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Suppose G is a graph on n vertices with minimum degree r. Using standard
random methods it is shown that there exists a two-coloring of the vertices of G
with colors, +1 and &1, such that all closed neighborhoods contain more 1's than
&1's, and all together the number of 1's does not exceed the number of &1's by

more than (4 - log r�r+1�r) n. For large r this greatly improves earlier results and
is almost optimal, since starting with an Hadamard matrix of order r, a bipartite
r-regular graph is constructed on 4r vertices with signed domination number at
least (1�2) - r&O(1). The determination of limn � � #s(G)�n remains open and is
conjectured to be 3(1�- r). � 1999 Academic Press

Key Words: discrepancy; domination; random covering of graphs and hyper-
graphs; Hadamard matrices.

1. DISCREPANCY AND DOMINATION OF HYPERGRAPHS

Discrepancy theory has originated from number theory and in the last
few decades it has developed into an elaborate field related also to
geometry, probability theory, ergodic theory, computer science, and com-
binatorics. The combinatorial setting of these problems proved to be a
successful approach. See the monograph of Beck and Chen [4], the
chapter from the Handbook of Combinatorics [6], or [17].
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One of the basic problems in combinatorial discrepancy theory is the
following: Suppose H is a hypergraph with vertex set S and edge set
[A1 , ..., Am]. Our object is to color the elements of S by 2 colors such that
all of the edges have almost the same number of elements in each color.
A partition of S can be given by a function f : S � [+1, &1]. For any set
A/S, we let f (A)=�a # A f (a). The discrepancy of H with respect to f is
defined by

D(H, f ) := max
Ai # H

| f (Ai)|

and the discrepancy of the hypergraph H, as it was first defined by Beck
[3] is

D(H) := min
f : S � [+1, &1]

D(H, f ).

This measures, in supremum norm, how well the Ai can be partitioned. For
a given H we want to determine or estimate D(H). A large number of
classical theorems in number theory, geometry, and combinatorics can be
formulated in this language.

Here we consider a one-sided version of discrepancy. Let : be a real
number and suppose that H is a hypergraph with vertex set S. The
function g: S � [+1, &1] defines an :-dominating partition of the hyper-
graph H, if

g(A) := :
a # A

g(a)�:

for every edge A in H. For :=1 we simply want the set P :=g&1(+1)
to contain strictly more elements of A than the set N :=g&1(&1). The
:-domination number of H is defined as the minimum of such functions

dom:(H) := min
g: S � [+1, &1]
g is :-dominating

g(S).

We simply write dom for dom1 . This notion differs from the usual discrepancy
in another way, too, namely, we measure our success by minimizing the
size of P.

Theorem 1.1. Let H be an n-vertex hypergraph with edge set [A1 ,
A2 , ..., Am], and suppose that every edge has at least k vertices, where
k�100. Then

dom(H)�4 � log k
k

n+
1
k

m. (1.1)
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The relatively simple proof is postponed to Section 3. It demonstrates the
power of the probabilistic method. In Section 4 we give upper bounds for
3�k<19.

As we will see in Sections 5 and 6 via an explicit construction, the upper
bound in Theorem 1.1 is off from the best possible by at most the - log k
factor. We conjecture that, indeed,

dom(H)�
c

- k
(n+m) (?) (1.2)

holds for some constant c (independent of n, m, k and of H). We are
able to establish this upper bound in some cases (in Section 7) modulo a
discrepancy conjecture of Beck and Fiala [5].

2. SIGNED DOMINATION OF GRAPHS

All graphs we consider are simple. We are especially interested in the
class of r-regular, n-vertex graphs, Gn(r-reg), and the class of n-vertex
graphs with minimum degree at least r, Gn(�r). In a graph G, the closed
neighborhood of a vertex v # V(G), NG[v] or N[v] for short, consists of v
together with its neighbors. A signed domination function of a graph G is a
function g: V(G) � [+1, &1] such that for every vertex v, the sum of the
values of g over the closed neighborhood of v is positive, and the minimum
of the sum �v # V g(v) over all such functions is called the signed domina-
tion number, #s(G), i.e.,

#s(G)=min[g(V(G)): g is a signed domination function of G].

Using the notations of the previous Section, we have that #s(G)=
dom(N(G)), where N is the hypergraph on the vertex set V(G) and its
edges are the closed neighborhoods [NG[v]: v # V(G)].

