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Abstract 

We say (n ,e)--*(m,f) ,  an (re, f )  subgraph is forced, if every n-vertex graph of size e has 
an m-vertex spanned subgraph with f edges. For example, as Turfin proved, (n, e ) ~  (k, (~)) for 

e>tk- l (n)  and (n,e) 7 ~ (k, (k2)), otherwise. We give a number of constructions showing that 
forced pairs are rare. Using tools of extremal graph theory we also show infinitely many positive 
cases. Several problems remain open. @ 1999 Elsevier Science B.V. All rights reserved 

A M S  classification: 05C35; 05D10 

Keywords: Turfin's theorem; Density; Ramsey's theorem 

1. Introduction, the Turin problem 

Let G = ( V , g )  be an n-vertex graph with vertex set V, edge set ~. Let [n] denote 
the set o f  first n integers, [n] := { 1,2 . . . . .  n}. The complete graph on p + 1 vertices is 

denoted by Kp+l, the complete bipartite graph with parts A and B is K(A,B) ,  while 
for integers a,b>~l, K ( a , b )  denotes a K ( A , B )  with ]A I = a ,  IB] = b .  

A graph L is contained in G if it is (a not necessarily induced) subgraph of  it. 
Otherwise G is called L-free. Let ex(n,L)  denote the maximum number of  edges of  

an L-free graph on n vertices. This is frequently called the Turhn number of  L. Turfin 

[21,22] proved that (for n>>.p) the only maximal Kp+l-free graph is the complete 
p-partite graph (also called the complete p-chromatic graph), i.e., a graph G with its 

vertex set [n] divided into p almost equal parts, [n] = V 1 U ' ' '  (..J Vp, where I V/] = Ln/pJ 
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or [V/[ = [n/p], and its edge set S(G):={xy:x  and y belong to distinct Vi's}. The 
above graph is also called the p-partite Tur~n 9raph and its size is denoted by tp(n). 

,(1) 
ex(n,Kp+l)=tp(n)=~ 1 -  n2 - O(1). (1.1) 

K6v~iri et al. [17] showed that 

ex(n,K(k,k ) ) ~ l (k - 1)l/kn2-1/k + (k - 1)n. (1.2) 

This inequality together with a random construction of Erd6s implies the following. 
For every bipartite F that is not a forest, there is a positive constant c(F) such that 
~(nl+C)<~ex(n,F)<~O(n2-C). Here we are going to use the following special case: 

there are relatively large graphs of  girth at least 9, 

ex(n, {C3, c~ ,-~ l ~ -  ,~1+(1/(.,t-2)) . . . . . . .  '~J- I y)-" U' • (1.3) 

For graphs with chromatic number at least three we have the Erd6s-Stone-Simonovits 
theorem [10,12] that says that for minLc~ x(L)=p  + 1>13 one has ex(n,A¢)-- 
( 1 -  1 / p ) ( : ) +  o(n2). Here we are going to use the following sharpening of the Erd6s- 
Stone theorem due to Chvfital and Szemer6di [7]. Suppose that ~, p/> 2 are fixed and 
n is large enough. Let t = log n/(5OOlog(1/e)), then 

ex(n,Kp+,(t))<~ ( 1 - 1 + c )  (1.4) 

where Kp+l(t) stands for the complete (p  + 1)-partite graph whose every vertex class 
has cardinality t. We remark that a randomized example of Bollobfis [2] shows that 
(1.4) is best possible up to the constant 500. For latest developments see Bollob~is and 

Kohayakawa [3]. 

2. Introduction, density questions 

As the exact solutions of Turfin-type problems, especially the hypergraph versions, 
seems to be so difficult, Erd6s proposed a series of  simpler looking, and important, 
questions. One of  the natural generalizations of Tur~n's theorem is as follows, where 
the structure of forbidden subgraphs is reduced to one parameter, their size. What is 
the maximum number of edges of an n-vertex graph, ex(n; m, < f ) ,  if every m-element 
set spans less than f edges? This was investigated by Erd6s [8] in 1963. Some of his 
results were rediscovered and clarified by Gol'berg and Gurvich [14], for the latest 
developments see Griggs et al. [15]. The hypergraph version, i.e., the problem of  

exr(n; m, f )  :-- max I~1 
,/7 is an r uniform hypergraph on n vertices, 

every m-set spans less than f edges 

was proposed by Brown et al. [4, 5]. This problem, which contains Tur~n's hypergraph 
conjecture is even more difficult. For example, ex3(n;6,3)=o(n2),  by a celebrated 
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result by Ruzsa and Szemer6di [20]. A concise proof and further problems can be 
found in Erd6s et al. [9]. 

The above density problems seem to be related to such difficult number theory 
problems as to estimating r3(n). (Here r3(n) is the maximum size of a subset of [n] 
containing no arithmetic progression of size 3.) In this note we deal with an easier topic. 
The aim of this paper is to illustrate the powerful methods of extremal graph theory 
by (partially) answering the following question of Erd6s: what local edge densities are 
unavoidable in every n-vertex graph with e edges? 

