vi , vj # Y. Then Vi & Vj & X=<, implying that large color
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classes which are not matchings altogether span at most n edges. Consider-
ing the three types of colors we obtain

n2=: ei=: (ei&w p�2x)+r w p�2x� :
1�i�l

(ei&w p�2x)+n+r w p�2x. (7)

We may suppose that l�2, otherwise a slightly sharper version of (7)
gives a better lower bound than C(n2&n). For each large color class Ci

which is a matching observe that |Vi |=2ei , and |Ei |=e2
i . It follows that

for 1�i< j�l we have Ei & Ej=<. Even more, if e, e$ # Ei _ Ej , then e
and e$ have different colors unless they both belong to one of Ci or Cj .
Thus, letting t denote the number of distinct colors in �1�i�l Ei , we have

:
1�i�l

(e2
i &ei+1)=t�r. (8)

Let :=1�(w p�2x2+w p�2x+1). Multiplying (8) by :, adding the result to
(7), and rearranging yields

n2&n�r(w p�2x+:)+ :
1�i�l

(ei&w p�2x&:(e2
i &ei+1)).

Since x&w p�2x&:(x2&x+1)�0 for x�w p�2x+1, the number of colors
r is at least (n2&n)�(w p�2x+:), as claimed.

Now we are going to prove the polynomial bounds for r(Kn, n , Kp, p ,
q&1). The upper bound follows from Theorem 3.2. For the lower bound,
consider a (Kp, p , q&1)-coloring of Kn, n . If every color class has at most
n2�3 edges, then the total number of color classes is at least n4�3. We may
therefore suppose that there is a color class C�E(Kn, n) of size at least
n2�3>p. Let VC be the set of vertices incident to an edge from C, let VX=
VC & X, and let VY=VC & Y. Let G be the graph formed by the edges in
C, i.e., V(G)=VC and E(G)=C. If there exist x # VX and y # VY with
min[dG(x), dG( y)]�2, then there is a (q&2)-colored Kp, p , (containing
p+1 edges from C) so we may assume by symmetry that dG(x)�1 for all
x # VX . Thus |VX |�max[n2�3, |VY |]. Let H�Kn, n be the complete bipar-
tite graph spanned by VC . Observe that all edges other than the edges from
C have distinct colors in H. If |VY |� |VX |�|VY |+1 then the number of
colors on E(H) is at least

|VX | |VY |&|VX |+1�|VX |( |VY |&1)+1�n4�3&2n2�3+1.

If |VX |> |VY |+1, then either there are u, v # VY with dG(u)�2 and
dG(v)�2, or there is a w # VY with dG(w)�3. In the first case, let
Y$=Y&[u, v], and in the second case, let Y$=Y&[w]. Since p�6, there
are no repeated colors on the edges between Y$ and VX except the color
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on edges of C; otherwise there would be a Kp, p using q&2 colors including
either u and v or w. Thus the total number of colors is at least
(n&3) |VX |+1�n4�3&2n2�3+1. K

5. WHEN IS r(Kn, n , Kp, p , q)=n2&O(1)?

In this section we determine, for fixed p, the threshold for q beyond
which all edges but a constant number must be colored with distinct colors.
We also determine an infinite family of Ramsey numbers.

Theorem 5.1. If q�p2&w p�2x+1, then r(Kn, n , Kp, p , q)=n2&( p2&q).
However, f (Kn, n , Kp, p , p2&w p�2x)�n2&wn�2x, with equality for p�7 and
p odd, and r(Kn, n , K5, 5 , 23)=n2&2 wn�2x+2. Moreover, r(Kn, n , Kp, p , p2&
w p�2x)=n2&Wn�2X for p�14 and p even.

Proof. The upper bounds for r(Kn, n , Kp, p , q) are provided by the
following constructions. Suppose that the partite sets of Kn, n are
X=[x1 , ..., xn] and Y=[ y1 , ..., yn].