This variant of the usual domination number was introduced by Dunbar
et al. [9] in the early 1990s. They also observed that #s(G)�n�(r+1) for
all r-regular n-vertex graphs. This is sharp when r is even and n�(r+1)
is an integer, as shown by a vertex disjoint union of complete graphs.
However, for r odd, Henning and Slater [13] pointed out that #s(G)�
2n�(r+1) for every graph G # Gn(r-reg), and that this lower bound is again
sharp whenever n�(r+1) is an integer.

Let #s(G) denote the maximum of #s(G) in the class of graphs G # G.
We consider #s(n, r) :=#s(G

n(r-reg)), and #s(n, �r)=#s(G
n(�r)). Zelinka

[20] proved that #s(n, 3)�(4�5) n, and that the fraction 4�5 is best
possible. Favaron [10] sharpened this by proving that #s(G)�(3�4) n for
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all connected cubic graphs G # Gn(3-reg), except for the Petersen graph P10.
(It is easy to show that #s(P10)=8.)

Henning [12] and Favaron [10] independently proved that for r-regular
graphs,

#s(n, r)�{
(r+1)2

r2+4r&1
n

r+1
r+3

n

if r is odd

if r is even.

They established these upper bounds for every locally minimal signed
domination function, in this sense their bounds are sharp. But for the
absolute minimum, #s , we improve this upper bound for r=4 and r�6
and extend it to Gn(�r) by constructing a signed domination function
with value 1 on slightly more than half of the vertices of G. Indeed, apply-
ing Theorem 1.1 to the neighborhood hypergraph one gets the following
obvious corollary.

Theorem 2.1 If G is an n-vertex graph with minimum degree r�99, then

#s(G)�\4 � log(r+1)
r+1

+
1

r+1+ n.

3. THE PROOF OF THE UPPER BOUND BY RANDOM METHOD

We use the following theorem of Chernoff [7] to estimate large devia-
tions. One can refer to [2, p. 238] for a concise proof. If p # [0, 1],
X1 , ..., Xn are mutually independent random variables with

Prob[Xi=1& p]=p

Prob[Xi=&p]=1& p,

and X=X1+ } } } +Xn , a>0, then

Prob[X<&a]<e&a2�2pn. (3.1)

Proof of Theorem 1.1. Set p= 1
2+2 - log k�k. Let each vertex receive

the label+1 with probability p. Let P�S be the random set of the vertices
thus labeled. Let U=U(P) be the set of edges A # E(H) that intersect P
in at most |A|�2 elements, and call them uncovered by P. Let Q=QP be the
union of uncovered edges. Assign the label +1 to every element of Q&P;
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vertices outside P _ Q receive &1. The resulting function g: S � [+1, &1]
is a signed domination function of H.

Note that g(S)=2 |P _ Q|&|S|. We bound the expected value of g(S)
by computing E( |P| )+E( |Q| ). Clearly, E( |P| )= pn. Moreover, |Q|�
�A # U |A|, hence the linearity of expectation gives

E( |Q| )� :
A # H

|A| Prob( |A & P|�|A|�2).

To apply (3.1), we decrease the labels of vertices by p and describe P with
random variables Xi (for i # S) taking the value Xi=1& p with probability
p and Xi=&p with probability 1& p. Let X=�i # A Xi . The edge A intersects
P in at most |A|�2 elements if and only if X=�i # A Xi�(1& p) |A|�2+
(&p) |A|�2. This gives Prob( |A & P| � |A|�2) = Prob(X � ( 1

2 & p) |A| ).
Applying (3.1) yields

Prob \X�\1
2

& p+ |A|+�exp {&(( p& 1
2) |A| )2

2 |A| p =
=exp {&(4 |A| log k)�k

1+4 - log k�k = .

For a�k�19, let

f (a, k)=
4a log k�k

1+4 - log k�k
&log(2a2).

It is readily observed that f (a, k) is an increasing function of a; thus
f (a, k)� f (k, k). A short calculation shows that f (k, k)�0 for k�100.
Thus for |A|�k�100,

4 |A| log k�k

1+4 - log k�k
�log(2 |A|2).