3. The m-spectrum of graphs 

For a given graph G we say that the (re, f )  pair belongs to its spectrum, ( m , f ) E  
Sp(G), if one can find an m-element subset of vertices M C V(G), IM[ = m such that 
the induced subgraph G [M has exactly f edges. We also use the notation G ~ (m, f ) ,  

and say that an (m, f )  subgraph is forced, or f belongs to its m-spectrum. Otherwise, 
we say G 74 (m, f ) ,  or G avoids (m, f ) .  Let fq(n, e; m, f )  denote the class of n-vertex 
graphs of  e edges avoiding (m,f) .  Let ~(n;m, f ) := Uo<~e<~(~)~(n,e;m,f). Our aim 
is to describe these graphs, or at least to prove a few basic properties of them. 

As a first step, we would like to determine the (n,e) pairs with ~(n,e;m,f)=O. 
We denote this by (n, e) -+ (m, f ) ,  every graph of  n vertices and e edges contains an 
induced (m,f)-subgraph. Let S(n;m, f )  denote the set {e:(n,e)  --+ (re, f ) }  and define 

a(rn, f )  := lim sup IS(n; m, f ) l  

As S(n; m, f )  C {0, 1,2 . . . . .  (g) } but 0 and (g) cannot belong to it simultaneously, the 
fraction on the right-hand side is at most 1. We conjecture that the lim sup above is 
actually a limit for all fixed m and f .  

We also use the notation SPm(G ) for the set of values f for which G --~ (m, f ) .  
We also can write Sp~,(ff) where ff is a set of graphs, then, as usual, Sp,,,(~):= 
Uoc~ SPIn(G)- Some properties of SPm(G ) were investigated in [11, 13]. 

This paper is organized as follows. First, we consider a few special cases in 
Sections 4-7. In Section 8 we give a list of examples for (m,f)-free graphs. The 
constructions yield upper bounds for a(m, f )  in various ranges of  m and f ,  we have 
also some overlapping which could be easily analyzed. Such a combination of  construc- 
tions yields the main result of  this paper (Theorem 1 in Section 9) where we prove that 
a(m,f)<<. 2 for all but 5 pairs (re, f ) .  For these five pairs we show a (m , f )=  1, we 
call them unavoidable. Probably, tr(m, f )  > ½ holds for only finitely many pairs, too. In 
Section 10 we summarize the negative examples showing that for fixed m all but at 
most 300 pairs a(m, f )=O in the interval 0~<f~<O(m3/2). Finally, in Section 11, 
infinitely many pairs are given with a(m, f ) =  1 
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4. The case f = 0 

The case m - - 2  is trivial, f#(n; 2 ,0)  consists o f  a single graph, Kn, thus S(n; 2, O)= 
{0, 1 ..... (~) - 1 } ,  implying a ( 2 , 0 ) =  1. Similarly, a(2, 1 ) =  1. From now on we suppose 

that m >t 3. 
Looking at the complements, it is obvious that G --~ (m,f) i f  and only if  G 

(m, (2) - f ) '  It follows that ff(n,e;  m, f ) =  {G:  G E f# (n, (2) - e; m, (2) - f )  }, and 
S(n;m,f)= {(g) - e : e E S  (n;m, ('~) - f ) } ,  and 

a ( m , f ) = a ( m , ( 2  ) - f ) .  (4.1) 

Construction 1 (p-chromatic graphs). Let ~1 (P) be the class of p-chromatic graphs. 

We have that S P m ( Y l ( p ) ) =  {0, 1 . . . . .  tp(m)}. As Kp+l is never a subgraph, Tur~n's 
theorem (1.1) implies that (n, e) ~ (m, (2))  if and only if e > tin-l(n). Hence, 

, 
a m, = o'(m, 0) = . (4.2) 

m - 1  

Using the notation introduced in (1.1) we have 

f>tp(m)impliesS(n;m,f)C{tp(n)+l ..... ( ~ ) } .  (4.3a) 

The length of  the interval on the right-hand side is (1 + o(1))(1/p)(~) ,  so we obtain 

a(m,f)<~ 1/p. Considering complements for ('~) - tp+l(m)<<.f< (2) - tp(m) we have 

S(n;m,f)C {0,1,2 ..... ( : ) - t p ( n ) - l } ,  (4.3b) 

implying a(m, f )  <<, 1/p again. 
In the case p = 2, when we consider only bipartite graphs avoiding (m, f ) ,  we have 

(7) - [m2/4J = [(m - 1)e/aJ. Thus (4.3a) and (4.3b) yield that 

a(m,f)>½ is only possible if [ ( m -  1)2/43 ~<f~< [m2/4j. (4.4) 

5. Union of  cliques, the case  (re, f )  = (3, 2) 

The only (3,2)-graph is the induced path of  two edges. Hence if G 7 ~ (3,2),  then 
any two vertices that are connected by a path must be connected by an edge, i.e., 
G is a disjoint union of  complete graphs. Let us denote the sizes of  the cliques by 
nl,n2 ..... nk, then n =  ~l<~i<~kni and e =  ~-~l<~i<~k (2')" We need to know when can e 
be written as a sum of  this form. This was a question of  Erd6s and (independently) 
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Winkler and was answered by Reznick [19] in the following way. Let 

C ( n ) : = { y ~ ( 2 i ) : Z n i = n ,  theni 'sarenon-negativeintegers } 

and let a(n) denote the largest integer so that for the interval {0,1,2 . . . . .  
a(n) - 1,a(n)} C C(n), then a ( n ) =  (2) - v/2n 3/2 + O(n5/4). We apply this as follows. 