When q�p2&w p�2x+1, color the edges x2i&1y2i&1 and x2i y2i with
color i, for 1�i�p2&q. When q= p2&w p�2x, color in the same way,
except let 1�i�wn�2x. In both cases, color all the other edges with new
distinct colors. The total number of colors used is n2&( p2&q) in the first
case, and n2&wn�2x in the second case. When n is odd and p is even, we
can also color the pair x1yn and y3xn with the same color; this saves one
color, giving only n2&Wn�2X colors.

Our construction for r(Kn, n , K5, 5 , 23) is slightly different. For 2�i�wn�2x,
let x1y2i&1 and x2y2i have the same color, with different pairs getting
distinct colors. Similarly, let y1x2i&1 and y2x2i have the same color (but
distinct from the previous color set), with different pairs getting distinct
colors. Give all other edges new distinct colors. This is a (K5, 5 , 23)-color-
ing, since no K5, 5 contains three monochromatic matchings. The number of
colors is n2&2 wn�2x+2.

To prove the lower bounds consider a (Kp, p , q)-coloring with r colors.
Let e i

1 , e i
2 , ..., e i

s be the edges of color i with s�2. Form the 4-element sets
F i

j (1� j<s) by taking the union e i
1 _ e i

j+1 and adding an arbitrary addi-
tional vertex of X _ Y if needed in such a way that |F i

j & X|= |F i
j & Y|=2.

Finally, let F be the edge-set of the (multi)hypergraph of the four-tuples
obtained in this way. Since every color class with t edges gives rise to
precisely t&1 four-tuples, |F|=n2&r. For p-element sets X$/X, Y$/Y,
we have

X$ _ Y$ contains at most p2&q members of F. (9)
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If 2( p2&q+1)�p and |F|>p2&q, then we can take p2&q+1 four-tuples
from F that are contained in a copy H of Kp, p ; E(H) will have fewer than
q colors. Hence if 2( p2&q+1)�p, then |F|�p2&q and we are done.

Call a member F # F of type X (type Y) if no other member of F contains
any vertex from F & X (F & Y, resp.). If each edge is of type X then
|F|�|X|�2 and we are done. The same is true for type Y.

Suppose that F1 is not of type X and F2 is not of type Y, for example
F1 & F3 & X{< and F2 & F4 & Y{<. Suppose first, that these four sets
are distinct members of F. In the case p odd, p�7 adding ( p&7)�2
arbitrary additional members to F1 , F2 , F3 , F4 we get a contradiction to
(9) and we are done.

Suppose that F contains another 4 members F5 , ..., F8 such that
F5 & F7 & X{< and F6 & F8 & Y{<. In the case p even, p�14, adding
( p&14)�2 arbitrary additional members of F to F1 , ..., F8 we get a con-
tradiction to (9) and we are done.

In case of coincidences among F1 , ..., F4 one needs to add more
members. The details are omitted.

It remains to consider the case p=5. Suppose that F1 is of neither type,
i.e., F1 & F2 & X{<, and F1 & F3 & Y{<. Then F1 _ F2 _ F3 can be
covered by the vertex set of a K5, 5 (by a K3, 3 when F2 coincides with F3)
a contradiction to (9). Thus every member is of type X or of type Y. If each
member is of both types we obtain |F|�(2n)�4; otherwise we have
|F|�2 w(n&2)�2x. K

6. DENSITIES OF HYPERGRAPHS

In this section we determine, for fixed p, the threshold for q beyond
which all edges but 3(n) must be colored with distinct colors. Our main
tool is an estimate of the size of a hypergraph with bounded densities of
small subhypergraphs.

A k-uniform hypergraph with edge-set F is called (u, v+1)-free if every
u vertices span at most v members of F. Let gk(n, u, v) be the maximum
number of edges of a (u, v+1)-free k-uniform hypergraph with n ver-
tices. Tura� n's classical theorem determines g2(n, u, ( u

