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Abstract 

For a set A of non-negative integers, let D(A) (the difference set of A) be the set of non- 
negative differences of elements of A. Clearly, if A is computable, then D(A) is computably 
enumerable. We show (as partial converses) that every simple set which contains 0 is the dif- 
ference set of some computable set and that every computably enumerable set is computably 
isomorphic to the difference set of some computable set. Also, we prove that there is a com- 
putable set which is the difference set of the complement of some computably enumerable set 
but not of any computably enumerable set. Finally, we show that every arithmetic set is in 
the Boolean algebra generated from the computable sets by the difference operator D and the 
Boolean operations. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction and notation 

For a set A~w={O,1,2 ,... }, let D(A)={la-b[:a,b~A}. We call D(A) the dif- 

ference set of A. This paper is a sequel to [2], which was a study of the sets which 

have a given set as their difference set or kth difference set, where Dk is the k-fold 
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iteration of the difference operator D. Other papers on difference sets include [ 1, 3-71. 

In the current paper we use the concepts and methods of computability theory (recursion 

theory) to compare the “complexity” of a set A with that of its difference set D(A). 

For example, it is clear that if A is a computable set, then D(A) is a computably 

enumerable (c.e.) set. We show that there is a computable set A such that D(A) is 

noncomputable. In fact, we show in Theorem 1 that every simple c.e. set is of the form 

D(A) for some computable set A and in Theorem 5 that eoery ce. set is computably 

isomorphic to a set of the form D(A) with A computable. Thus, D(A) may be con- 

siderably more complex than A, as one might expect from the unbounded existential 

quantifier which arises in the definition of D(A). In the opposite direction, it is obvious 

that there are sets A such that D(A) is “simpler” than A. For example, it is easily seen 

that there are uncountably many sets A such that D(A) = o. It is more interesting to 

give an example of a computable set R such that there exists a set X with D(X)=R, 
but eoery such set X is complex. This demonstrates that the difference operator cannot 

be effectively inverted. We show in Theorem 6 that there is a computable set R such 

that R is not the difference set of any ce. set, yet R is the difference set of a co-c.e. set. 

One goal behind the results in both this paper and [2] was to characterize the family of 

all difference sets or else to show that this family is not Borel. (The latter result would 

indicate that no reasonable characterization is possible.) After hearing a talk based on 

an earlier draft of this paper, Schmerl [6, Theorem 11, in fact, proved that this family 

is C!-complete and hence not Borel. In fact, he obtained a considerably more general 

result [6, Theorem 31 which he used to answer a number of open questions from [2] 

and in the area of the current paper. In Theorem 9 we prove that every arithmetical 

set can be obtained from computable sets by repeated use of the difference operator 

and Boolean operations. 

Our notation is mostly standard, except for some changes in terminology. The tradi- 

tional word “recursive” is replaced by “computable” and the phrase “recursively enu- 

merable” is replaced by “computably enumerable” or its abbreviation “c.e.“. Similarly, 

“recursively isomorphic” is replaced by “computably isomorphic”. These changes were 

suggested by Soare, and a thoughtful discussion of the reasons for them is given in [8]. 

2. C.e. sets as difference sets of computable sets 

The following result implies that the difference set of a computable set may be 

noncomputable. 

Theorem 1. Let B be any simple set such that 0 E B. Then there is a computable set 

R such that D(R)=B. 

Proof. The following lemma is well known. 

Lemma 2. Every simple set contains arbitrarily long strings of consecutive integers. 
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Proof. Let A be simple, and prove by induction on k that A contains the interval 

[a, a + k] for infinitely many a. This is obvious for k = 0. Assume now that it is true 

fork. Let B={a:[a,a+k]~A}, and let C={a+k+ 1 :aeB}. Then B is c.e. and is 

infinite by inductive hypothesis, so C is infinite. Hence, C n A is infinite, from which it 

follows that A contains [a, a+k+ l] for infinitely many a, completing the induction. 0 

It now suffices to prove the following lemma, which is an effective version of the 

result that every set containing 0 and containing arbitrarily long intervals is a difference 

set. (This latter result is due to Sarkozy and appears in [3, p. 1561.) 

Lemma 3. If‘A is a computably enumerable set such that 0 E A and A contains arbi- 

trarily long intervals, then there is a computable set R such that D(R)=A. 