Construction 2 (Union of  cliques). Let ~ be the class o f  yraphs where each connected 
component is a clique. 

We have that Spn(~-2 ) = C(n), 

(n,e) ~ (3 ,2)  if  and only if  e ~ C(n). 

This implies, e.g., that S(n; 3,2) C [(2) - O(n3/2), (2)], hence 

a (3 ,2)  = a(3, 1 ) = 0 .  (5.1) 

As m a x { C ( m ) \ ( ~ ) } :  (m21) we get {i: ( m 2 ' ) < i < ( ~ ' ) }  n C ( m ) : O .  Therefore, as a 
generalization of  (5.1), we have a(m, i ) =  0 for these values. Considering the comple- 
ments, (4.1) implies for m ~> 3 

a(m, 1 ) : a(m, 2) . . . . .  a(m, m - 2) : 0. (5.2) 

With a little more consideration one can see that Construction 2 implies that a(m, i) 
= 0  for all 3~<m~<7, 0 < i < ( ~ )  with the possible exceptions (m, i) E {(4, 3), (5,4),  
(7,6),  (7, 10)} (and their complements {(5,6), (7, 15), (7, 11)}, the pair (4 ,3)  is self- 
complementary). We continue to investigate these cases in the next sections. 

6. An unavoidable pair, the case (m,f)= (4, 3) 

Construction 3 (Union of  trees and cycles). Let ,~3(p)  be the class of  9raphs where 
each connected component is either a tree o f  at most p - 1 vertices, or a cycle Cp. 

If  we have G E ~3 (P ) ,  I V(G)[ = n, then G has at most n edges. Even more, if  n/p 
is not an integer, it has at most n -  1 edges. If n/p is an integer, then it cannot have 
n - 1 edges either. Moreover, if  (p ,  i) E S p ( ~ 3 ( p ) ) ,  then i < p - 1 or i = p. We claim 
that for the case (m, f ) =  (4, 3) essentially there are no more examples avoiding it. 

Claim 6.1. Suppose that GE~(n , e ;4 ,3 ) ,  i.e., G 7~ (4,3),  and n>~5. Then either G 
or G E ~-3(4). 

This implies 

( n , e ) - + ( 4 , 3 ) i f a n d o n l y i f n < e < ( 2 )  - n ,  o r e = n - 6 ,  or e =  ( ~ )  - n + ~ ,  
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where ~--1  when 4 divides n, and 6 = 0 otherwise. We obtain that S(n; 4, 3) contains 

a very long interval 

a ( 4 , 3 ) =  1. (6.1) 

Proof of Claim 6.1. Assume G is not in W3(4). Then one can find a vertex x E V(G) 

with dego(x)~>3. The neighborhood of  x cannot induce an independent set, otherwise 
K(1,3)  is an induced subgraph with center x. Hence G contains a triangle X = {x, y,z}. 

Applying the above argument for G we obtain that G contains three independent 

vertices Y = {a,b, e}, too. Consider, first, the case when these two sets are disjoint, 

{x ,y ,z}  fq {a,b,c} = 0. I f  one can find two vertices from Y, say a and b, with incom- 
parable neighborhoods in X (this means that there exists a vertex in X connected to a 

but not connected to b, and there exists another vertex in X from N(b) \N(a) ) ,  then 

one can find an induced path P4, a contradiction. We obtain that the neighborhoods 

of Y in X contain each other. These neighborhoods are non-empty, therefore there is 
an x E X  joined to all of  them, inducing again a K(1,3).  The case X N Y ~ 0 is even 

simpler. [] 

7. Another unavoidable pair, the case (re, f ) =  (5, 4) 

Construction 4 (Graphs avoiding (5,4)). Let ~4 be the class of  graphs consisting o f  

n - k isolated vertices (4 <<, k <~ n) and a cop3, o f  either Kk or Kk with one edge deleted, 
or Kk with 3 edges of  a triangle deleted 

Beside the above construction we also have that (5,4) ~ Sp(ff3(5)), hence the set 
{0, 1,2 . . . . .  n -  2 , n -  s} is missing from S(n;5,4). Here ~ =  l except if 5 divides n, 
then c = 0. One can exclude another interval of  length O(n 3/2 ) from the other end by 

the next construction. 

Construction 5 (Very dense graphs). Let ~ 5 ( p )  be the class o f  graphs whose com- 
plement has girth at least p. 

I f  G E ~ ( 5 ) ,  then every 5-subset induces at least five edges, so G 74 (5,4). It is 
known [18] that there are graphs of girth 5 on n vertices of  size ( 1 / v ~  - o(1))n 3/2, 

therefore (n,e) ~ (5,4) is only possible if  e is not too close to (2)" 

Claim 7.1. There exists a constant c (1/(v/-8)~<c< 12) such that the following holds. 
I f  n - ~ < e < ("2) - cn3/2, then the cases described in Construction 4 are the only 
graphs with G 74 (5,4). (Here c = 0  or 1 according to 5 divides n or not.) 

