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when flipping an even coin, — 1 times is at least the probability, [26] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new
B(ny,t)-27 ™1, of that event when flipping the coim, — 1 times. balanced codes,JEEE Trans. Inform. Theoryvol. 42, pp. 790-802,

. . . 1996.
Taking logarithms, we obtain [27] A. Vardy, M. Blaum, P. H. Siegel, and G. T. Sincerbox, “Conservative

. _n arrays: Multidimensional modulation codes for holographic recording,”
p(C(n1 X n2,1)) < —logy(1 — 2n1 B(na, t) - 27"%) IEEE Trans. Inform. Theoryol. 42, pp. 227-230, 1996.
< —log, (1 —4nq - né—l . Q—“Z) [28] H. S. Wilf, “The problem of the kings,’Electronic J. Combinatorics

vol. 2, no. R3, 1995.
— _10{:‘;2 (1 — 4. 27A(n1><77,2,t))
thus proving (1).
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to the previous ones, these codes are motivated by multiple acceske usual Euclidean norm. Equivalently, the&ef finite unit norm

communication as follows.

vectors inR" is an Euclidean superimposed coaeth parameters

Suppose thal” users share a common channel. To each of them(a, m, T, d) if dr(C™) > d. Givenn, m, andd, let T'(n, m, d)

real-valuedh-dimensional unit norm vector is associated. Ttheuser
transmits its vectox; = (xf, 27, -+, 2%) (i=1, 2, ---, T)—i.e.,

in each slot a real is contained, while the total block length-isif

denote the maximum size of &uclidean superimposed codes.,
T(n, m, d) = max{T: C(n, m, T, d) # 0}.

it is active, otherwise not. It is assumed that the transmission is Similarly, let

and block synchronized. The destination of the messages is a single

receiver, which, in an optimal case, gets the sum of the vectors

y= > x

Vi active

™ = {f(A): ACC, |A=m)

and T'(n, m, d) denote the maximum size of a spherical cate
satisfyingdz(C™ ) > d. Obviously,T'(n, m, d) < T'(n, m, d).
As it was shown in [8]I'(n, m, d) increases exponentially im.

associated to the active users. Moreover, suppose that at:mosfTherefore, due to coding theoretic traditions

users are active simultaneously. The problem is how to choose the
vectors associated to the single users to assure that the receiver may

R(m, d) = lim sup log T(n, m, d)

n—oo n

recognize the set of the active ones even in the case if the sequgaGge exponent of the growth. It is also called tage of the code

y is further contaminated by some (less thaf2) disturbance.

The central problem is here to determine the maximum number
real unit norm vectord’(n, m, d) assuring the above identification
given the block lengt, maximum number of simultaneously activ

usersm, and disturbancecd/2. Ericson and Gyrfi [8] showed that
for the rate of such a code, the following inequalities holdifap> m
large enoughd < 1:

log m < log T'(n, m, d) < log m

1)

4dm — n m

Here and throughout the paplerg stands for the logarithm in base
é),fvivJ- is the scalar product of vectons; and v; (i.e., v2 is the

scalar product of the vector with itself), and (¢) stands for all
e

'm-subsets ofC.

Ill. THE IMPROVED UPPER BOUND

The main idea of the proof of the upper bound given in [8] is
a sphere packing argument. Observe that ifs a spherical code,
then all vectors ofC"™ are within a ball of radiugn. From this

Observe that this does not dependdsinced is constant. Anderson fact one can get the Ericson—@¥i upper bound as follows. The

[2], [3] slightly improved the bounds given by Ericson and d&y,
but his attempts based on methods elaborated by Kabatfjearstti

fraction of the volume of this ball and the volume of a ball of radius
d/2 is an upper bound for the sizé™|, since ifC is anEuclidean

Leverstein [17] gave only polynomial improvements, and thus heuperimposed codeby the definition—€™ is of minimum distance
did not improve the bounds on thrate of the code. In this paper, 4, Our main idea is to show that for any spherical cddalmost all
we improve the upper bound of the rate—given by Ericson anflembers of™' are within a ball of radius of magnitude'/. From
Gyorfi—by a factor of two, thus giving an exponential improvemengis the improvement on the rate of Euclidean superimposed code

of this long-standing open problem.

immediately follows.

Note that instead of unit norm vectors, at most unit norm vectors | emma 3.1: For any spherical cod€ of size 7' and integer
can be considered, whereby this approach gives the same rate, sjpce 7" the inequality

adding one additional dimension, which does not change the rate, one

can easily make of at most unit vectors unit ones.