2)&1); for example,
g2(n, 3, 2)=wn2�4x. For a recent account on graph-density questions see
Griggs et al. [20]. Brown et al. [7] proved that

gk(n, u, v)>cnk&(u&k)�v

by constructing a (u, v+1)-free k-uniform hypergraph on n vertices with
cnk&(u&k)�v edges (here c=c(k, u, v)>0 is independent of n). Consider the
hypergraph H on 2n vertices obtained from their construction for k=4 and
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u=2p. Their proof also implies that for the case v�p&2 one can also sup-
pose that |H & H$|�1 for all H, H$ # H. Randomly partition the vertices of
H into two equal sets X and Y. As the probability that a 4-element set is
partitioned into two equal parts is 6�16, this yields a family of 4-subsets
F=[F1 , ..., Fm] of an underlying set X _ Y such that every 2p-element
subset contains at most v of the Fi 's and

(1) |Fi & X|=|F i & Y|=2 for every Fi ,

(2) |Fi & Fj |�1 for i{ j (assuming that v�p&2), and

(3) m>cpn4&(2p&4)�v, where cp>0 depends only on p.

(Here cp is smaller than the constant in the result of Brown et al.) Now
replace each 4-element set Fi by two disjoint pairs contained in it connect-
ing X to Y, color these two edges with color i, and color the rest of the
pairs between X and Y with distinct new colors. Since the total number of
colors used is n2&m, we obtain

r(Kn, n , Kp, p , p2&v)<n2&cpn4&(2p&4)�v (10)

for 1�v�p&2 and some constant cp>0.

Theorem 6.1. If p2&w(2p&1)�3x+1�q�p2&w p�2x, then n2&
2 w( p&2)�3x(n&1)<r(Kn, n , Kp, p , q)�n2&w p�2x. However, r(Kn, n , Kp, p ,
p2&w(2p&1)�3x)<n2&cpn1+=p. Here cp and =p are positive constants
depending only on p.

Proof. The upper bound in the last statement follows from (10) by
letting v=w(2p&1)�3x.

For the case w p�2x�p2&q<w(2p&1)�3x, a (Kp, p , q)-coloring with
n2& wn�2x colors was given in Section 5. We have to prove that all such
colorings use more than n2&2 w( p&2)�3x(n&1) colors. Let E be the set
of edges whose color is used also on at least one other edge, and let
G�Kn, n be the subgraph spanned by E. Set t=w( p+1)�3x. We claim that
if u, v # V(G) with dG(u), dG(v)�t, then uv � E, i.e., high degree vertices in
G are nonadjacent in G. To prove this claim, suppose that uv # E.

Case 1. p�1 (mod 3). Then there is a Kp, p containing a pair of edges
of each color that appears on the edges incident with uv (and perhaps some
more pairs ei , f i , with color i if there are colors adjacent to both u and v).
The number of colors on this copy is at most p2&(2t&1)<q, a contradic-
tion.

Case 2. p#1 (mod 3). Then 3t&1= p&2, so in addition to the edges
in the previous case, our copy of Kp, p can be chosen to contain another 2
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edges with the same color. The number of colors on this copy is
p2&(2t&1)&1<q, a contradiction.

Counting the edges in E by their endpoint of lower degree gives
|E|�2(n&1)(t&1), which yields the required lower bound on the number
of colors. K

The coefficient 2w( p&2)�3x in Theorem 6.1 can be improved by choos-
ing t more carefully, noting its dependence on q. We could also include the
colors from the nontrivial color classes. We do not attempt to find the
optimal bound.

Note that by substituting v= p&2 into (10) we obtain a matching upper
bound for q= p2& p+2 (cf. Theorem 4.3):

r(Kn, n , Kp, p , p2& p+2)<(1&cp) n2. (11)

7. THE EXACT VALUE OF r(Kn, n , K3, 3 , 8)

When p=3 and 2�q�8, our upper bounds are those in Theorem 3.2.
(See the chart in Section 9.) We have nontrivial lower bounds only for
q # [6, 8]. Corollary 4.2 states that n�4<r(Kn, n , K3, 3 , 6)�cn for some con-
stant c. Theorem 4.3 states that (3�4)(n2&n)<r(Kn, n , K3, 3 , 8). In this
section we give the exact value of this Ramsey number.

Theorem 7.1. r(Kn, n , K3, 3 , 8) is (3�4) n2 if n is even, and W(3�4) n2+
n�4X if n is odd.