Hence for n - c < e < (~) - cn 3/2, we have 

( n , e ) - - + ( 5 , 4 ) u n l e s s e = ( ~ ) , ( ~ ) - l o r ( ~ ) - 3  for some integer k. 
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Thus S(n; 5,4) contains almost all integers from {0, 1,2 . . . . .  (~) }, implying 

~r(5,4) = a(5,6)  = 1. (7.1) 

Proof  of Claim 7.1. Let F be a connected graph on n vertices with F 7 4 (5,4). First, 
we show that for [V(F) I>6  we have 

girth(F) = 3, (7.2) 

i.e., F contains a triangle. Indeed, i f F  has a vertex of degree at least 4, say xxi E g(G),  
( 1 ~< i ~< 4), then {x, x l, x2, x3, x4 } must contain a further edge, otherwise it spans exactly 

four edges. If  the diameter of  G exceeds 3, and yoYlYzy3y4 is a spanned path, we 
obtain a contradiction. Then diam (G)~<3 and max deg(G)~<3 imply IV(F)] ~< 18 by 
[16]. The cases 6 < n ~< 18 can be eliminated by considering the shortest cycle. Let us 

note that as K(3,3)  shows, the condition IV(F)[ > 6  is necessary in (7.2). 
Second, we prove that if in addition F 74 (4,4), then 

F C Y 4 ,  (7.3) 

i.e., as F is connected, it is almost a complete graph. Indeed, let x E V(F) and consider 

FIX the graph induced by X = {x}UNF(x), the closed neighborhood ofx.  Then FIX 7 4 
(3, 1), so by the results of  Section 4, we have that F IX E o~2. But F IX cannot contain 
2 disjoint cliques (as F 7 4 (4, 4)), neither a clique of size larger than 3. Then we have 

that F iX E Z4, it is almost a complete graph, it has all the edges except for the pairs in 

a set Y C X  of size at most 3. I f X  = V(F) we are done. Suppose that x has maximum 

degree in F. Then all vertices of  X \ Y  have maximum degrees. Suppose that y E Y 

is connected to a further vertex yr ~ X. Then y is the only neighbor of  y~ from X, 
therefore it is easy to find a (5,4) or a (4,4) set from X U { y }  unless Ixl = 3 .  For 

IX] = 3 F is a path or cycle, and we are done. 
Now we are ready to prove by induction on n the following statement: I f F  7 4 (5,4) 

and F is connected on n vertices, then 

, g ( F ) , >  ( ~ )  - cn 3/2' . (7.4) 

This is obviously true for n < 4c 2. Consider a vertex x of  F of minimum degree d, and 
let H be the graph induced by the vertices not adjacent to x, V ( H ) =  V(F) \ ( {x}  H 

NF(X)). If  n - d  <~ cx/~, then (7.4) obviously holds, so from now on we may suppose that 

[V(H)[ > 15. I f  there are more than two connected components of  H with edges, then 
all of  its components have size at most 6, otherwise there is a triangle in H (by (7.2)), 
and a disjoint edge in another component, a (5,4)-graph. So in this case the number 

of  components is at least (n - d - 1)/6, one can find three vertices xl,x2,x3 E V(H) 
such that they span no edge. By the minimality of  d, degF(xi)>>.d, hence xi has at 
least ( d -  5) neighbors in N(x). For d >  15 they have a joint neighbor y E N(x), so 
{y ,x ,  x l ,x2 ,x3}  spans a star, a (5,4)-graph. For d<<.15, we use a similar argument. 
Choose an edge from every component of  H connected to N(x). Considering these (at 
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least ( n -  d -  1)/6) edges one can find a spanned star. We conclude that H has a 

single non-empty component, and might have some isolated vertices. In the same way 
we obtain that H cannot have more than 1 isolated vertex, (for such a vertex y one 
has NF(y)=NF(X)), SO the only non-empty component in H (by (7.3)) is an almost 

complete graph of size n - d - 2 or n - d - 1. To finish the proof of (7.4) cotmt the 
number of  edges of  F by using the fact that for any xy edge the vertex y must be 

adjacent to all triangles in H,  thus y is connected to at least n - d - 5 vertices of  H. 