In the next section, the mathematical formulation is given, which
is followed by the proof of the new upper bound. Finally, the la
section contains some remarks on geometric codes in other nor

spaces.

Il. EucLIDEAN CODES

Let C be a finite set of unit norm vectors R" (a spherical codi
For a subsetd of C—following the notation of [8]—(.A) stands
for the sum of vectorsc € A, f(A) = >, .4 x. Letm andT be
positive integersy: < T, and letd be a real numbef) < d < 1. The

finite setC of unit norm vectors irR" is anEuclidean superimposed

codewith parametergn, m, T, d) if |C| = T and for two arbitrary
distinct subsetsd and B of C with 0 < |A|, |B| < m the Euclidean
distance of the vectorg(.A) and f(B) is at leastd. More precisely,
denote byC™ the set of the sums of all at most-tuples of vectors
of C, i.e.,

C" = {f(A): ACC, |A| < m).

Set
deC™) = win  |F(A) - FB|
0<| Al |B|<m
A, BCC
where

n 1/2
Il = (z)
=1

Z [|f(A) — mc||2 <m

Ac(,)

(-

%tgbd; wherec is the (average) vectdrl/T") 3, .. V.
roof:

oof:
> 1IF(A) — mell?
Ae(y)

= > ((f(A)* +m’c® — 2mef(A)).

Ae(&)

)

The second term of (2) is clearl(ﬂ)m%? while the third one is

T -1 ™y .
—2me Z f(A) = —2mc (m _ 1>Tc = —2<m>m‘c2

A€(;)
since in the surrEAE(c) f(A) every vector of the spherical code

is summed up with multiplicity(1' 1), i.e., this is the number of

distinct m-tuples in which a given vector is contained. The first term
of (2) can be estimated as follows:

S (FA)
Ae(r)
= Z (Z v) = Z m 4+ 2 Z ViVj
ae(f) WA S ae(s) Siisy

Vi, Vi€

®)
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B T T =2 Proof: Take an arbitrary Euclidean superimposed code
=m| _J+20 Z y Vivj Q) C(n, m, T, d) and denote—similarly to the above lemma—by
1sesl the (average) vectof1/T)3, .. v. Let £ be a random variable
iVj
with probability distributionP(¢ = ||f(A) — mc||) = 1/(])
T T —9 i Am
- m : - Z Vivj (A C C, |A| = m). By Lemma 3.1 (and Jensen’s inequality), the
m —2 i< expected distanc®&(¢) < m'/2. Thus, by Markov's inequality,
v;,v;EC P(¢ > Am'/?) < 1/). This means that for any constaht> 1,
T _9 T _9 at least the(1 — 1/X) fraction of all sums of then-tuples of C
+T'(° 5]~ ' 9 (5) lies within the n-dimensional ball of radiussm'/? centered about
) the pointmc.
T T -2 But C is anEuclidean superimposed codehich means that those
=m T2, s Z Vivj vectors (of sums ofn-tuples) have distance at leastfrom each
1??2{' other. Applying to these vectors the sphere packing argument, we get
2, 1/2 ” 9\, 1/2\ "
T _ 9 ) T — 9 A=1{(T < Am!? 4 d/2N" 22m
" (m - ?> 2T (m - 2) © Aom) T /2 =\t ®)
ved
e T 9 2 T 9 from which (sincel) is a constant)
:m< >+< _2) (Z v) _T< _9) ) 1 .
m m = m— 2 R(m, d) < — log <1 + ] ) (10)
m A
' t I3 t _F
=m <T ) + 7% <T B 3) -7 <T 3) (8) immediately follows. For largen, (10) is of the form
m m — 2 m — 2
log m
In (3), it is used that all vectors are of unit norm, while (4) follows R(m, d) £ ——=(1+0(1))

from the fact that a pair of vectors is contained in exac(ﬁyj)
m-tuples, thus every productiv; occurs with this multiplicity.
In (6), it is used again, that the vectors are unit norm ones, thus
Y ovee v? = T'. An easy calculation gives (7), while (8) follows

which gives the desired result.