Proof. First, we show the upper bound by constructing the colorings.
Let the partite sets of Kn, n be X=[x1 , ..., xn] and Y=[ y1 , ..., yn]. We
color E(Kn, n) with ordered pairs as follows.

Case 1. n=2k. For i, j # [1, ..., wn�2x], let x2iy2j and x2i&1y2j&1 both
have color (i, j). Let all other edges have new distinct colors. Since every
K3, 3 has at most one pair of edges of the form x2iy2j , x2i&1 y2j&1 , our con-
struction is a (K3, 3 , 8)-coloring.

Case 2. n=4k+1. Let c(xj&(2i&1) yj)=c(xj+2i yj+1)=( j, i) for 1�i�
(n&1)�4, 1� j�n, where addition is taken modulo n. Color all other edges
with distinct colors. Since the union of any two color classes of size 2 spans
at least four vertices either in X or in Y, every K3, 3 has at most one color
class of size 2. Thus our construction is a (K3, 3 , 8)-coloring.

Case 3. n=4k+3. Let c(xj&(2i&1) yj)=c(x j+2iyj+1)=( j, i) as before
for 1�i�(n&3)�4, 1� j�n, and let c(xi yi)=c(xi+(n&1)�2yi+(n&1)�2)=
(i, 0) for 1�i�(n&1)�2. Color all other edges with distinct colors. It is
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easy to check that the color classes of size 2 induce edge-disjoint copies of
C4 , so the obtained coloring is a (K3, 3 , 8)-coloring. The total number of
colors in the last case is n2&n(n&3)�4&(n&1)�2=(3�4) n2+n�4+1�2.

For the lower bound, consider a (K3, 3 , 8)-coloring of Kn, n . Obviously,
each color class contains at most two edges. Let C1 , ..., Ct be the color
classes of two edges, Ci=[[x i

1 , y i
1], [x i

2 , y i
2]]. We are going to define t

edge-disjoint cycles of length 4, Q1 , ..., Qt , C i /Qi . Consider a color class
Ci forming 2K2 , i.e., x i

1 {x i
2 and y i

1 { y i
2 . Then let Q i be the four edges

spanned by the vertices of Ci . Consider a color class Ci forming P3 , for
example x i

1=x i
2 and y i

1 { yi
2 . Then choose a vertex x i

3 arbitrarily from
X"[x i

1], and let Qi be spanned by [x i
1 , x i

3 , y i
1 , y i

2]. It is easy to check that
edges of Qi and Qj are disjoint for i{ j.

Finally we need an upper bound for the number of edge-disjoint four-
cycles. Each x # X is contained in at most n�2 of the Qi 's, thus
2t�n wn�2x. K

It is easy to see that although our construction is not unique, every
optimal (K3, 3 , 8)-coloring contains no two adjacent edges of the same
color, and the coloring can be obtained from a four-cycle packing of Kn, n .
Note that in the same way one can show that if m, n�3, then
r(Kn, m , K3, 3 , 8)=nm&t, where t is the maximum number of edge-disjoint
four-cycles packed into E(Kn, m). On the other hand (denoting this maxi-
mum t by t(m, n)) one can easily extend the above constructions, or use a
recurrence like t(m, n)�t(m, n&2)+wm�2x to determine the exact value
of t. This yields

r(Kn, m , K3, 3 , 8)=nm&min {\n
2 \m

2��, \m
2 \n

2��= . (12)

8. BOUNDS FOR r(Kn, n , C4 , 3)

The next case we consider is r(Kn, n , C4 , 3). Since monochromatic P4 's
are forbidden, each color class consists of disjoint stars. Using this observa-
tion, it is easy to prove that r(Kn, n , C4 , 2)�n2�(2n&2)tn�2. Later we
improve this lower bound, but first we provide a simple construction.

Theorem 8.1. If n is odd, then r(Kn, n , C4 , 3)�n. If n is even, then
r(Kn, n , C4 , 3)�n+1.

