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A conjecture of V. S6s [3] is proved that any set of 3(%) + cn? triples from an
n-set, where c is a suitable absolute constant, must contain a copy of the Fano con-
figuration (the projective plane of order two). This is an asymptotically sharp
estimate.  © 2000 Academic Press

Given a 3-uniform hypergraph #, let ex;(n, ) denote the maximum
possible size of a 3-uniform hypergraph of order » that does not contain any
subhypergraph isomorphic to % . Our terminology follows that of [ 1], which
is a comprehensive survey of Turan-type extremal problems. An elementary
and well known averaging argument shows that the ratio ex;(n, #)/(%) is a
non-increasing sequence, so that 7(% ) :=Ilim exs(n, #)/(}) exists.

n— oo

THEOREM. If F = PG(2,2) is the Fano plane then n(F)=3.

Proof. First we present a construction due to V. Sos [3]. She conjec-
tures that this gives the exact value of ex;(n, & ). For each n let " be the
hypergraph obtained by splitting a ground set of cardinality » into two
sets, say A and B, of nearly equal size; the hyperedges of /#” consist of all
triples that meet both 4 and B. Since, as is well known and easy to check,
the Fano plane is not two-colourable, we see that /#" does not contain % .
The number of hyperedges of #” equals 2(%) — O(n?), which establishes the
lower bound n(#)>3.
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In the other direction, let s be any 3-uniform hypergraph of order n
that does not contain the Fano plane. We will prove that, for some suitable
absolute constant ¢, there exists a point of # that lies in at most 3(%) + cn
hyperedges. A straightforward inductive argument then gives the upper
bound ()< 2; we leave the details to the reader. Given any point x, the
link graph #[x] is defined as the set of pairs { y, z} such that {z, y, z} is
a hyperedge of #. Fix any hyperedge {1, 2, 3} of #. We claim that, given
any four-element set S={a, b, ¢, d} of points disjoint from {1, 2, 3}, the
three links s#[1], #[2] and #[ 3] have altogether at most fifteen edges
(counting multiplicities) contained in S, from a maximum possible of
3-(%)=18. In fact, it is obvious that the maximum 3 x 6 = 18 minus any
two edges always guarantee the 3 x 2 appropriate edges which are needed
to get a Fano configuration.

We may assume, without loss of generality, that # contains a
tetrahedron, i.e. a complete hypergraph on four points K;(4)={{1, 2, 3},
{1,2,4}, {1,3,4}, {2,3,4}}. Indeed, if every 4-point set spans at most
3 triples, out of the maximum possible (3) =4, then a standard averaging
argument implies that # can have already at most 3(%) hyperedges, in
which case there is nothing to worry about, or # is so dense that it must
contain a K;(4).

If S is any 4-set disjoint from the point-set {1, 2, 3,4} of a K5(4) in A,
then the four links #°[i], i=1 to 4, have altogether at most 20 edges con-
tained in S; this follows from our earlier upper bound of 15 edges per three
links and simple averaging. Now we will invoke the following result, which
is a very special case of a general theorem of Fiiredi and Kiindgen [2]. To
make this paper self-contained in the Appendix we give a short summary
of the proof of the case we are going to use. Let m(n, k, r) denote the maxi-
mum possible number of edges that a multigraph of order n can have,
given that every k-set of points contains a total of at most r edges.

LEMMA.  m(n, 4,20) =3(5) + O(n).

Thus we may conclude that given any tetrahedron K5(4) in 4, its four
links have altogether at most 3(%) + O(n) edges. (Note that in applying the
Lemma one should, strictly speaking, disregard hyperedges involved in two
of the links of the points of the K5(4); but this involves only O(n) addi-
tional hyperedges.) Hence at least one of the four points of the K;(4) is
contained in at most 3(%) + O(n) hyperedges of #. As explained at the out-
set, this is sufficient for a proof that n(PG(2,2))<3. This completes the
proof of our theorem.

Turan type problems for hypergraphs are notoriously difficult; even the
determination of 7(K5(4)) remains open. Thus the above result z( PG(2, 2))
=2 is gratifying, especially since the Fano plane is such a nice and famous
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configuration. Unfortunately, the method of this paper does not seem to
generalize to a broad class of configurations . We refer once more to [ 1],
especially Section 6, for a review of most of the known exact results.

APPENDIX

Here we prove m(n, 4,20) <3(3)+n—2.

First, we use induction to show m(n, 3, 10) <3(5)+n—2(n=3). Let G
be a (3, 10) multigraph on n vertices, i.e., every 3 vertices span at most 10
edges. If every pair of vertices in G has multiplicity at most 3 then ¢(G) <
3(4) and we are done. If one can find a pair {x, y} with multiplicity at least
4, then for every z the sum of multiplicities of the edges from z to x and
y is at most 6. Hence the total degrees of x and y is at most 8 + 6(n—2).
One of them has degree at most 3n — 2, and we can finish by induction.

Finally, consider a multigraph G on n vertices such that every 4 vertices
span at most 20 edges. If it is a (3, 10)-graph then we have e(G)<
m(n, 3, 10). Otherwise, if there exists a 3 subset {x, y, z} spanning at least
11 edges, then for every w the sum of multiplicities of the edges from w to
{x, y,z} is at most 9. As before, one can conclude that the total degrees
of x, y and z is at most 22+ 9(n—3), one of them has degree at most
3n—2, and use induction.
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