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when flipping an even coinn2 � 1 times is at least the probability,
B(n1; t) � 2

�n , of that event when flipping the coinn1 � 1 times.
Taking logarithms, we obtain

�(C(n1 � n2; t)) � � log2(1� 2n1B(n2; t) � 2
�n )

� � log2 1� 4n1 � n
t�1
2 � 2�n

= � log2 1� 4 � 2��(n �n ;t)

thus proving (1).
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An Improved Upper Bound of the Rate of
Euclidean Superimposed Codes

Zoltán F̈uredi and Mikĺos Ruszinḱo

Abstract—A family of nnn-dimensional unit norm vectors is anEuclidean
superimposed codeif the sums of any two distinct at mostmmm-tuples of
vectors are separated by a certain minimum Euclidean distanceddd. Ericson
and Györfi [8] proved that the rate of such a code is between(((logm)=m)=m)=4mmm
and (((logm)=mm)=mm)=m for mmm large enough. In this paper—improving the above
long-standing best upper bound for the rate—it is shown that the rate
is always at most(((logm)=m)=m)=2mmm, i.e., the size of a possible superimposed
code is at most the root of the size given in [8]. We also generalize these
codes to other normed vector spaces.

Index Terms—Codes, growth rate, superimposed geometric codes.

I. SUPERIMPOSEDCODES

Binary superimposed codes were introduced by Kautz and Sin-
gleton [18]. They studied binary codewords with the property that
the disjunctions (bitwise OR) of any pair of distinct at mostm-
tuples of codewords have to be different. Later, this question has
been investigated in several papers on multiple-access communication
(see, e.g., [1], [4], [5], [14]–[16]). The same problem has been
posed—in different terms—by Erdős [6] and Frankl and F̈uredi [7]
in combinatorics, by S´os [22] in combinatorial number theory, and
by Hwang [11] and Śos [12] in group testing. One can find an easy
proof of the best known upper bound of these codes in the papers by
Füredi [9] and Ruszink´o [21]. In the paper of F¨uredi and Ruszink´o
[10], the connection of these codes to the big distance ones is shown.

In 1988, Ericson and Gÿorfi [8] introduced a new class of super-
imposed codes for Euclidean channels. Roughly speaking, a family
of n-dimensional unit norm vectors is anEuclidean superimposed
code, if the sums of any two distinct at mostm-tuples of vectors
are separated by a certain minimum Euclidean distanced. Similarly
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to the previous ones, these codes are motivated by multiple access
communication as follows.

Suppose thatT users share a common channel. To each of them a
real-valuedn-dimensional unit norm vector is associated. Theith user
transmits its vectorxi = (x1i ; x

2

i ; � � � ; xni ) (i = 1; 2; � � � ; T )—i.e.,
in each slot a real is contained, while the total block length isn—if
it is active, otherwise not. It is assumed that the transmission is bit
and block synchronized. The destination of the messages is a single
receiver, which, in an optimal case, gets the sum of the vectors

y =
8i active

xi

associated to the active users. Moreover, suppose that at mostm
users are active simultaneously. The problem is how to choose the
vectors associated to the single users to assure that the receiver may
recognize the set of the active ones even in the case if the sequence
y is further contaminated by some (less thand=2) disturbance.

The central problem is here to determine the maximum number of
real unit norm vectorsT (n; m; d) assuring the above identification,
given the block lengthn, maximum number of simultaneously active
usersm, and disturbance<d=2. Ericson and Gÿorfi [8] showed that
for the rate of such a code, the following inequalities hold forn� m
large enough,d � 1:

log m

4m
�

log T (n; m; d)

n
�

log m

m
: (1)

Observe that this does not depend ond, sinced is constant. Anderson
[2], [3] slightly improved the bounds given by Ericson and Györfi,
but his attempts based on methods elaborated by Kabatjanskiı̌ and
Leveňstein [17] gave only polynomial improvements, and thus he
did not improve the bounds on therate of the code. In this paper,
we improve the upper bound of the rate—given by Ericson and
Györfi—by a factor of two, thus giving an exponential improvement
of this long-standing open problem.