Proof. First suppose that n is odd. Let the partite sets of Kn, n be
X=[x1 , ..., xn] and Y=[ y1 , ..., yn]. Color E(Kn, n) with n colors by letting
the jth color class consist of the edges xi yi+ j , 1�i�n, 0� j�n&1, where
the subscripts are taken modulo n.
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Since each color class is a matching, a 2-colored C4 must consist of 2
monochromatic matchings of size 2. Assume without loss of generality that
one of these matchings is in color 0 and that the four vertices of the 4-cycle
are x1 , y1 , xk , yk . Since n is odd, n+1&k{k&1. Thus x1yk and xky1

have distinct colors, and our construction is a (C4 , 3)-coloring.
When n is even we color the edges of Kn+1, n+1 as before and consider

the coloring restricted to Kn, n . This gives an upper bound of n+1. K

Improving this upper bound seems to be very hard. Eichhorn [13]
improved it by one when n=4, 12, 20, 36, and 60 by exhibiting
(C4 , 3)-colorings of Kn, n with n colors. In the matrix below, the (i, j)th
entry represents the color of xiyj , where the partite sets of G are
X=[x1 , ..., xn] and Y=[ y1 , ..., yn]. A construction for n=12 is shown:

1 2 3 4 5 6 7 8 12 9 10 11

4 1 2 3 8 5 6 7 12 11 9 10

4 3 1 2 6 8 7 5 9 10 11 12

2 4 3 1 8 7 5 6 10 12 11 9

5 6 7 8 12 9 10 11 1 2 3 4

8 5 6 7 12 11 9 10 4 1 2 3

6 8 7 5 9 10 11 12 4 3 1 2

8 7 5 6 10 12 11 9 2 4 3 1

12 9 10 11 1 2 3 4 5 6 7 8

12 11 9 10 4 1 2 3 8 5 6 7

9 10 11 12 4 3 1 2 6 8 7 5

10 12 11 9 2 4 3 1 8 7 5 6

r(K12, 12 , C4 , 3)�12.

We have already observed that r(Kn, n , C4 , 2)�n�2. Through a more
careful examination of both the structure of each color class, and the inter-
action between color classes in a (C4 , 3)-coloring, we improve the lower
bound to 2n�3.

Theorem 8.2. r(Kn, n , C4 , 3)>w 2n
3 x.

Proof. Consider a (C4 , 3)-coloring of Kn, n with color classes D1 , D2 , ...,
Dg . Suppose that the ith color class Di consists of li disjoint stars Sij ,
where 1� j�li . Let Si, j have di, j edges, and set L=�i li .
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Since every edge is covered once and � li
j=1 di, j�2n&li , we have

n2= :
g

i=1

:
li

j=1

d i, j�2ng&L. (13)

Two monochromatic paths of length 2 with common endpoints would
yield a 2-colored C4 . Letting t denote the number of monochromatic paths
of length 2, we thus obtain

:
g

i=1

:
li

j=1
\di, j

2 +=t�2 \n
2+ . (14)

From (14) we obtain

� g
i=1 � li

j=1 (di, j)
2

� g
i=1 � li

j=1 di, j
=

2 � g
i=1 � li

j=1 \di , j

2 ++� g
i=1 � li

j=1 di, j

� g
i=1 � li

j=1 d i, j
�

3n2&2n
n2 .

(15)

Since the double sum in (14) has � i li=L terms, the Cauchy�Schwarz
inequality yields

\ :
g

i=1

:
li

j=1

di, j+
2

�L \ :
g

i=1

:
li

j=1

(d i, j)
2+ . (16)

By rearranging (16) and using (15), we obtain L�n3�(3n&2). Substituting
back into (13) gives 2ng�n2+L�n2+n3�(3n&2). Solving for g yields

g��n(2n&1)
3n&2 |>\2n

3 � . K

An alternating C4 is a 2-colored C4 whose edges alternate between its
two colors when viewed cyclically. One might feel there is hope in improv-
ing the lower bound above because the proof allows alternating C4 's.
Unfortunately, we have been unable to obtain any significant improvement
from this observation. It is, however, interesting to define a function similar
to r(Kn, n , C4 , 3) with the exception that alternating C4 's are permitted.