IV. SuPERIMPOSEDCODES IN OTHER NORMED SPACES

from the definition} . v = T'ec. Let N = (X, ||]]) be afinite-dimensionahktdimensional) normed
Continuing (2) by the above computation we get vector space, and leB(c, ) denote the closed ball with center
and radius > 0. We also useB for the unit ballB(0, 1) of A". In
Z l£(A) = me|)? general, thisB may also be considered as an arbitrargimensional
Ae(€) symmetric convex body iR", the symmetry being with respect
S to the origin. One might also be interested in the growth rate of
_ T 122 T -2 (T =2 9 o (T superimposed codeis the more general normed vector spakte
=m +T -T —m-c - . . . A
m -2 m—2 m where the norm is defined by an arbitranydimensional central
symmetric convex body. Similarly to the Euclidean norm case, this
T ’ T -2 12 Z T —2 he foll ;
—m _T +7T means the following.
m m =2 m—2 Let C be a finite set of (at most) unit norm vectors M. It is

2
—-m-c
m— 2

(T - 1) <T’ _ 2) called asuperimposed code iV with parametergn, m, T, d) if
_— |C| = T and for two arbitrary distinct subsetd and B of C with
mim —1) 0 < |A], |B] < m the A distance of the vectorg(A) and f(B)
is at leastd. That is

Fromm < T, it follows that—m?*(T' (T’ —=1)/m(m—1)) < =T'%.

Thorefore )= min (A = FB)lv 2 d.
0<| A, [B|<m
2 A, BCC
> I (A) = me]l .
A(C) As before, for givenn, m, and d, let T (n, m, d) denote the
™ maximum size of such a code.
T AT -2 o o T —2 We are able to extend the bounds of inequality (1) for all finite-
<m - T + T "¢ . . ..
m m—2 m—2 dimensional normed spacés in a somewhat weaker form.
Theorem 4.1:

' !
T =2 <m r log Ta(n, m, d) log m
m—2/] = m — = © =

More precisely, there is an absolute constan{independent ofr,

hich gi the desired It. -
Which gives Ihe cesirec resu d < 1, and of the spacéd) such that

Now we are ready to prove the new upper bound on the rate "of

Euclidean superimposed codes log T (n, m, d) log m

>C (11)
Theorem 3.2: " "
g T " | asn > m. Moreover, for allm, n, and ', one has
. Og n, m, Og m
. d) = lim s < 1 1
R(m, d) im sup - S 55 (14+0(1)) log Tar(n, m, d) log m o ()< ) N O<10g n)i (12)
n m

whered is a constant and(1) is a function tending to zero a®& Here,O and® are used in the conventional sense, i.e., for sequences
tends to infinity. f(m) and g(m), f(m) = O(g(m)) if f(m) < cg(m) holds for
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some constant > 0 and everym, and f(m) = O(g(m)) if both [9] Z. Furedi, “A note onr-cover-free families,”"J. Comb. Theory, Series

f(m) = O(g(m)) and g(m) = O(f(m)) hold.

Proof: (Sketch) To prove the lower bound (11), use the foll10]
lowing theorem of Milman [19]. For every > 0, there exists a
positive constant’(e) > 0, such that one can find a projection of[11]
a section ofB [say, I, (F1 N B) with F, C Fi C R"] which
is (1 + =) equivalent to an ellipsoid and has a dimension at IeafltZ]
¥ (e)n. Here, they is independent from the convex bod, but, of
course, the choice of the subspadasand F: varies with B. (For [13]
more background on this topic and proofs, see the excellent book
of Pisier [20].) An ellipsoid is affine invariant to the Euclidean ball,
so taking anEuclidean superimposed code of maximum size in
the subspacé,—nby the affine invariant transformation mapping the
unit ball to the ellipsoid—we will get a superimposed code witli5]
the same parameters with respect to the distance defined by the
ellipsoid. Project’ back toFy N B, and by Milman’s theorem obtain [16]
a superimposed code i with parametergn, m, |C|, d/(1+ ¢)). (17]

The upper bound in (12) easily follows from the volume bound
of Ericson and Gugffi

(18]
T m+d/2\"
(m) < < d/2 ) (13) (19
which is true for every spac&” and everyn, m, andd. O 20

At the present, we are not able to sharpen the upper bound of
(1) for normed spaces other than the Euclidean. The argument in
the previous section substantially utilized the properties of the scalét!
product, which other spaces lack. However, one can slightly improve
(13) for small dimension, i.e., fom < m, although this does not [22]
say anything about the growth rate when— oc. Fritz John's [13]
classical result says that for every symmetric convex bddyentered
about the origin there is an ellipsoit such thatD ¢ B C /nD.

This implies that every normed space is (affingy equivalent to
R", so our modified volume bound (9) gives

A—1(T Am'? 4 d/(2m)\" 2Am!/2nt/?
X <>5< ENG ) ‘(” a

It would be interesting to find better bounds, especially for the
maximum norm{’,, where B is the (hyper)cube.
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