Proof. The set R will be constructed as the union of a chain Ro &RI c . . . of finite 

sets. To ensure that D(R) = A we require that D(R,) CA for all n and that a, E D(R,,+l ), 

where as,ai,. . . is an effective enumeration of A. To make R computable we re- 

quire that the canonical index of R, should be a computable function of n and that 

max R, < min (R,+, \R,). The sets R, are defined recursively. Let Ro = 0. Given R,, let 

k be the least number such that k > max R, such that D(Rn U {k, k + a,}) CA. Such a 

number k exists because 0, a, E A, D(R,) &A and A contains arbitrarily long intervals. 

Let R,+, = R, U {k, k + a,} for this k. 0 

Remark 4. The following extension of Theorem 1 holds: For each k > 1 each simple 

set B with 0 E B has the form ok(R) for some computable set R, where D’ = D and 

Dkf’ = D o Dk. This follows from [2, Theorem 8.21 and the fact that each simple set 

is t - big for all t, as defined in Definition 8.1 of [2]. The latter fact can be proved 

by showing that if B is simple, there is no strongly computable sequence of pairwise 

disjoint finite sets of bounded cardinality all intersecting B. This is well known and is 

proved by an induction similar to that used to prove Lemma 3. 

It is easily seen that not every c.e. set may be obtained as the difference set of a 

computable set. In fact, there are computable sets, such as the set of powers of 2, 

which are not difference sets at all. (If an infinite set A is a difference set, then every 

element of A must be expressible in infinitely many ways as the difference of two 

elements of A.) On the other hand, the following result shows that the difference sets 

of computable sets occur in all computable isomorphism types of c.e. sets. 

Theorem 5. For any c.e. set A there is a computable set R such that A is computably 
isomorphic to D(R). 

Proof. Let a c.e. set A be given. We construct a computable set R such that 

(Vn)[n E A e n2 E D(R)] 

and such that the set of nonsquares in D(R) is computable. 

(1) 
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We explain first why this suffices. By Theorem 1 we may assume, without loss of 

generality, that A is not simple. Also, we may assume that A is infinite and coinfinite. 

(If A is cofinite, it is the difference set of a computable set by Lemma 3. If A is finite, 

then D(A) is also finite. There are difference sets of every finite size since D(0) = 0 and 

D([O,n]) = [0, n], and sets of the same finite cardinality are computably isomorphic.) 

Since A is neither simple nor cofinite, there is an infinite computable set As which 

is disjoint from A. Since A is infinite, there is an infinite computable set Ai which is 

contained in A. 

We show under the above hypotheses that D(R) =A. For this it suffices to show 

that A < ID(R) and D(R) d IA, by Myhill’s isomorphism theorem. The former follows 

at once from (1). To show that D(R) < ,A, inductively define a l-l computable function 

h such that D(R) = h-‘(A). Assume inductively that h(i) has been defined for all i < n. 

Further, we assume that for all i <n, either h(i) E A0 U Al, or, for some j, i =j2 and 

h(i)=j. If n is not a square, determine effectively whether or not n is in D(R). If n 

is not in D(R), let h(n) be the least element of A0 which exceeds h(i) for all i<n. If 

n is in D(R), do the same with Al in place of Ao. Suppose now that n is a square, 

say n=i2. Set h(n)=j unless j is already a value of h. If j is already a value of 

h, then j E A0 UA,. If j E Ak (where k < l), let h(n) be the least element of Ak which 

exceeds all current values of h. It is then easy to show by induction on n that n E D(R) 

8 h(n) E A. Since h is a l-l computable function, we conclude that D(R) < IA. This 

concludes the proof that it suffices to make (1) hold and arrange that the set of non- 

squares in D(R) be computable. 

We now give the construction of a computable set R to meet the above requirements. 

As in Lemma 3, we obtain R as the union of a chain Ro G RI G . . . of finite sets 

given effectively by canonical indices. We let Ro = 0 and R,+, = R, U {k, k +a:}, where 

ao,a1,... is an effective enumeration of A and k is chosen appropriately. Specifically, 

we require that k > max R, so that max R, < min(R,+i \R,). Further, we require that all 

elements of D(R,+l)\D(R,) other than ai should be nonsquares and should exceed all 

elements of D(R,). Since all such elements have the form k-r or k+ai-r with Y E R,, 

this may be achieved by choosing k sufficiently large and in a sufficiently large gap 

between consecutive squares. It is then easy to see that R has the necessary properties. 