Thus 

IE(F)I = IE(FIX)I + IE(N(x) to H)l  + IE(H)l 

( d ; 1 )  1)3,. 2 ( n - d - 2 ) - 3  >>, - c ( d  + + d ( n  - d -  5) + 2 

= ( n )  - c ( d + l ) 3 ' 2 - ( 2 n + 2 d ) ' 2  

We have 

c n  3/2 - -  c(d + 1 )  3/2 - (2n + 2d) 

= c ( n +  v /n (d+ 1 ) + d +  1)(v/-n - x / d +  1 ) -  2(n + d) 

which is positive for C(v/-n - v / d +  1)~>2, for example for d < n  - (2/c)x/~. This 

completes the induction for (7.4). 
Finally, to finish the proof of  Claim 7.1 let us consider an arbitrary graph G E f#(n, e; 

5,4), i.e., G 74 (5,4) and e is in the range given in the Claim. If  G is connected, then 

by (7.4), we are done. I f  G is not connected, then for every component C we have 
C 74 (4,4) so (7.2) and (7.3) can be applied. So as above, we obtain that if IV(C)I > 6  

than it is the only non-empty component and (7.3) implies that G c Z4, as claimed. In 
the remaining case all components have at most six vertices. As K(3, 3) is excluded, 

we can obtain that all of  them have at most five vertices. As I~(G)I > n -  1, there 
must be more than one non-nempty component, hence G is triangle-free, we obtain 

that G E ~3(5),  a final contradiction. [] 

8. More constructions 

In this section we give five more constructions providing a huge number of  graphs 

avoiding certain (m, f )  pairs. 

Construction 6 (Clique minus trees). Let ~'~6(p) be defined as follows. Take a clique 
o f  size k, subtract any number of  independent (i.e., vertex disjoint) trees where each 
tree has at most p vertices, and add any number o f  isolated vertices. 
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Let us consider an ( m , f )  pair, and write it in the form f =  (~) - b '  where 0~<b'< 
b -  1. Then for ( ( p -  1)/p)b<b ~ < b -  1 the above construction does not contain an 
(m,f)-subgraph. Notice that m is unimportant. We have that ISp, (~6(P)) l=  
~3~k~<,,(1 + [ ( ( p -  1)/p)kJ)= ( p -  1)/p(~) + O(n). Therefore, 

6(m,f)~<pl for f= (~)-b' ,  P-lb<b'<b-l.p (8.1) 

1 (here b = 6, For example, 0-(7, 11 ) (and therefore its complement, 0.(7, 10)) is at most 
b~=4),  and a(8, 16) (and hence o'(8, 12), too) is at most 1 (here b = 7 ,  b ' = 5 ) .  

Construction 7 (Clique plus trees). Let YT(p) be defined as follows. Take a cfique 
of  size k and add any number of independent trees where each tree has at most 
p vertices. 

Let us consider an (m, f )  pair, and write it in the form f = (~) + I' where 0 ~< 1' < l. 
For 1 + ( p / ( p -  1))F >m this construction does not contain an (m, f)-subgraph. We 
have that Sp , (~7(p) )  contains an initial interval of size of ( ( p -  1 ) / (2p-  1 ))2 (~) +O(n). 
Above that bound Sp, consists of intervals [(~), ( ~ ) + ( n - k ) ( ( p - 1 ) / p ) + O ( 1 ) ] ,  hence 

ISp.(~-v(p))l = ( P -  1 ) / ( 2 p -  1)(2) + O(n). 

P for f =  ( l ~ ) + l ' < ( l + l ~  1+ p l '>m. (8.2) 
a(m,f)<~ 2 p -  1 \ Z / k ~ 2  ' p -  1 

Construction 8 (Clique and large girth). Let ~8(P)  be defined as follows. Take a 
clique of size k, and add a graph of girth at least p on n - k vertices. 

It is known (see (1.3), for a proof see [2]) that there are graphs of girth p on v 
vertices and more than v 1+(l/(p-2)) edges. This implies that for ( n -  k)(P-l)/(P-2)>k 
the interval [(~), (k~1)] C Sp,(o~8(p)), i.e., ISp.I > (2) - O(n2-~m'~P-~b. On the other 
hand, every m-subset of  a G E ~-8(m + 1) spans a graph consisting of a clique and 
a forest. If there is no clique plus forest with exactly m vertices and f edges, then 
S ( n ; m , f )  N Sp,(~s(m + 1))----0. Then 0. (m,f)--0 .  Thus if f is in the form 

f =  ( 1 2 ) + I '  wi th0~<l '< l ,  (8.3) 

then 

l' >>.m - 1 implies 0.(m, f ) = O .  (8.4) 

This implies, for example that 0.(8, 13) (and therefore 0.(8, 15)) is 0. 
Actually, Construction 8 shows that most of the a 's  are 0. Let B(m) be the set 

{f :  0 < f < ( ' ~ )  such that l +  F>>.m when f is written in the form of (8.3)}. Then 
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B(m) is the union of the disjoint intervals 

I (12)  + ( m - l ) , (  l + l  - + 2 ) 1] forl>~(m 1)/2. 

Therefore IB(m)l= ~-'~(m- 2 l ) = ( 1 ) m 2  q - O(m), thus 50% of the a ( m , f )  are O's. 
One can obtain more O's by considering the union of B(m) and its complement 
B~(m) := {(2) - f :  f EB(m)}. This gives more than 82%. 

Remark. Consider B(m) and the set S(m; 3,2) (our previous examples for a = 0). We 
obtain that they are incomparable. Namely, one can prove that for (m, f ) f iB(m) ,  i.e., 
f is in the form (8.3) with l~<m - 1, then f can be written as sums of the binomial 
coefficients ( f  E C(m)) except if m - I = 3 or 6 and I ~ = 2 or 5, respectively. In other 
words, for m > m0 

B(m)\S(m;3,2)= { ( m ; 6 ) - 5 , ( m ; 3 ) + 2 } .  (8.5) 

The main observation for the proof of (8.5) is that (x,i)E Sp(~2) for all O<~i<~x- 1 
except for the pairs (3,2) and (6,5). 