Definition. A weak (C4 , 3)-coloring of Kn, n is a coloring of the edges
of Kn, n in which every copy of C4 has at least three colors or is alternately
2-colored. Let r$(Kn, n , C4 , 3) denote the minimum number of colors in a
weak (C4 , 3)-coloring of Kn, n .
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Since the definition of r$(Kn, n , C4 , 3) is a relaxation of that of
r(Kn, n , C4 , 3), we certainly have r(Kn, n , C4 , 3)�r$(Kn, n , C4 , 3). Further-
more, the proof of Theorem 7.2 yields

r$(Kn, n , C4 , 3)>\2n
3 � .

In the remaining part of this section we prove an upper bound on
r$(Kn, n , C4 , 3) that is asymptotic to 3n�4. The proof requires a deep
theorem about edge-coloring of hypergraphs. We describe this first.

Given a hypergraph H=(V, E), the degree of a vertex v # V, d(v), is the
number of edges containing v. For vertices v, w, the codegree of v and w,
cod(v, w), is the number of edges containing both v and w. Let

2(H)=max
v # V

d(v),

$(H)=min
v # V

d(v),

C(G)= max
u, v # V, u{v

cod(u, v).

A matching in H is a set of pairwise disjoint edges of H. A matching is
perfect if every vertex of H is in exactly one of its edges. Let /$(H), the
chromatic index of H, denote the minimum number of matchings needed to
partition the edges of H. A hypergraph H is k-uniform if each of its edges
consists of exactly k elements.

Theorem 8.3 (Pippenger and Spencer [25]). For every k�2 and =>0,
there exist =$>0 and n0 such that if H is a k-uniform hypergraph on
n(H)�n0 vertices satisfying

$(H)�(1&=$) 2(H) (17)

and

C(H)�=$2(G), (18)

then

/$(H)�(1+=) 2(G). (19)
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We rephrase Theorem 8.3 in more convenient asymptotic notation.
Let H1 , H2 , ... be hypergraphs, with |V(Hi)| � �. If

$(Hn)t2(Hn) (20)

and

C(Hn)=o(2(Hn)), (21)

then

/$(Hn)t2(Hn). (22)

A Steiner Triple System (STS) is a 3-uniform hypergraph in which each
pair of vertices has codegree one. It is well known that a STS on n points
exists if and only if n#1, 3 (mod 6).

We use Steiner Triple Systems and the following ``large deviation'' result
in probability theory to prove an upper bound on r$(Kn, n , C4 , 3).

Theorem 8.4 (Chernoff [12]). Suppose that p # [0, 1] and X1 , ..., Xn

are mutually independent random variables with Pr(Xi=1)= p=1&
Pr(Xi=0). If X=X1+ } } } +Xn and a>0, then Pr( |X& pn|>a)�2e&2a2�n.

Theorem 8.5. As n � �, r$(Kn, n , C4 , 3)� 3n
4 (1+o(1)).

Proof. We first prove the result for a sufficiently dense set of positive
integers. Later we use standard approximation arguments to obtain the
result asymptotically for all n. Suppose that 2n+1#1, 3 (mod 6), and let
S be a STS of [2n+1]. Select a set A�[2n+1] by picking each point of
[2n+1] with probability 1�2, independently. Let A�[2n+1] be the (ran-
dom) set of points thus picked, and let H be the 3-uniform hypergraph
with vertex set [2n+1] and edges from the STS that intersect both A and
[2n+1]&A=B.

The calculations in the following paragraphs will show that, with high
probability, the sizes of A and B differ by very little. Also, the degree of
each vertex in H is close to 3n�4. Since H is 3-uniform and has codegree
bounded by 1, the hypothesis for Theorem 8.3 will be satisfied and we
therefore obtain a proper edge-coloring of H with about 3n�4 colors. This
coloring of E(H) will yield a weak (C4 , 3)-coloring of the underlying bipar-
tite graph with bipartition A, B.