In particular, the construction gives an effective enumeration of the nonsquares in D(R) 

in increasing order. 0 

3. Impossibility of effective inversion of the difference operator 

The following result shows that a computable set can be a difference set and yet not 

be the difference set of any c.e. set. 

Theorem 6. There is a computable set R such that R is the difSerence set of a co- 

c.e. set but R is not the dSfSerence set of any c.e. set. 
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Proof. We construct a c.e. set A such that D(A) is computable and A meets the 

following requirements for all e: 

P,: W, infinite -D(A) #D( W,). 
(2) 

The main source of difficulty in meeting the above requirements is that we must 

ensure that D(A) is computable. Thus, to meet P,, we cannot simply wait until suffi- 

ciently large elements appear in D( W,) and then (if necessary) add elements to A to 

make those elements disappear from D(A). Instead, we take advantage of the fact that 

the appearance of finitely many elements in W, can create infinitary patterns in D( W,) 

(since those elements are involved in infinitely many differences if W, is infinite). We 

can then add elements to A and put further restrictions on A so as to prevent those 

infinitary patterns from occurring in D(A). Of course, this must be done so as to pre- 

serve any of the finitely many membership decisions which have (irrevocably) been 

made for D(A) so that we can make D(A) computable. 

To make the above idea more precise, note that if W, is infinite and F is a finite 

subset of W,, then D( W,) contains infinitely many translates of -F, in particular, all 

sets of the form a-F for u E W,, a > max F. Thus, to meet P, it suffices to ensure that, 

if W, is infinite, there is a finite set F C W, such that D(A) contains only finitely many 

translates of -F. For this, it is obviously necessary (replacing W, by 2 in the above 

argument) that 2 should not contain any translate of F. As the construction proceeds, 

we modify our approximation to 2 so that it does not contain any translate of F. This 

is done so that any membership decisions made about D(A) are preserved. Further care 

is then necessary to ensure that D(A) contains only finitely many translates of -F. 

The following lemma shows that this can be done. 

Lemma 7. Let C be a finite set, let F,, F2, . . . , F,, be 3-element sets, and let s and t be 
numbers with t <s. Suppose that C n [0, t] contains no translate of any Fi. Then there 
isafiniteset Cssuch that IC(2s+l, c!n[O,t]=Cn[o,t],D(C)n[O,~]=D(~)n[O,~], 

c does not contain any translate of any Fi, and C\C does not contain any element of 

[0, s]. Further, if 1 < i < n and each element of D(C)\D( C n [0, t]) exceeds max Fi + t, 

then any translate of -Fi contained in D(C) is contained in D(C). 

Proof. We first prove the result ignoring the requirement that ICI > s+ 1 and then at the 

end indicate the easy modification of the argument that may be used to meet this con- 

dition. Let C = Co U Ci, where Co = C rl [0, t], D’ = D(C)\D(Co) and Ci = lJdED. {bd, 
bd + d}. Here the numbers bd for d ED’ should be chosen sufficiently large, suffi- 

ciently far apart, and with differences sufficiently far apart for the proof given below 

to work. First, regardless of the choice of the bd’s, it is clear that D(C) CD(C). Also, 

by choosing hd > t for each d ED’, we ensure that C n [0, t] = C fl [0, t]. Next, any el- 

ement of D( C)\D( C) must have the form u - v where u E {b,, b, + e} for some e E D* 
and either v E { bd, bd + d} for some d E D* with bd < b,, or v Q t. Let m be the greatest 

element of D(C). To ensure that all elements of D( C)\D( C) exceed s we require that 
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b,>bd +m +s for d,eED* with bd<b, and that b,>s+ t for any b, with aED*. 
Since 6, >s for all a ED’, it follows that all elements of C\C also exceed s. 

We now check that C does not contain any translate of any Fi. Suppose for a 

contradiction that {a, b, c} 2 c and {a, b, c} is a translate of Fi, where a <b < c. Then 

c $! Co since CO contains no translate of Fi. Hence, c has the form b, or b, + e for some 

eED*. Then aECo, or a has the form bd or bd +d for some dED* with bd<b,. 

Therefore, a - c 2 b, - t or a - c > b, - bd - d where bd < b,. This can be avoided by 

choosing b, to be sufficiently large, as in the previous paragraph. 

Finally, assume that 1 <i 6n and each element of D* exceeds each element of F;. 

It must be shown that any translate of -Fi contained in D(c) is contained in D(C). 

Let {dl,dz,dj} c D(e) be a translate of -Fi. Note that Idi - dkl <m = max Fi for 

j,kE{1,2,3}. Let dj=aj-cj, where aj,cjEC. 