Construction 9 (Complete bipartite graphs and large girth). Let ~9(p)  be defined as 
follows. Take a complete bipartite 9raph of size k, and add a 9raph of 9irth at least 
p on n -  k vertices. 

Again using (1.3) about the maximum number of edges of a graph of given girth, one 
can see that Spn(~-9(p)) (for fixed p as n ~ ~ )  almost covers the interval [0, [n2/4J]. 
On the other hand, every m-subset of a G C ffg(m + 1) spans a graph consisting of 
a complete bipartite graph and a forest. Therefore, if for m vertices there is no such 
graph with exactly f edges, then S(n; m, f ) N  Sp,(ffs(m + 1) )=  0. In other words, let 
D(m):={ab + c} where a,b,c are nonnegative integers, a + b<_n and for c~>l we 
h a v e a + b + c ~ < n - 1 .  

If f f[ D(m) then IS(n; m, f )  n [0, n2/411 = o(n 2). (8.6) 

I This obviously implies a(m, f )  <~ ~. 
One can strengthen (8.6) combining it with the complement of Construction if2 

(complement of bipartite graphs). Inequality (8.6) and (4.3b) imply that 

if f fgD(m)  and f <  k(m-  1)2/4j then a(m,f )=O. (8.7) 

This implies, for example, that a(12,29), a(15,39), ~r(15,47) (and therefore their 
complements, too) are 0. These cases of ~r = 0, and probably infinitely many more, 
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are not implied by our previous examples. We will show a 4th kind of tr(m, f )  = 0 in 
(8.10). For a fixed m all of them give only O(m 3/2) O's, except Construction 8. 

Construction 10 (Partition into cliques). Let ~lo(P) be denote the class of 9raphs 
consistin9 of the vertex disjoint union of at most p cliques. 

Let 

C(n,p):= 2 : Z ni=n, the n/s are non-negative integers . (8.8) 
1 i~<p 

The Cauchy-Schwarz inequality implies that nZ/(2p)-(n/2)<~minC(n, p). Brueggeman 
and Hildebrand [6] showed that for p >~ 9 there exists a constant cp such that 

[~--~+cpn,(2 ) -Cpn 3/2] CC(n,p). (8.9) 

In other words, for almost all numbers (1 /p) (~)<e< (~) there exists an n vertex graph 
with e edges consisting of exactly p cliques. We are going to use only the case p = 9. 
For m > m0 we have that m2/(2p) + cpm < m2/4. The following corollary is obtained by 
using bipartite graphs, for e<<,n:/4, and ~10(9) for larger e's. 

If f ~C(m, 9) and f >me/4, m>mo, then tr(m,f)=O. (8.10) 

Let us remark that originally, [6] contains only the proof when p is odd, but this easily 
implies the statement for larger p. Indeed, defining np+l = n/(p + 1)+ O(1) we obtain 
that 

( (nP2+l )+C(n-np+, ,p ) )UC(n ,p )CC(n ,p+l ) ,  

implying (8.9) for p + 1, too. 

9. Unavoidable pairs, the end 

Theorem 1 (Unavoidable pairs). Suppose that tr(m,f)> 2. Then we have ( m , f ) E  
{(2,0), (2, 1), (4,3), (5,4), (5,6)}. In these cases a(m,f)= 1. 

Consider the equation 

2 ( 1 2 ) = ( 2 2 ) .  (9.1) 

Bennett [1] proved that it has only the solution •=3, z = 2  in positive integers, as 
we have suspected earlier. Let us note that our conjecture was proved for z~<10 j°°° 
by M. Simonovits using a computer. Bennett's proof used linear forms in elliptic 
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logarithms and the L 3 lattice basis reduction algorithm. He has also pointed out for 
us that it is immediate that (9.1) has only finitely many solutions, since the equation 
defines an elliptic curve of  genus one of  the form quadratic = quartic. 

Concerning the simpler equation 

l m 
2 ( 2 )  = ( 2 )  (9.2) 

one can easily convert it to a Pell-equation of  the form 2x 2 - y2 = 1. Thus, it is a 

standard argument that the (li, mi) pairs give all solutions of  (9.2) where the sequences 
(10, ll . . . .  ) and (mo, ml . . . .  ) are defined by the following recurrences. 10 = m0 = 1, li = 3, 
m l = 4, and then 

li+2 = 6 l i + 1  - -  li - -  2 a n d  mi+2 = 6 m i + l  - mi - 2. 

1 The next few terms are (15,21), (85,120), (493,697) and, in general, we have mk=  
(x/2 + 1 )2k+l _ (X/2 -- 1 )Zk+l + 2). In the proof of  Theorem 1 we are interested in the 
cases when m is a perfect square. 

