ON THE PRAGUE DIMENSION OF KNESER GRAPHS

ZOLTAN FUREDI

ABSTRACT. In this note we point out another connection between the Prague dimension
of graphs and the dimension theory of partially ordered sets by giving a very short proof
of a theorem of Poljak, Pultr and R4dl [10]. We show that the dimension of the Kneser
graph is bounded as dimp (K (n, k)) < Ck loglogn, where C}, is depending only on k.

1. DIMENSION OF GRAPHS

The Kneser graph K (n, k) is the graph whose vertices are the k-subsets of the n-element
set [n] := {1, 2,...,n}, with vertices are adjacent when the corresponding k-sets are disjoint.

The product of the graphs (Vi, Fy) and (V3, F5) is a graph with vertex set Vi x Va;
two vertices (vi,vs) and (wy,ws) are adjacent in the product graph if (vy,w;) is adjacent
in Gy and (ve,ws) is adjacent in G,. In particular, v; and w; must be distinct. The
Prague dimension (or product dimension) of the graph G, dimp(G), is the minimum number
d such that G is an induced subgraph of the product of d complete graphs. In other
words, it is the minimum d such that the vertices x of G can be represented by vectors
v(z) = (v1(x),-..,v4(z)) such that (z,y) forms an edge if and only if v;(z) # v;(y) for
all 1 <4 < d. Again, another form, it is the minimum number of good colorings of the
vertices of G, ¢1,..., @4, (not necessarily with minimum number of colors), such that for
every non-edge (a,b) one has at least one 7 with ;(a) = ¢;(b).

The Prague dimension was introduced and investigated in a series of papers by Nesetfil,
Pultr [9], and other Czech mathematicians. Poljak, Pultr and Rédl [10] proved that

(1) log, log, (n/(k — 1)) < dimp (K (n, k)) < Cy[log, [log, nl] ,

with Cy < (k — 1)k%. Later (for n sufficiently large) they [11] improved this to Cy <
(81/64)k*/(In k). Very recently Korner [4] showed Cy < (k/2) + o(1) (again for n — o00),
which is conjectured to be tight in [7]. The case n = 2k was discussed by Lovész, NeSetfil

and Pultr [8], they proved that the dimension of the product of d (nontrivial) complete
graphs is d. This implies dimp (K (2k, k)) = [log, (2kk)] = 2k — O(logk).
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The aim of this note is to point out another connection between the Prague dimension
of graphs and the dimension theory of partially ordered sets by giving a very short proof
of the upper bound in (1).

2. SCRAMBLING PERMUTATIONS AND DIMENSION OF POSETS

The dimension of a partially ordered set P is the minimum d such that P can be embed-
ded into R? in an order preserving way. In other words, it is the minimum number of linear
extensions 7, ..., g such that for all z,y € P there exists a m; with = <; y (z precedes y
in 7;) except, of course, if y <p x. In the latter case y precedes z in all linear extensions.
Additional background material on dimension theory can be found in the monograph [13].

Let 2% be denote the collection of subsets of S, and let B,, = (2["!, C) denote the Boolean
lattice, the subsets of [n] ordered by inclusion. For a set S, let (‘z) denote the collection
of k-element subsets of S. For 0 < s <t < n let B,(s,t) denote the restriction of B,, to
([Z]) U ([’tb]). Finally, let dim(n; s,t) denote the (order) dimension of B, (s,t). The function

dim(n; s, t) was first studied by Dushnik [1] in 1950, he determined the exact value for
dim(n;1,t) when 2¢/n—2 <t <n-—1.