Case 1: For some j, 1 <j < 3, dj E D(C). The bd’s may be chosen so that all 

elements of D( d)\D( C) exceed m + max D(C) (just as it was argued above that 

these numbers may all be made to exceed s). Fix j with dj E D(C) and assume for 

a contradiction that dk 4 D(C) holds for some k E { 1,2,3}. Then Idk - djl = dk - 

dj > (m + max D(C)) - max D(C) = m in contradiction to a remark in the previous 

paragraph. Hence, dk E D(C). It follows that dl ,dz and d3 all belong to D(C) as 

needed. 

Case 2: Assume that al = a2 = a3. Then it is easily seen that {cl, ~2, cg} is a translate 

of Fi contained in C. However, d was chosen so that no such translate exists, so this 

case cannot arise. 

Case 3: Assume that al =a2 #a3 and that Case 1 does not apply. Then 

h-c21 = IdI - d2I <m. It follows that ci,c2 E CO, since any two distinct elements of 

C differ by more than m + t unless both are in CO. (By choosing the bd’s sufficiently 

large and sufficiently far apart, we can arrange that any two distinct elements of C 

which are not both in Co differ by at least min D*. By hypothesis, all elements of D’ 

exceed m + t.) 
Next, we claim that c3 E CO. Suppose for a contradiction that c3 $6 CO. Roughly speak- 

ing, we now obtain a contradiction because this implies that IdI - d3 I is approximately 

equal to Ibd - b, + bfl for some d, e, f ED* with an error which can be bounded 

in advance, but the values of bd, b,, and bf may be chosen so that lbd - b, + bfl 
exceeds the sum of m and the error in the approximation so that IdI - d3) >m, a con- 

tradiction. In more detail, let al E {bd, bd + d),a3 E {b,, b, + e}, and c3 E {bf, bf + f}, 

whered,e,fED*. Then ((dl -d3)-(bd-b,+bf)[=I(a, -bd)-Cl -(as-bb,)+ 
(cg - bf)l <d + t + e + f. But the values of bd, b, and bf may be chosen so that 

lbd - b, - bf 1 >d + t + e + f + m. Hence IdI - d3 I > m, a contradiction. It follows that 

c3 E co. 

Assume, as above, that al E {bd, bd + d} and a3 E {b,, b, + e}. We know that cl 

and c3 belong to CO. Also, since al and a3 are distinct elements of d - C, Ial - 
a3(>minD*>m+t, where m=maxFi. Hence Id~-d3~=I(a~-c~)-(a3--Cg)l=I(a~- 
a3) - (cl - c3)1> Ial - agl - ICI - c3( >(m + t) - t = m, in contradiction to the fact that 

Jdl - d3 I bm. Thus, this case cannot arise. 
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Case 4: By symmetry, the only remaining case we need consider is where al ,a2,a3 
are distinct elements of Cl = t\C’o, and Case 1 does not apply. Split up the elements 

of Ci into those of the form bd for some d E D’ and those of the form bd + d for some 

d E D*. By the pigeon-hole principle, there must be two elements of {al,aZ, a3) of the 

same form, say bd + d. (The case where there are two of the form bd is similar.) Say 

thatat=bd+dandaz=b,+e,whered,eED*.Thene#d sinceal#az,sob,#bd. 

By reindexing if necessary, we may assume that bd > b,. Since Case 1 does not apply, 

ci fbd. Therefore, cl,~~EC~U{b,:pED*,b,<bd}U{b~ + p : pED*,b,<bd}. By 

making bd much greater than t and all bp with bp < bd, we can ensure that dl is much 

bigger than d2 and, in particular, that d 1 - dz > m, a contradiction. We omit the routine 

but tedious details. 

This completes the proof in the absence of the requirement that 161 >s. This require- 

ment may, obviously, be met by adding to C as defined above a sufficient number of 

large, far-apart elements. Specifically, any differences between these new elements or 

between these new elements and old elements should exceed s and max U:‘, F,. 0 

We now give the construction. Let A, be the set of numbers enumerated in A before 

the beginning of stage s of the construction. At the beginning of stage s we will have 

a set C, with IC,] 2s which is disjoint from A, and is our current approximation to 

1. Then D(C,) fl [O,s] is our current approximation to D(A), and, in fact, we will 

have D(A) n [O,s] = D(C,) n [O,.s]. Since the construction is effective, this implies that 

D(A) is computable. Also, at the beginning of stage s we will have a finite set L, of 

3-element sets such that C, contains no translate of any set in L,. 

