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A conjecture of V. So� s [3] is proved that any set of 3
4 ( n

3)+cn2 triples from an
n-set, where c is a suitable absolute constant, must contain a copy of the Fano con-
figuration (the projective plane of order two). This is an asymptotically sharp
estimate. � 2000 Academic Press

Given a 3-uniform hypergraph F, let ex3(n, F) denote the maximum
possible size of a 3-uniform hypergraph of order n that does not contain any
subhypergraph isomorphic to F. Our terminology follows that of [1], which
is a comprehensive survey of Tura� n-type extremal problems. An elementary
and well known averaging argument shows that the ratio ex3(n, F)�( n

3) is a
non-increasing sequence, so that ?(F) :=limn � � ex3(n, F)�( n

3) exists.

Theorem. If F=PG(2, 2) is the Fano plane then ?(F)= 3
4 .

Proof. First we present a construction due to V. So� s [3]. She conjec-
tures that this gives the exact value of ex3(n, F). For each n let Hn be the
hypergraph obtained by splitting a ground set of cardinality n into two
sets, say A and B, of nearly equal size; the hyperedges of Hn consist of all
triples that meet both A and B. Since, as is well known and easy to check,
the Fano plane is not two-colourable, we see that Hn does not contain F.
The number of hyperedges of Hn equals 3

4 ( n
3)&O(n2), which establishes the

lower bound ?(F)� 3
4 .
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In the other direction, let H be any 3-uniform hypergraph of order n
that does not contain the Fano plane. We will prove that, for some suitable
absolute constant c, there exists a point of H that lies in at most 3

4 ( n
2)+cn

hyperedges. A straightforward inductive argument then gives the upper
bound ?(F)� 3

4 ; we leave the details to the reader. Given any point x, the
link graph H[x] is defined as the set of pairs [ y, z] such that [z, y, z] is
a hyperedge of H. Fix any hyperedge [1, 2, 3] of H. We claim that, given
any four-element set S=[a, b, c, d] of points disjoint from [1, 2, 3], the
three links H[1], H[2] and H[3] have altogether at most fifteen edges
(counting multiplicities) contained in S, from a maximum possible of
3 } ( 4

2)=18. In fact, it is obvious that the maximum 3_6=18 minus any
two edges always guarantee the 3_2 appropriate edges which are needed
to get a Fano configuration.

We may assume, without loss of generality, that H contains a
tetrahedron, i.e. a complete hypergraph on four points K3(4)=[[1, 2, 3],
[1, 2, 4], [1, 3, 4], [2, 3, 4]]. Indeed, if every 4-point set spans at most
3 triples, out of the maximum possible ( 4

3)=4, then a standard averaging
argument implies that H can have already at most 3

4 ( n
3) hyperedges, in

which case there is nothing to worry about, or H is so dense that it must
contain a K3(4).

If S is any 4-set disjoint from the point-set [1, 2, 3, 4] of a K3(4) in H,
then the four links H[i], i=1 to 4, have altogether at most 20 edges con-
tained in S; this follows from our earlier upper bound of 15 edges per three
links and simple averaging. Now we will invoke the following result, which
is a very special case of a general theorem of Fu� redi and Ku� ndgen [2]. To
make this paper self-contained in the Appendix we give a short summary
of the proof of the case we are going to use. Let m(n, k, r) denote the maxi-
mum possible number of edges that a multigraph of order n can have,
given that every k-set of points contains a total of at most r edges.

Lemma. m(n, 4, 20)=3( n
2)+O(n).

Thus we may conclude that given any tetrahedron K3(4) in H, its four
links have altogether at most 3( n

2)+O(n) edges. (Note that in applying the
Lemma one should, strictly speaking, disregard hyperedges involved in two
of the links of the points of the K3(4); but this involves only O(n) addi-
tional hyperedges.) Hence at least one of the four points of the K3(4) is
contained in at most 3

4 ( n
2)+O(n) hyperedges of H. As explained at the out-

set, this is sufficient for a proof that ?(PG(2, 2))� 3
4 . This completes the

proof of our theorem.

Tura� n type problems for hypergraphs are notoriously difficult; even the
determination of ?(K3(4)) remains open. Thus the above result ?(PG(2, 2))
= 3

4 is gratifying, especially since the Fano plane is such a nice and famous
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configuration. Unfortunately, the method of this paper does not seem to
generalize to a broad class of configurations F. We refer once more to [1],
especially Section 6, for a review of most of the known exact results.

APPENDIX

Here we prove m(n, 4, 20)�3( n
2)+n&2.

First, we use induction to show m(n, 3, 10)�3( n
2)+n&2(n�3). Let G

be a (3, 10) multigraph on n vertices, i.e., every 3 vertices span at most 10
edges. If every pair of vertices in G has multiplicity at most 3 then e(G)�
3( n

2) and we are done. If one can find a pair [x, y] with multiplicity at least
4, then for every z the sum of multiplicities of the edges from z to x and
y is at most 6. Hence the total degrees of x and y is at most 8+6(n&2).
One of them has degree at most 3n&2, and we can finish by induction.

Finally, consider a multigraph G on n vertices such that every 4 vertices
span at most 20 edges. If it is a (3, 10)-graph then we have e(G)�
m(n, 3, 10). Otherwise, if there exists a 3 subset [x, y, z] spanning at least
11 edges, then for every w the sum of multiplicities of the edges from w to
[x, y, z] is at most 9. As before, one can conclude that the total degrees
of x, y and z is at most 22+9(n&3), one of them has degree at most
3n&2, and use induction.
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