Note that instead of unit norm vectors, at most unit norm vectors
can be considered, whereby this approach gives the same rate, since
adding one additional dimension, which does not change the rate, one
can easily make of at most unit vectors unit ones.

In the next section, the mathematical formulation is given, which
is followed by the proof of the new upper bound. Finally, the last
section contains some remarks on geometric codes in other normed
spaces.

II. EUCLIDEAN CODES

Let C be a finite set of unit norm vectors inRn (a spherical code).
For a subsetA of C—following the notation of [8]—f(A) stands
for the sum of vectorsx 2 A, f(A) =

x2A x. Let m andT be
positive integers,m � T , and letd be a real number,0 < d � 1. The
finite setC of unit norm vectors inRn is anEuclidean superimposed
codewith parameters(n; m; T; d) if jCj = T and for two arbitrary
distinct subsetsA andB of C with 0 � jAj; jBj � m the Euclidean
distance of the vectorsf(A) andf(B) is at leastd. More precisely,
denote byCm the set of the sums of all at mostm-tuples of vectors
of C, i.e.,

Cm = ff(A): A � C; jAj � mg:

Set

dE(C
m) = min

A6=B
0�jAj; jBj�m

A;B�C

kf(A)� f(B)k

where

kxk =
n

i=1

x2i

1=2

is the usual Euclidean norm. Equivalently, the setC of finite unit norm
vectors inRn is an Euclidean superimposed codewith parameters
(n; m; T; d) if dE(C

m) � d. Given n, m, andd, let T (n; m; d)
denote the maximum size of anEuclidean superimposed code,i.e.,

T (n; m; d) = max fT : C(n; m; T; d) 6= ;g:

Similarly, let

Cm = ff(A): A � C; jAj = mg

and T 0(n; m; d) denote the maximum size of a spherical codeC
satisfyingdE(Cm ) � d: Obviously,T (n; m; d) � T 0(n; m; d).

As it was shown in [8],T (n; m; d) increases exponentially inn.
Therefore, due to coding theoretic traditions

R(m; d) = lim sup
n!1

log T (n; m; d)

n

is the exponent of the growth. It is also called therate of the code.
Here and throughout the paperlog stands for the logarithm in base
2, vivj is the scalar product of vectorsvi and vj (i.e., v2 is the
scalar product of the vectorv with itself), and C

m
stands for all

m-subsets ofC.

III. T HE IMPROVED UPPER BOUND

The main idea of the proof of the upper bound given in [8] is
a sphere packing argument. Observe that ifC is a spherical code,
then all vectors ofCm are within a ball of radiusm. From this
fact one can get the Ericson–Gy¨orfi upper bound as follows. The
fraction of the volume of this ball and the volume of a ball of radius
d=2 is an upper bound for the sizejCmj, since if C is an Euclidean
superimposed code—by the definition—Cm is of minimum distance
d. Our main idea is to show that for any spherical codeC almost all
members ofCm0 are within a ball of radius of magnitudem1=2. From
this the improvement on the rate of anEuclidean superimposed code
immediately follows.

Lemma 3.1: For any spherical codeC of size T 0 and integer
m � T 0 the inequality

A2( )

kf(A)�mck2 � m
T 0

m

holds, wherec is the (average) vector(1=T 0) v2C v.
Proof:

A2( )

kf(A)�mck2

=

A2( )

(f(A))2 +m2
c
2 � 2mcf(A) : (2)

The second term of (2) is clearlyT
m m2c2, while the third one is

�2mc

A2( )

f(A) = �2mc
T 0 � 1

m� 1
Tc = �2

T 0

m
m2

c
2

since in the sum
A2( ) f(A) every vector of the spherical code

is summed up with multiplicity T �1

m�1
, i.e., this is the number of

distinctm-tuples in which a given vector is contained. The first term
of (2) can be estimated as follows:

A2( )

(f(A))2

=

A2( ) v2A

v

2

=

A2( )

m+ 2
1�i<j�m
v ;v 2A

vivj

(3)
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= m
T 0

m
+ 2

T 0
� 2

m� 2
1�i<j�T
v ;v 2C

vivj (4)

= m
T 0

m
+ 2

T 0 � 2

m� 2
1�i<j�T
v ;v 2C

vivj

+ T 0
T 0 � 2

m� 2
� T 0

T 0 � 2

m� 2
(5)

= m
T 0

m
+ 2

T 0 � 2

m� 2
1�i<j�T
v ;v 2C

vivj

+
T 0 � 2

m� 2
v2C

v
2
� T 0

T 0 � 2

m� 2
(6)

= m
T 0

m
+

T 0 � 2

m� 2
v2C

v

2

� T 0
T 0 � 2

m� 2
(7)

= m
T 0

m
+ T 02c2

T 0 � 2

m� 2
� T 0

T 0 � 2

m� 2
: (8)

In (3), it is used that all vectors are of unit norm, while (4) follows
from the fact that a pair of vectors is contained in exactlyT �2

m�2

m-tuples, thus every productvivj occurs with this multiplicity.
In (6), it is used again, that the vectors are unit norm ones, thus

v2C v
2 = T 0. An easy calculation gives (7), while (8) follows

from the definition
v2C v = T 0c.

Continuing (2) by the above computation we get

A2( )

kf(A)�mck2

= m
T 0

m
+ T 02c2

T 0 � 2

m� 2
� T 0

T 0 � 2

m� 2
�m2

c
2 T 0

m

= m
T 0

m
� T 0

T 0 � 2

m� 2
+ T 02c2

T 0 � 2

m� 2

�m2
c
2 T

0(T 0 � 1)

m(m� 1)

T 0 � 2

m� 2
:

Fromm � T 0, it follows that�m2(T 0(T 0�1)=m(m�1)) � �T 02:
Therefore

A2( )

kf(A)�mck2

� m
T 0

m
� T 0

T 0 � 2

m� 2
+ T 02c2

T 0 � 2

m� 2

� T 02c2
T 0 � 2

m� 2
� m

T 0

m

which gives the desired result.
Now we are ready to prove the new upper bound on the rate of

Euclidean superimposed codes.
Theorem 3.2:

R(m; d) = lim sup
n!1

log T (n; m; d)

n
�

log m

2m
(1 + o(1))

whered is a constant ando(1) is a function tending to zero asm
tends to infinity.

Proof: Take an arbitrary Euclidean superimposed code
C(n; m; T; d) and denote—similarly to the above lemma—byc
the (average) vector(1=T )

v2C v. Let � be a random variable
with probability distributionP(� = kf(A) � mck) = 1= T

m

(A � C, jAj = m). By Lemma 3.1 (and Jensen’s inequality), the
expected distanceE(�) � m1=2. Thus, by Markov’s inequality,
P(� � �m1=2) � 1=�. This means that for any constant� > 1,
at least the(1 � 1=�) fraction of all sums of them-tuples of C
lies within then-dimensional ball of radius�m1=2 centered about
the pointmc.

But C is anEuclidean superimposed code,which means that those
vectors (of sums ofm-tuples) have distance at leastd from each
other. Applying to these vectors the sphere packing argument, we get

�� 1

�

T

m
�

�m1=2 + d=2

d=2

n

= 1 +
2�m1=2

d

n

(9)

from which (since� is a constant)

R(m; d) �
1

m
log 1 +

2�m1=2

d
(10)

immediately follows. For largem, (10) is of the form

R(m; d) �
log m

2m
(1 + o(1))

which gives the desired result.