This implies that Prob( |A & P|� |A|�2)<1�(2 |A|2), and therefore
E( |Q| )��A # H 1�(2 |A| )�m�2k. Since E( |P _ Q| )�E(|P| )+E( |Q| ), we
have

E(g(S))=2E( |P _ Q| )&|S|�(2p&1) n+
m
k

=4 � log k
k

n+
m
k

.

Since there is at least one choice of g such that g(V)�E(G(S)), this
completes the proof of the upper bound for dom(H). K
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4. AN IMPROVEMENT OF THE UPPER BOUND FOR
SMALL VALUES

In the previous section, the two-step random coloring colored all
elements in the uncovered edges with+1. In this section we color these
edges with the exact number of colors they require. Although this gives a
better bound than that in [10, 12] for all k�99, we only do this for k�19.

Definition 4.1. Let a�3 be an integer, and p a real number. Let

f (a, p)= :
wa�2x

i=0

(i+1) \ a
wa�2x&i+ pwa�2x&i (1& p)Wa�2X+i.

Lemma 4.2. If a is even, then f (a+1, p)<2(1& p) f (a, p). If a is odd,
then f (a+1, p)<(2p+(1& p)(a+3)�(a+1)) f (a, p). In particular, if
2(1& p)(2p+(1& p)(a+3)�(a+1))<1, then

max
a�k

f (a, p) # [ f (k, p), f (k+1, p)].

Proof. Observe that the substitution j=wa�2x&i yields

f (a, p)= :
wa�2x

j=0

(wa�2x& j+1) \ a
j+ p j (1& p)a& j.

Case 1. a is even. Using ( a+1
j )=( a

j )(a+1)�(a+1& j) and the fact that
(a+1)�(a+1& j) is an increasing function of j we obtain

f (a+1, p)= :
a�2

j=0

(a�2& j+1) \a+1
j + p j (1& p)a+1& j

= :
wa�2x

j=0

a+1
a+1& j

(1& p)(wa�2x& j+1) \ a
j+ p j (1& p)a& j

<
a+1

a+1&wa�2x
(1& p) f (a, p)<2(1& p) f (a, p).

Case 2. a is odd. Letting S= f (a+1, p)&2pf (a, p) we have

S= :
(a+1)�2

j=0
\a+1

2
& j+1+\a+1

j + p j (1& p)a+1& j

&2p :
(a&1)�2

j=0
\a&1

2
& j+1+\ a

j+ p j (1& p)a& j
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= :
(a+1)�2

j=1
\a+3

2
& j+ p j (1& p)a+1& j \\a+1

j +&2 \ a
j&1++

+
a+3

2
(1& p)a+1

= :
(a&1)�2

j=1 \\\
a
j +&\ a

j&1++\
a+3

2
& j+

\a&1
2

& j+1+\ a
j+ + \a&1

2
& j+1+\ a

j +

_p j (1& p)a+1& j+
a+3

2
(1& p)a+1

= :
(a&1)�2

j=1

a+3&2 j
a+1& j \

a&1
2

& j+1+\ a
j + p j(1& p)a+1& j (4.1)

+
a+3

2
(1& p)a+1

<
a+3
a+1

(1& p) :
(a&1)�2

j=0 \a&1
2

& j+1+\ a
j + p j (1& p)a& j

=
a+3
a+1

(1& p) f (a, p),

where the last inequality holds because the leading fraction in (4.1) is a
decreasing function of j with value (a+3)�(a+1) at j=0. Solving the
inequality for f (a+1, p) yields the result. K

TABLE I

dom(H)�(2p&1) n+2qm, #s (G)�n�(2p+2q&1)

k p 2p&1 2q� r #s(G)�n�

3, 4 0.9086 0.8172 0.0943 2, 3 0.9115
5, 6 0.8490 0.6980 0.1093 4, 5 0.8073
7, 8 0.8139 0.6278 0.1057 6, 7 0.7335

9, 10 0.7897 0.5794 0.0994 8, 9 0.6788
11, 12 0.7714 0.5428 0.0932 10, 11 0.6360
13, 14 0.7568 0.5136 0.0879 12, 13 0.6015
15, 16 0.7449 0.4898 0.0829 14, 15 0.5727
17, 18 0.7348 0.4696 0.0787 16, 14 0.5483
19, 20 0.7261 0.4522 0.0749 18, 19 0.5271
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Theorem 4.2. If the hypergraph H has m edges, and every edge contains
at least k elements, then

dom(H)�(2p&1) n+2qm,

where the values of p and q are given in Table I. The last column of the table
applies to graphs in Gn(�r).