Call the set of permutations of [n], II, t-scrambling if for every (now unordered) ¢-subset
{p1,...,p} C[n] and for every distinguished element of the set, say p;, there is a permuta-
tion m € Il such that m(p;) precedes all the other (t—1) p;’s. The cardinality of the smallest
t-scrambling family is denoted by N(n,t). It is easy to see that determination of N(n,t)
is equivalent to the question of the dimension of the partially ordered set formed by the
(t—1) and 1-element subsets of [n] and ordered by inclusion, i.e., N(n,t) = dim(n;1,t—1).
For ¢ is fixed and n — oo an argument due to Hajnal and Spencer [12] gives that

(2) log, logyn < N(n,t)

t
< 1 1 )
= log,(21/(2F — 1)) o2 0BT

In [3] the asymptotic N(n, 3) = log,log, n + (3 + o(1)) log, log, log, n was proved.
Theorem 2.1. dimp(K(n,k)) < N(n,2k —1).

Proof. Let m....,mq be a (2k — 1)-scrambling set of permutations of [n]. We define
©1,.-.,pq good colorings of the Kneser graph K(n,k), ¢; : ([Z]) — [n], as follows. Let
¢i(K) = z where x € K is the smallest element of K in the linear order ;.

As ¢;(K) € K, for disjoint k-sets, K, L € ([Z]), we have that ¢;(K) # ¢;(L) for all i.
However, for a non-edge, i.e, for an intersecting pair (K, L), for z € K N L, one can find a

permutation 7; which puts x to the first place among the elements in K U L. O

Remark 2.2. The constructions in [10, 11, 4] use qualitatively independent partitions
and k-independent families of sets. Let us note that the upper bound in (2) also uses k-
independent families of sets so it cannot give a better bound for C, as 2¢. However, together
with the upper bound from [3] for N(n, 3), it gives the asymptotic for the case k = 2, which
was also showed in [10]. Finally, Theorem 2.1 also gives a number of new upper bounds
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for dimp(K(n,k)), when n is “not too large” with respect to k, e.g., k ~ logn, where
Kierstead’s bound [5] gives O(log® n/loglogn).

Remark 2.3. One can easily see, that, similarly to the examples in [10, 11, 4], our
construction is faithful, i.e., o(K) N ¢(L) = K N L holds for every two k-sets, where
o(K) == {pi(K) : 1 <i<d}.

Remark 2.4. (Binary intersection representations.)  Korner and Monti [6] defined the
Bohemian representation of the Kneser graph K (n, k) as a set of colorings of its vertex set,
01, .-, P, Wwhere now (; : ([2]) — N is not necessarily a good coloring of the graph, and a
function ¢ : 21 — 20 with the following property. For a pair of distinct sets A, B € (7)) let
§(A, B) denote a sequence from {0,1}* with §; = 1 for ¢;(A) = ¢;(B) and 0 otherwise. In
a Bohemian representation (1, ..., ¢s, ¢) we want to be able to read out the intersection
structure of the complete hypergraph knowing only the binary vectors, 6(A, B), i.e., we
have ¢(0(A, B)) = AN B. The minimum of such ¢ is called the Bohemian dimension, and
is denoted by T'(n, k). Kérner and Monti [6] proved that

k —1 <liminf T(n, k) < limsup T(n, k)
nooe 10gyn T moeo l0gym

< k(k —1).

Using a different kind of set of scrambling permutations, one can see that T'(n, k) = O(logn)
as k is fixed and n — oo as follows. Call a family of permutations 7y, ..., m; of [n] completely
k-scrambling if for every ordered k-subset {pi,...,px} of k distinct elements of [n] there
is a permutation m; with m;(p;) < --- < m;(pr). This means that all k-subsets appear in
all k! possible orderings. The cardinality of the smallest completely k-scrambling family
is denoted by N*(n,k). It is known (for k& > 3) that $(k — 1)!logyn < N*(n,k) <
(1+ o(l))W log, n. Here the lower bound is from [2] and the upper bound is due
to Spencer [12].

Now, one can easily see, that a completely (4k — 2)-scrambling set of permutations in the
same way as in Theorem 2.1 provides a Bohemian representation of K(n, k) thus proving
T(n,k) < N*(n,4k — 2). Even more, again, the obtained ¢;’s are proper colorings of the
Kneser graph.

Further problems and connections between permutations and order dimensions can be
found in [2].
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