IV. SUPERIMPOSEDCODES IN OTHER NORMED SPACES

LetN = (X; k�k) be a finite-dimensional (n-dimensional) normed
vector space, and letB(c; r) denote the closed ball with centerc
and radiusr > 0. We also useB for the unit ballB(0; 1) of N . In
general, thisB may also be considered as an arbitraryn-dimensional
symmetric convex body inRn, the symmetry being with respect
to the origin. One might also be interested in the growth rate of
superimposed codesin the more general normed vector spaceN ,
where the norm is defined by an arbitraryn-dimensional central
symmetric convex body. Similarly to the Euclidean norm case, this
means the following.

Let C be a finite set of (at most) unit norm vectors inN . It is
called asuperimposed code inN with parameters(n; m; T; d) if
jCj = T and for two arbitrary distinct subsetsA andB of C with
0 � jAj; jBj � m the N distance of the vectorsf(A) and f(B)
is at leastd. That is

dN (Cm) := min
A6=B

0�jAj; jBj�m
A;B�C

kf(A)� f(B)kN � d:

As before, for givenn, m, and d, let TN (n; m; d) denote the
maximum size of such a code.

We are able to extend the bounds of inequality (1) for all finite-
dimensional normed spacesN in a somewhat weaker form.

Theorem 4.1:

log TN (n; m; d)

n
= �

log m

m
:

More precisely, there is an absolute constantC (independent ofm,
n, d � 1, and of the spaceN ) such that

log TN (n; m; d)

n
� C

log m

m
(11)

asn � m. Moreover, for allm, n, andN , one has

log TN (n; m; d)

n
�

log m

m
+O

1

m
+O

log n

n
: (12)

Here,O and� are used in the conventional sense, i.e., for sequences
f(m) and g(m), f(m) = O(g(m)) if f(m) � cg(m) holds for
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some constantc > 0 and everym, and f(m) = �(g(m)) if both
f(m) = O(g(m)) and g(m) = O(f(m)) hold.

Proof: (Sketch) To prove the lower bound (11), use the fol-
lowing theorem of Milman [19]. For every" > 0, there exists a
positive constant (") > 0, such that one can find a projection of
a section ofB [say, �F (F1 \ B) with F2 � F1 � Rn] which
is (1 + ") equivalent to an ellipsoid and has a dimension at least
 (")n. Here, the is independent from the convex bodyB, but, of
course, the choice of the subspacesF1 andF2 varies withB. (For
more background on this topic and proofs, see the excellent book
of Pisier [20].) An ellipsoid is affine invariant to the Euclidean ball,
so taking anEuclidean superimposed codeC of maximum size in
the subspaceF2—by the affine invariant transformation mapping the
unit ball to the ellipsoid—we will get a superimposed code with
the same parameters with respect to the distance defined by the
ellipsoid. ProjectC back toF1\B, and by Milman’s theorem obtain
a superimposed code inN with parameters(n; m; jCj; d=(1 + ")).

The upper bound in (12) easily follows from the volume bound
of Ericson and Gy¨orfi

T

m
� m+ d=2

d=2

n

(13)

which is true for every spaceN and everyn, m, andd.
At the present, we are not able to sharpen the upper bound of

(1) for normed spaces other than the Euclidean. The argument in
the previous section substantially utilized the properties of the scalar
product, which other spaces lack. However, one can slightly improve
(13) for small dimension, i.e., forn < m, although this does not
say anything about the growth rate whenn ! 1. Fritz John’s [13]
classical result says that for every symmetric convex bodyB centered
about the origin there is an ellipsoidD such thatD � B � pnD.
This implies that every normed space is (affine)

p
n equivalent to

R
n, so our modified volume bound (9) gives

�� 1

�

T

m
� �m1=2 + d=(2

p
n)

d=(2
p
n)

n

= 1+
2�m1=2n1=2

d

n

:

It would be interesting to find better bounds, especially for the
maximum norm`n

1
, whereB is the (hyper)cube.
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