Proof. The proof follows that of Theorem 1.1. Assign each vertex the
label +1 with probability p, and let P be the random set of vertices thus
labeled. Denote by Ui=Ui (P) the set of edges Ai # H that intersect P in
exactly w |A|�2x&i edges, and call these uncovered edges. For A # Ui

(i�0), let QA be a set of i+1 elements in A"P and set Q=�A QA . We
assign the label +1 to every element in P _ Q. As before, the expected size
of |P| in pm. The expected size of |Q| is

E[|Q|]� :
for all A # H

E[|QA |]

= :
for all A # H

:
w |A|�2x

i=0

(i+1) Prob[A # Ui]

= :
for all A # H

:
w |A|�2x

i=0

(i+1) \ |A|
w |A|�2x&i+ pw |A|�2x&i (1& p)W |A|�2X+i

�m_max
a�k

f (a, p).

For each choice of p= pk given in Table I, it is readily verified that
2(1& p)(2p+(1& p)(a+3)�(a+1))<1 whenever a�k. Lemma 4.2 there-
fore implies that maxa�k f (a, pk)= f (k, pk) if k is even, and maxa�k f (a, pk)
=max[ f (k, pk), f (k+1, pk)] if k is odd. A straightforward calculation

TABLE II

k p 2p&1 2q� r #s(G)�n�

3 0.8165 0.6330 0.1897 2 0.8227
5 0.7877 0.5754 0.1534 4 0.7288
7 0.7675 0.5350 0.1315 6 0.6665
9 0.7520 0.5040 0.1168 8 0.6208

11 0.7396 0.4792 0.1058 10 0.5850
13 0.7293 0.4586 0.0973 12 0.5559
15 0.7206 0.4412 0.0903 14 0.5315
17 0.7130 0.4260 0.0847 16 0.5107
19 0.7063 0.4126 0.0800 18 0.4926
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shows that if k is odd and 3�k�19, then maxa�k f (a, pk)=f (k+1, pk)
whenever 0.5<pk<1, and thus we group the k values in pairs in the first
column of Table I. For each k�19, we choose p optimally (up to four
digits) as shown in the table.

If k is odd and we consider only k-uniform hypergraphs, then a slightly
different choice of pk yields a better bound. This is summarized in Table II;
the last column refers to graphs in Gn(r-reg). K

5. A CONSTRUCTION FROM THE HADAMARD MATRIX

In this section we construct a t-regular, bipartite graph G=G4t on 4t
vertices from an Hadamard matrix H of order t. This G is used in the next
section to obtain lower bounds for #s(n, r)�n.

Construction 5.1. An Hadamard matrix H of order t is a t_t matrix of
entries +1 and &1 such that HTH=I. After multiplying some columns of
H by &1, if necessary we may suppose that the first row of H, h1 , contains
only +1's. Then every other row has exactly t�2+1's and &1's.

Let the vertex set V=V(G) consist of four sets, [a+, a&, d*], B=
[b1 , ..., bt], C=[c+

2 , c&
2 , c+

3 , c&
3 , ..., c+

t , c&
t ], and D=[d2 , ..., dt]. The

sizes of these sets are 3, t, 2t&2, and t&1, respectively. Let C+=
[c+

2 , ..., c+
t ] and C&=[c&

2 , ..., c&
t ].

To define the edges of G, first, join a+ to each element of B, a+ W B,
moreover a& W (D _ [d*]), and d* W C+. The vertices in B correspond
to the columns of H, and the vertices in C correspond to the rows of H
(and a+ corresponds to the first row of H). For each i, (2�i�t), let c+

i

be adjacent to those bj 's for which the (i, j)'th entry of H, hi, j=1; and join
c&

i to b j if hi, j is &1. Finally, for 2�i�t, let c+
i W [di , ..., di+t�2&2], and

c&
i W [di , ..., di+t�2&1], where the subscripts are taken modulo t&1. In

Figure 1, some of the edges of G are drawn; an edge to the boundary of
a set represents edges to all vertices in that set.