Proof of Theorem 1. a ( m , f ) =  1 follows for the claimed pairs from Claims 6.1 and 
7.1. Here our aim is to show that for all other pairs we have a(m, f )  <~ 2" This can be 
easily checked for m ~< 7 using the above constructions, hence we suppose that m > 7. 
We show that for m > 7 ,  a ( m , f ) >  2 implies that f = m ( m -  1)/4, f =  (~) for some 
integer 1, and that v ~ is an integer. Then Bennett 's theorem, (9.1), can be applied to 
conclude that no further solution exists. 

Formula (4.4) implies that we may suppose that 

For these values, if f is written in the form (8.3) where f =  (£) + l', then for m > 7  

> m  
l , . ~ -  + 1. (9.4) 

If  l + 21' >m,  then Construction o~7(2) (i.e. (8.2)) implies that ~ <  2. From now on 
we may suppose that l + 2l' <.m. This and (9.4) imply 

/ + 1  
1 -  l ' > - -  (9.5) 

2 

I f  l ' ¢  0, then we can write f in the form f = ( / ~ ' ) - ( l - F ) .  Then (9.5) and (8.3) imply 
2 that a ~< ½. The only missing case is F =  0. We conclude that for m > 7, tr(m, f )~< 

except if  f is in the range of  (9.3) and is of  the form f = (~). 
Suppose that tr(m, f )  > 2 and apply the above argument for f '  = (2) - f .  It is in the 

same range of  (9.3) and is of  the form f ' =  (k2). If f <  ('2) - f ,  then l < k  therefore 
(~) - (£) ~> I. On the other hand, it is at most [m2/4J - L(m - 1)2/4j = L(m + 1)/2J. 
This contradicts (9.4). We obtain that f = (£) =~  m (2) '  as claimed. 
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To prove that m is a perfect square, consider Construction ff9(m + 1). We obtain 

from (8.6) that f E D ( m )  and it is in the form of  f = a b  + c. I f  c > 0 ,  then ab + 
c~< 1 + ( m -  2)2/4 which is less than [ ( m -  1)2/4J (for m > 7 . )  Thus f is in the form 

f = ab, a + b <~ m. For a ÷ b < m we again ab < [(m - 1 )2/4j, thus we have f = a(m - a). 
1 ½(m + v/-m), and we are done. [] Solving a ( m -  a ) = 7  (2) we get a = 

Let us note that the argument in the above paragraph gives that a(m, f ) >  ½ implies 

that either 
- -  f = [(m - 1)z/4J, or 

- -  f = [m2/4J, or 

- -  [ ( m -  1)2/4j < f <  [m2/4J and f = a ( m -  a), (2) - f = b ( m -  b). 
The last case is equivalent to m -- (m - 2a) 2 + (m - 2b) 2 so it is again rather rare. 

10. A long interval o f  zeros 

In Section 7 Construction 8 (more exactly (8.3) and (8.4)) show that the majority 

of  the a ' s  are 0. Here we prove that if  f is small compared to m 2 then a(m, f )  is 
almost always 0. 

Theorem 2 (A long interval o f  zeros). There exists a constant c such that for 23m < 

f <cm y'2 one has a ( m , f ) - - 0 .  Also for O< f ~ 2 3 m ( a n d m > m o ) a ( m , f ) > O  is only 
a+l possible i f  f is o f  the form a m -  ( 2 ) - b  with positive integers 0~<b<a~<23.  

Thus, for fixed m, all but at most c o ( c o < 3 0 0 ) a ( m , f ) = O  in the interval 0 4  
f <<, cm3/2" 

Proof  of  Theorem 2. We prove the complement of  the statement considering (m, f )  

pairs where f is close to (2)" More precisely, consider a pair m , f  with m >m0,  
where too, comes from (8.10). Write it in the form (8.3), i.e., f =  (~) + 1/, where 

0 ~< l~< l and suppose that l > m  - c x / ~ ,  where c > 0 is a suitable constant defined by 

c =  rain{c9,3}, where c9 comes from (8.9). For IP>~rn-I Construction 8, i.e., (8.4) 

implies that a(m, f ) =  0. So from now on we suppose that 

O<~l' < m _ l  <cx/--~<~3v/-~. (10.1) 

I f  f q{ C(m, 9), then (8.10) implies a = 0, so we may suppose that one can find integers 

nl ~>n2 >J-.->~n9~>0, ~_~ni=m such that f = ~  (2')" Here nl ~<l. We claim that n, = I. 
Indeed, for n l~< l we have 
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which implies l - 1 ~< (m - l + 1 )(m - l - 7)/16 contradicting ( 10.1 ). Thus f E C(m, 9) 
and nl = l implies that 

This yields m - / ~ < 2 3 .  Writing m - l = : a ,  l '=:b we get m -  f =am - (a~) - b, 
0 ~<b < a .  Finally, we note that using the condition b/> 8 (~8) we can further narrow 

the possible exceptions in the range 0 < f < 2 3 m .  [] 

11. Posit ive results 

One can think that almost all a ( m , f ) =  0, or at least l imm~(max0~f~<(~,  ) a(m,f))  
=0.  The next theorem shows that this is not true. Using the tools o f  extremal graph 

theory we show infinitely many positive cases. 