For each e and s with e <s, let r(e, s) be the least number Y such that ] C, n [0, r] ] 2 e 

and for each d E D(C,) n [0, s] with d 6 e there exist u, u E C, fl [0, r] with d = u - u. 

Such a number r must exist because e 6s 6 ]C, 1. For completeness, define r(e, s) = s 

if e >s. The number r(e,s) (for e <s) represents the “restraint” that the positive re- 

quirement P, must respect at stage s, i.e. P, should not cause any number xd r(e,s) 

to enter A at stage s. The number r(e,s) reflects not only the need to satisfy the neg- 

ative requirements Ni for i de but also the need to ensure that each number d <e in 

D(C,) n [O,s] for infinitely many s is in D(A). 

A requirement P, requires attention at stage s if it has never previously received 

attention, r(e,s) <s, and there is a set F such that IFI = 3,F 5 We.$, and C, n [O,r(e,s)] 

contains no translate of F. 

Stage 0: Initialize the construction by letting A0 = CO = LO = 0. 
Stage s, s > 0: Let e be the least number such that e <s and P, requires attention 

at s, if there is such an e. Fix a finite set F which witnesses that P, requires atten- 

tion, and let L,+, =L, U {F}. Apply Lemma 7 with C= C,, s as in the construction, 

{P,,...,P,}=&+, and t = r(e, s). Let C,+i = C, where C is the set asserted to exist 

by Lemma 7 in this context. Let A s+~=A,U{z:z<s&z~C,+~}. SaythatP,receiues 

attention at s. If there is no e<s such that P, requires attention at s, proceed in the 

same fashion, but let L $+l = L, (rather than L, U {F} as above). This completes the 

construction. 
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We must now show that A = Us A, has the desired properties. This is a straightfor- 

ward “wait-and-see” argument. First, it is obvious that A is c.e. and each requirement 

P, receives attention at most once. An easy induction on s shows that A, n C, = 0 for 

each s. Also, it follows from the construction that if u E,& then u E C,+i for all s > U. 

Given e, choose SO 2 e so large that no requirement Pi with i de receives attention after 

stage SO. Let ro be the least number Y such that ]C,, f? [0, r]] = e. Then r(e,so) > r,-,, and 

one may show by induction on s that r(e, s) Z ro and that C, n [0, ro] = C,, 0 [0, ro] for 

all S>,SO. Hence, C,, n [O,ro] is a set of size e which is disjoint from A. Since e was 

arbitrary, it follows that 2 is infinite. 

It is easily seen that if e 6s and r(e, s) # r(e, s + 1) then some requirement Pi with 

i <e requires attention at stage s + 1. It follows that lim, r(e,s) exists for each e. 

Lemma 8. D(A) is computable. 

Proof. First note that if x ED(C,) for infinitely many s, then x ED(A). To see this, 

let SO be a stage such that no P, with e <x receives attention after stage SO. Pick s 2.~0 

such that x E D(C,). Then there exist u and v such that x = u - v and u and v are each 

in C, and d T(X, s). Then Y(X, s) = u(x, t) for all t as, and it follows that U, u E 2. Thus, 

x E D(A) as needed. 

Now, we claim that D(A) fl [O,s] = D(C,) fl [O,s] for all s. This clearly implies that 

D(A) is computable. By induction on z and the construction, if z >s, then D(C,) n [0, s] 
=D(C,)fl[O,s]. Hence, if x~D(C,)n[0,s], then XED(C,) for all ~2s. It follows 

that x f D(A) by the previous paragraph. This shows that D(C,) f? [0, s] g D(A) 17 [O,s]. 

For the reverse inclusion, assume that x E D(A) fl [0, s]. Let x = u - v, where U, v E 2. 

Then, for sufficiently large z, we have U, v E C,, so x E D( C,) n [0, s] = D( C,) n [0, s]. 0 

It remains only to show that each positive requirement P, is satisfied. Assume that 

W, is infinite. Then W, contains a 3-element subset F such that no translate of F 

is contained in [0, Y], where Y = max, r(e,s). Thus, P, eventually receives attention. 