It is easy to check that G is indeed t-regular. The vertex a+ is adjacent
to the t vertices of B; a& is adjacent to the t&1 vertices from D and to d*;
d* is adjacent to t&1 vertices from C and to a&. Also, each vertex of B
is adjacent to t&1 vertices from C and to a+. The neighborhoods of c+

i

and c&
i in B are complements to each other, N(c+

i , B)=B"N(c&
i , B), so

each vertex in C+ is adjacent to t�2 vertices from B, to t�2&1 vertices from
D, and to d*; each vertex in C& is adjacent to t�2 vertices from B and to
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Codes: 1959 Signs: 973 . Length: 45 pic 0 pts, 190 mm

FIG. 1. Construction of G.

t�2 vertices from D. Finally, each vertex in D is adjacent to t&1 vertices
from C and to a&.

Lemma 5.2. Suppose that ; is a real number with &- t<;�- t�2 and
the function f : V � [+1, &1] is such that

f (N(v))�; (5.1)

holds for every (open) neighborhood of v # V(G). Then

f (V)�- t�2+4;&5�2.

For the proof we are going to use the following theorem of Olson and
Spencer [16]. Let hi denote the i th row of H and let f : [t] � [+1, &1]
be arbitrary. Then there is an l such that for the scalar product we have

|f } hl |�- t. (5.2)

For completeness, we include their elegant proof (also see in [18]): Since
the vectors h1 , ..., ht are pairwise orthogonal they form a basis for Rt. Write
f in the form f=�1�i�t ci hi . From hi } h i=f } f=t we get �i c2

i =1. So
there is an l such that |cl |�1�- t. Now |f } hl |=|cl t|�- t. K

Proof of Lemma 5.2. Since G is a regular bipartite graph with parts
C _ [a+, a&] and B _ D _ [d*] we obtain from (5.1) that

tf (a+)+tf (C)+tf (a&)= :
v # B _ D _ [d*]

f (N(v))�2t;.
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This gives

f (C)+ f (a+)+ f (a&)�2;. (5.3)

Let f be the restriction of f to B. Because the edges between a+ _ C and
B come from the Hadamard matrix H, (5.2) implies that (at least) one of
the following two cases holds.

Case 1. l=1 and | f (B)|=|f } h1|�- t.

Case 2. There is an l>1 such that | f (N(C+
l , B))&f (N(c&

l , B))|=
|f } hl |�- t.

In Case 1, as |;|<- t and f (B)= f (N(a+)), (5.1) implies that f (B)�
&- t is impossible, so we have f (B)�- t. Using this, and (5.3), and
f (D _ d*)= f (N(a&))�; we get

f (V)= f (B)+ f (C _ [a+, a&])+ f (D _ [d*])�- t+3;�- t�2+4;

and we are done.
In Case 2, i.e., when l>1 define I=N(c+

l , B) and J=N(c&
l , B) (see

Fig. 1). We have

| f (I )& f (J)|=|f } hl |�- t. (5.4)

This is not enough to give a lower bound of - t�2 on f (B) since, for
example, we could have f (I )= 1

2 - t and f (J)=;& 1
2 - t. We use the edges

between C and D to obtain the required lower bound. Let K=N(c+
l , D)

and L=D&K. Because N(c+
l )=I _ K _ d*,

2( f (I )+ f (K)+ f (d*))�2;. (5.5)

Choose j such that N(c&
j , D)=L. Then

f (I )+ f (J)+2 f (L)& f (dl&1)= f (N(c+
j ))+ f (N(c&

j ))�2;. (5.6)

The sum of the left-hand-sides of (5.5) and (5.6) together with the double
of (5.3) is exactly 2 f (V)+ f (I )& f (J)& f (dl&1). We get

2 f (V)� f (J)& f (I )+8;+ f (dl&1). (5.7)

On the other hand, since N(c&
l )=J _ K _ dl+t�2&1 , we obtain

2( f (J)+ f (K)+ f (dl+t�2&1))�2;. (5.5$)
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Adding (5.5$) to (5.6) and to the double of (5.3) we get

2 f (V)� f (I )& f (J)+8;+ f (dl&1)+2 f (d*)&2 f (dl+t�2&1). (5.7$)

Thus (5.7), (5.7$), and (5.4) give

f (V)�(| f (I )& f (J)| )�2+4;&5�2� 1
2 - t+4;&5�2. K

6. LOWER BOUNDS

In this section we use Construction 5.1 to obtain lower bounds for the
signed domination numbers, e.g., for #s(n, r).