Theorem 3(Non-zeros).  Let f =  ( ~ ) = c ( m - c ) =  ( ~ ) -  (b), where a,b,c are positive 
integers. Suppose that q is the smallest integer such that f can be written in the 
following form: 

f = Z  ( 2 ) ' Z  x i=m'xi>Ointegers"  (11.1) 
1 <~i<~q+l 

Then a(m, f)>~ 1/q. Moreover, for q >>, 9 we have a(m, f ) =  1/q. 

Theorem 3 gives infinitely many pairs with a ( m , f ) / >  ½. For example, considering 

the identity 

set a = 3t, b = 4t - 1, m = 5t - 1. Hence we have c = ½ (5t - 1 - v/7t 2 - 4t + 1). 

We get an infinite sequence o f  integer solutions (0, 1, 12, 187, 2976 . . . .  ) defined by the 
l recurrence ti = 16ti_1 - ti-2 - 4. For all these values ½ >~a(rn, f)>~ -~. 

Theorem 3 gives infinitely many exact values. With the notations of  (8.8) we can 

write that f E C ( m , q  + 1)\C(m,q). Then for q~>9 (8.9) implies that a<~l/q, thus 

equality holds in Theorem 3. For example, taking the identity 

i (25t - 3 - v/527t 2 136t + 9). For the set a = 7 t ,  b = 2 4 t - 3 ,  m = 2 5 t - 3  a n d c = ~  
infinitely many integer solutions we get a =  ~ .  (The smallest t >  1 is 920.) 
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To get infinitely many more explicit numbers let us consider the case m - 1  = (~)/> 6. 
Then 

tr(m,m - 1)=  1/[m/3J 

because for m ~ 3, 6 one can write m - 1 in the form (11.1 ) with q = Lm/3J + 1. This 
1 formula gives, e.g., t r (7 ,6)= tr(7, 15)=  ~. 

Theorem 3 also gives the following form of Theorem 1, which does not use Bennett's 
theorem. Suppose that f = I m (2) m is a perfect square, then t r ( m , f ) =  1. Indeed, 

f = ~ ( 2 ) = ( ( m + v / - - m ) / 2 ) + ( ( m - 2 v 2  ~ ) / 2 )  
2 

therefore q = 1. 

We also conjecture that in Theorem 3 equality holds, i.e., in the cases not listed 
among the constructions the graph G indeed contains an ( m , f )  subgraph. We intend 
to continue the investigation of  a(m, f )  in a forthcoming paper. 

Proof of Theorem 3. We start with three lemmas. 

Lemma 11.1. Suppose that f E C(m, q + 1 ), G E f# (n, e; m, f )  with 

e < ( ~ ) - t q ( n ) - e n  2. (11.2) 

Then, as n---+oo, G contains arbitrarily large independent sets; we have ~(G) 
> (2((log n) l/'n ). 

Proof. Apply (1.4) to the complement of G. We get the disjoint t-element sets V1 . . . . .  
Vq+l, where t >  log n/( 5OO log(1/e) ), such that there is no edge of G between these 
classes. If each Vi contains a complete graph Kx,, where xi comes from ( l l .1) ,  then 
the union of  these gives an ( m , f )  subgraph, a contradiction. We get o~(GIVj)<m for 
some j .  Ramsey's theorem, more exactly the well-known Erd6s-Szekeres upper bound 
R(u, v) <~ (u+r~2), implies that the independence number ct( G) >1 ~( G I Vj ) >1 t L<m. [] 

Lemma 11.2. Suppose that f = c(m - c), G E ~(n, e; m, f )  with 

n 2-1/R d e .  

Then, G contains a clique of  size at least R l/m, we have to(G)>R 1/m. 

(11.3) 

Proof. Apply (1.2) to G. We get two disjoint R-element sets 111,I"2 such that 
they induce a complete bipartite graph. If  each Vi contains an empty graph of size 
at least m, then K(c, m - c) is an induced subgraph of G, a contradiction. We get 
~(GIVj)<m for some j.  Ramsey's theorem again, implies that the clique number 
o g ( G ) ~ o ~ ( G I ~ . ) ~ R  l/m. [] 
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Lemma 11.3. Suppose that f =  (~), (2) - f =  (~) and G E fq(n,e;m,f). Then, either 
~(G)~<4 m or ~o(G)<<, 4 m. 

ProoL Suppose, on the contrary, that there are (disjoint) sets, A and B, of size at least 
4 m such that GIA is a complete graph, B is independent and ]A[ = [B[. Consider the 
induced bipartite graph G[A, B]. If it contains a bipartite graph K(m - b, b) (with m - b 
vertices in A), then it forms an induced (re, f )  graph, a contradiction. So again, (1.2) 
can be used to see that ]8(G[A,B])[ < ½[A] 2. Now consider the bipartite graph H[A,B] 
formed by the non-edges between A and B. This graph has more t han  ½]AI 2 edges. 
However, H does not contain a K ( a , m -  a), so we get ]~(H[A,B])] <½1.415, a final 
contradiction. [] 

The end of proof. The above lemmas obviously imply that for the claimed values of 
(m, f )  in Theorem 3 one has that 

ifn   n2q 

where R = 4 m. [] 
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