(If not, it requires attention through F at all sufficiently large stages and thus must 

eventually receive attention.) If P, receives attention at stage si through F, then F EL, 

for all s >si , and (by induction on s) C, contains no translate of F for all s >si . Now 

choose s2 >SI so that, for all s >s2, every member of D(A) 17 [O,e] is in D(C,). Then, 

by Lemma 7, for all s>sz, every translate of -F in D(C,+l) is in D(C,). Thus, there 

are only finitely many translates of -F contained in U, D(C,). But U, C, 22, so there 

are only finitely many translates of -F contained in D(A). However, since F 2 W, 

and W, is infinite, there are infinitely many translates of -F contained in D( W,). This 

shows that D(W,)#D(A) and completes the proof of the theorem. 0 

Schmerl [7] has shown that the “dual” of the preceding theorem holds, i.e. there 

is a computable set which is the difference set of a c.e. set but not of any co-c.e. 

set. 



R. Downey et al. I Annals of Pure and Applied Logic 93 (1998) 63-72 71 

4. The difference operator and arithmetical sets 

In this section we show that the family of arithmetical subsets of o is generated 

from the computable subsets of w by the difference operator and Boolean operations. 

This is not too surprising since the difference operator is analogous to the existential 

quantifier. However, it is unusual to generate the arithmetical subsets of w directly, 

without also generating the arithmetical subsets of & for all k. 

Theorem 9. The family of arithmetical subsets of o is the smallest Boolean algebra 

of subsets of o that contains every computable subset of o and is closed under the 

difference operator D. 

Proof. Let 9 be the smallest Boolean algebra of subsets of w containing all com- 

putable subsets of o and closed under D. Obviously, 9 is contained in the family of 

arithmetical subsets of o. To obtain the reverse inclusion, it suffices to show for each 

n that if every II,, set belongs to 9, then every C,+t set belongs to 9. Let A E En+,. 

Then 

A = {x : (3s)[(x,s) E C]} 

for some n, set C C w2. 

(3) 

We will define two computable functions ki(x,s), kz(x,s) and set 

Ci={ki(x,s):(x,s)EC}U{k;(x,s)+x:(x,s)EC} (4) 

for i = 1,2. We will have that ki(x,s) 3 max{x,s} for i = 1,2 and all x,s E w. Hence, 

Ci, C2 will each be II,, since, for all u E cr), 

uE Ci ++ (h)<,(3s)<,[(u=k,( X,S or u=ki(xys)+x) & (x,.s)EC]. ) 

Finally, we ensure that 

(5) 

A=D(CI)nD(C2). (6) 

Since each C, is 17, and hence is in 9 by hypothesis, the above equation implies that 

AE9. 

It remains to define ki , k2 with the properties specified above. Note that A C D( C1 ) n 

D( CZ) regardless of the choice of kl , k2, as may be seen by considering differences of 

the form a - b, where a = ki(x, s) sx and b = ki(x, s). Now, for i = 1,2, let U; be the set 

of potential elements of D(Ci) which arise in other ways (i.e. the “unintended” potential 

elements of D(Ci)). More precisely, let Ui be the set of all numbers of the form la - bl 

such that there exist distinct pairs (x, s), (x’, s’) E o2 with a E { ki(x, s), k;(x, s) + x} and 

b E { ki(x’yd), ki( x’,s’)+x’}. Since D(Ci)cAUUi, to ensure that D(Cl)nD(&)=A it 

suffices to ensure that Ui n U2 = 0. This is done by making the functions kl, k2 grow 

sufficiently fast. 

The functions kl, k2 are defined simultaneously by stages. Specifically, define k,(x,s) 
at stage 2(x,s) and kz(x, s) at stage 2(x, s) + 1, where (. , .) is a computable bijection 
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from o* to o. When ki(x,s) is defined, finitely many new values are contributed to 
L$, specifically all those generated by the pairs (x, s), (x’, s’) with (2, s’) < (x, s). All of 
these new elements may be made as large as desired by choosing ki(x,s) sufficiently 
large. Thus, let ki(x,s) be the least number which exceeds max{x,s} and is such that 
all elements it causes to enter Ui exceed all elements already in Us_i. Then kl, k2 
clearly have the desired properties, and the proof is complete. 0 

We do not know whether every arithmetical subset of o is computably isomorphic to 
one obtained from a computable set by repeated application of the difference operator 

D and complementation. 
The following is a corollary to the proof of Theorem 9 obtained by omitting reference 

to the classifications of A, Cl, and C2 in the arithmetical hierarchy. 

Corollary 10. Every set A G o has the form D(C1 ) r-7 D(G) for some C1, C2 C o. 
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