Corollary 6.1. Suppose that r, t are positive integers such that an
Hadamard matrix of order t exists and t�r�t+2 - t, t>3. Suppose that
&- t<:&1&(r&t)�- t�2. Then there exists an r-regular bipartite graph
F on 4t vertices such that

dom:(F )� 1
2 - r+4:&4(r&t)&8. (6.1)

Proof. Consider the graph G4t defined in the previous section. Since it
is regular and bipartite, by the Ko� nig�Frobenius theorem [14] one can
add r&t perfect matchings to G to obtain F. Let g be an :-domination
function of F. Since g(N(v))�:&1&(r&t) for all v # V(F ), we can apply
Lemma 5.2. K

Considering vertex disjoint copies of graphs one can see that

#s(n1 , r)+#s(n2 , r)�#s(n1+n2 , r).

This, and the obvious upper bound #s(G)�n, imply that the limit

cr := lim
n � �

#s(n, r)�n

exists and is equal to its supremum (Fekete's Lemma, see, e.g., in [19]).
The same is true for

Cr := lim
n � �

#s(n, �r)�n,

and for

Sk, : := lim
v � �

dom:(v, k)�v,
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where dom:(v, k)=maxn+m�v[dom:(H): H is an n vertex hypergraph
with at most m edges each having at least k elements]. Theorem 1.1 implies

cr�Cr�2Sr+1, 1�O \� log r
r + .

It is conjectured (see e.g. Hall's book [11]) that Hadamard matrices
exist for all t divisible by 4 (and for t=1, 2). Let H denote the set of
orders of Hadamard matrices. It is known, that 2( p+1) # H for all odd
prime powers p, moreover h1 , h2 # H implies h1h2 # H. Therefore (as
H. Diamond [8] pointed out for us), the sequence H has positive density.
For these values (6.1) implies

Corollary 6.2. (1�8&o(1)) r&1�2�cr .

We would get this lower bound asymptotically for all r, if we knew that
the largest gap in H & [1, 2, 3, ..., x] is at most o(- x). It is known [8] that
the largest gap between numbers having at most 3 prime divisors is less
than O(x4�11). The sieve method might give this for the numbers of the
form 8( p1+1)( p2+1)( p3+1), too.

Note that, according to (6.1) (say for |r&t|�- r�100) we have that
dom:(F ) is positive (and of order O(- r)) even for : as small as &- r�10.

One can get a slightly better lower bound for Cr from the following
graph G$ with minimum degree r: Let t=2r, t # H and let G$ be the restric-
tion of the construction G4t in Section 4 to B _ C. Thus G$ :=G[B, C] #
G6r&2(�r). This graph gives

\ 1

3 - 2
&o(1)+ r&1�2�Cr .

Indeed, using again (5.2), one can show that dom:(G$)�- 2r+:&O(1)
(for |:|<- r�2). The details are omitted.

7. A MATCHING UPPER BOUND FROM A
DISCREPANCY CONJECTURE

Let us call the set T an l-transversal of a hypergraph H if |A & T |�l

for all edges A # H. The minimum cardinality of such a T is denoted by
{l(H). Let H be a hypergraph with m edges and n vertices such that
|A|�k for all A # H. Alon [1] proved that

{1(H)�
log k

k
n+

1
k

m, (7.1)
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and this is best possible in the following sense. Define

{k, l=: sup
(n+m) � �

{l(H)�(n+m),

then {k, 1�(log k�k)(1&(log log k�log k)) for k sufficiently large.
Our first aim is to extend (7.1) for all l in the following convenient form.

Proposition 7.1. Let H be a k-uniform hypergraph with m edges and n
vertices. Then for all (k�2)>l�1

{l(H)�
2l

k
n+

l

exp[l�4]
m. (7.2)

Proof. It is an easy application of the probabilistic method. We proceed
as in [1], and as in the proof of Theorem 1.1. First select from each edge
A # H an l-subset L(A)/A. Then let us pick, randomly and independ-
ently each vertex v # S :=V(H) with probability p=2l�k. Let P/S be the
random set of the vertices thus picked. Denote by U=U(P) the set of
edges A # H that intersect P in fewer than l elements, and call them
uncovered by P. Let Q=QP be the union of L(A) over all uncovered edges.
Then, P _ Q is obviously an l-transversal of H.