Set a=|A| and b=|B|. Let X be the event that |a&n|�2 - n, and let
Y be the event that |dH(i)&3n�4|�- n log(10n)�2 for all i # [2n+1]. Since
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each edge of S is retained in H with probability 3�4, and every vertex i has
degree n in the STS, each vertex in H has expected degree 3n�4. Since the
expected size of A is n (actually n+1�2, but this is insignificant in the
following calculation) Theorem 8.4 gives

Pr(X� _ Y� )�Pr(X� )+Pr(Y� )

�2 exp {&
8n

2n+1=+(2n+1) 2 exp {&
n log(10n)

n =<1.

Thus Pr(X & Y)>0, so there is a set A such that both X and Y hold.
Choose such a set A. Since X holds, we may assume without loss of
generality that n&2 - n�a�b�n+2 - n. Let G be the complete bipar-
tite graph with partite sets A and B.

Using this random process, we obtain a hypergraph H satisfying (20)
and (21). Theorem 8.3 implies that /$(H)t2(H)t3n�4; consider a decom-
position of E(H) into /$(H) matchings. An edge in H contains either two
vertices from A and one from B or vice versa. In G, this edge corresponds
to the three-vertex path with the same vertices. For each color class of
edges in H, color all the edges of the corresponding P3 's in G with the same
color.

Since each pair of vertices in a STS belongs to a unique edge, all edges
in G are colored. Because a color class of edges in G arose from a matching
in H, each color class in G consists of disjoint paths of length 2. Last, since
every pair of vertices in a STS has codegree one, no two monochromatic
P3 's in G share each of their two ends. These remarks together imply that
the coloring of G is a weak (C4 , 3)-coloring with (1+o(1)) 3n�4 colors.

For each m with 2m+1#1, 3 (mod 6), we have obtained a weak
(C4 , 3)-coloring of Ka, b with (1+o(1)) 3m�4 colors, where m&2 - m�
a�m�b�m+2 - m. Since weak (C4 , 3)-colorings are preserved under
taking subgraphs, we have r$(Ka, a , C4 , 3)�(1+o(1)) 3m�4 for some a with
m&2 - m�a�m, by considering a copy of Ka, a �Ka, b . It remains to
extend this to all n.

Given any n, choose m such that m&3 - m�n�m&2 - m and
m#1, 3 (mod 6). Then certainly n�mt1 as n � �. Let a correspond to m
as in the preceding paragraph. Since r$(Kn, n , C4 , 3) is a nondecreasing
function of n,

r$(Kn, n , C4 , 3)�r$(Ka, a , C4 , 3)�
3m
4

(1+o(1))t
3n
4

(1+o(1)),

completing the proof. K
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9. CHART OF BOUNDS ON r(Kn, n , Kp, p , q)

In the charts below, ``<< f (n)'' means ``O( f (n)),'' and ``>>g(n)'' means
``0(g(n))'':

q r(Kn, n , C4 , q) r(Kn, n , K3, 3 , q)

2 - n (1+o(1)) Thm. 2.3 n1�3(1+o(1))
3 >w(2�3) nx Thm. 8.1, �n+1 Thm. 8.2 <<n4�7 Thm. 3.2
4 n2 <<n2�3 Thm. 3.2
5 �� <<n4�5 Thm. 3.2
6 �� >n�4, <cn Cor. 4.2
7 �� >>n, <<n4�3 Thm. 3.2
8 �� W n

2 W 3n
2 XX Thm. 7.1

9 �� n2

q r(Kn, n , Kp, p , q)

2 >>n1�p (3)
p2&2p+2 <<n1&1�(2P&1) Cor. 4.2
p2&2p+3 3(n) Cor. 4.2
p2&p+1 <<n2&2�p Thm. 4.3
p2&p+2 �Cp (n2&n), <(1&cp) n2 Thm. 4.3, (11)
p2&w(2p&1)�3x <n2&cp n1+= Thm. 6.1
p2&w(2p&1)�3x+1 >n2&2w(p&2)�3x (n&1) Thm. 6.1
p2&w p�2x �n2&wn�2x , =n2&wn�2x if p odd and �7 Thm. 5.1
p2&w p�2x+1 n2&w p�2x+1 Thm. 5.1
p2 n2
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