Now we are going to estimate the expected value of |P _ Q|. Clearly,
E[ |P|]= pn. Moreover, |Q|��A # U |L(A)|, hence the linearity of expecta-
tion gives

E[ |Q|]� :
for all A # H

l Prob[|A & P|<l].

Using (3.1) one can estimate this probability.

Prob[ |A & P|<l]�exp[&(l&|A| p)2�(2 |A| p)]<exp[&l�4]. K

Note that (substituting l=4 log k) one gets Alon's bound, too, up to a
constant factor.

Recall that D(H) is the discrepancy of a hypergraph H. Spencer [18]
proved that if H has m edges, then

D(H)<6 - m. (7.3)

The next Proposition shows that one cannot expect to improve essen-
tially the lower bound for cr and Cr using relatively small graphs, like we
did using F 4r and G4t defined in the previous sections.
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Proposition 7.2. Suppose that G # Gn(�r). If n�r�K, where K is fixed,
then

#s(G)�12 - K
n

- r
+O(1).

Proof. First, define l=6 - n+1. As l�(r+1)�2 one can apply (7.2)
(for the neighborhood hypergraph, H, of G) and obtain an l-transversal
T of size at most 12 - n+1(n�(r+1))+O(1). Consider the restriction of
H to S"T and add the hyperedge S"T. Apply (7.3) for this hypergraph
(with m=n+1) to get a partition U _ V=S"T such that | |U & N[v]|&
|V & N[v]| |<l for all v # S. Suppose that |U |� |V |. Then the function
g: S � [+1, &1] with value 1 exactly at the points of T _ U is a domina-
tion function with g(S)�|T |. K

Let 2=2(H) denote the maximum degree of a hypergraph H. Beck
and Fiala [6] proved that D(H) is bounded by 22&1, and conjecture
that for some constant K

D(H)<K - 2 (?). (7.4)

Proposition 7.3. If Conjecture (7.4) is true, then cr<2Kr&1�2+O(1�r).

Proof. As in the previous proof, let G # Gn(r-reg). First apply (7.2) for
the neighborhood hypergraph with l=K - r+2 to obtain an l-cover,
then apply (7.4) to the restricted-extended hypergraph. The details are
omitted. K

8. FURTHER PROBLEMS, GENERALIZATIONS

The determination of the limits cr , Cr , Sk , and {k, l could be very inter-
esting, but may be difficult. There might be some hope to find them for
some small values, we only know c3=4�5. Is C3=4�5?

Is it true that cr<Cr , at least for r>3?
We cannot even prove, that the sequences [cr], [Cr], [Sk] are (strictly)

monotone decreasing.
A general method in discrepancy theory is to obtain an estimation from

the discrepancy of the (of a) random structure. What is #s(G) for a random
graph (in different graph models), especially for random r-regular graphs?
What is #s(G) for random hypergraphs?

Other reasonable graph classes, like line-graphs, and graphs with large
girth should be investigated. Is it true that their signed domination number
is significantly smaller?
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Instead of considering +1, &1 labelings, i.e., 2-colorings one can
investigate c-colorings.

In [13] and further papers, the minus domination function is introduced,
i.e., g: S � [&1, 0, 1] with g(A)�1 for all A # H; #&(H)=min g(S).
Since #&(H)�{(H) Alon's theorem (7.1) implies that

#&(G)�O \log r
r + n (8.1)

holds for every G # Gn(�r). We think this gives the best upper bound.
If one allows only nonnegative real weights, then one obtains the well-

studied notion of fractional matching of H.
Actually, the problem of #s(H) can be considered as an integer program-

ming problem. Its real relaxation(s) is (are) a linear programming problem
(for example, having real weights on the vertices such that each weight is
at least &1, and the sum along each edge is at least 1, and then we want
to minimize the total sum). This gives a lower bound, but, in general, as
(8.1) shows, this lower bound seems to be very far from the actual value
of #s .

One can extend the notion of an :-dominating function of H by impos-
ing an upper bound g(A)�;, too. Such (:, ;) colorings are not unknown,
especially in number theory, to mention one recent result, see Mathias
[15]. This upper bound ; could be a function of the size |A|.

Instead of minimizing g(S) one might want to minimize �A # H g(S)�m.
One is tempted to conjecture that in general this quantity is much smaller
than one can obtain from dom(H). (Though for the regular, uniform case,
like Gn(r-reg), this coincides with #s).
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