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THE MAXIMAL ANGULAR GAP
AMONG RECTANGULAR GRID POINTS

ZOLTAN FUREDI (Budapest) and Bruck REzNICK (Urbana)
[Communicated by: Inre Birdny]

Abstract

Let A = {a1,...,0m} and B = {b1,... bu} be two sets of real nummbers.
Cousider the (at most) mn rays from the origin to the points (a;,by), and define the
aperture Ap(A, B) to be the largest angular gap between consccutive rays. Clearly,
Ap(A,B) > ﬁ’f—f; Lot f{m, n) denote the minimum aperture of any m xn rectangular
array, as defined above. In this paper, we show, that for sufficiently large n, flnm,n) <

%_}3-, so that f(n,n) = Q(n~?). We also show that f(m,n) = 7%% only wlen m = 2,

or n=2or (m,n)=(4,4),(4,6) or (6,4).

1. Introduction and overview

Let us define the aperture of an arbitrary point set P ¢ R*, Ap(P), to be the
supremum of the angles of the empty open sectors defined by P and centered at
the origin. If P is finite, then Ap(P) can be viewed as the maximum gap between
consecutive rays from the origin to the points of P. It is possible, of course, that
some rays overlap, but the Pigeonhole Principle clearly implies that
2r
[P{

In this paper we investigate the aperture of Cartesian products of finite sets.

Let A= {a) < - <ap}and B = {b < - <b,} betwosets of real numbers
and consicler the rays from the origin to the mn points {«¢;, b;). The eperture of A
and B, Ap(A, B), is the largest angle between consecutive rays. For example, if
A = B = {-1,0,1}, then there are & rays, equally spaced, and Ap{A, B) = 7/4.
Let

(1.1) Ap{P) =

Flm,n) = inf{Ap(A,B) : | A| =m, |B] =n}.
It is easy to see that f(3,3) = =/4. Suppose otherwise, and |4] = |B| = 3 hut
Ap{A, B) < m/4. Then each of the open quadrants kn/2 < 8 < (k+ 1)7/2 must
contain at least two points from A x B, and hence at most one point from A x B
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can have a coordinate equal to zero. This implies that 0 ¢ A, B, so A4 and B cach
have cither one positive and two negative elements or one negative and two positive
elements, and this immplies that one open gquadrant has only one point.

2

In section two we improve the trivial bound flmn,n) > == slightly, based on

the parity of = and » and using arguments similar to those of the last paragraph:

TUEOREM 1. The following lower bounds hold:

27r
fi2r,2s8) > —
f(2r28) 2 4rg’

2r
(1.2) FOr 25+ 1), f2r 3+ 1,26) > s
27
1
J@r+1,254 1) 2 ——.

We say that (A, B) is a perfect (1, n)-grid if its aperture is equal to the bound
given in Theoremn 1. It is shown in Lemma 3 that in this case, the angles of the rays
}H ~Yo<jen for suitable

are completely specified and are either {47 ' = Yocjen or {
N.

Observe that in any array, it tanfy = a/b, tanfy = a/V, tanfy = o' /b and
tanfy, = a'/V, then tan tan#, = tanfytan#y. Thus, any subrectangie of the
array induces an identity in the products of the slopes of the rays. Using a theoremn
of Myerson [M] on the solutions to the Diophantine equation

sin{ “”)sm(r’"} = sin(<F) bm(‘”‘),

and a considerable amount of case-analysis, we are able to determine the perfect
grids.

THROREM 2. Perfect (m,n)-grids exist for m > n precisely when
(m,n) € {(m,2),{m,3),(4,4),(5,5),(6,4)}).

In section three we examine the special case m = n, and even using the
restrictive assumption 4 = B, we give an explicit construction showing that the
lower bound given in Theorem 1 is the correct order of magnitude:

THEOREM 3.
(1.3) Fln,m) < .

Further, if » is sufficiently large (n > 16, 000, say), then “220” can be replaced
by “168”. Theorem 3 is done by first considering the angular sector 1/n < 4 < /4,
and then reflecting the construction eight-fold.

We conclude the paper in scetion four with a list of open questions.

The authors cotne to this problem from two directions. For the first author, |
this work fits into the context of the subject of discrepancy theory. In the last two
decades discrepancy theory, which originates mainty from the theory of Diophantine
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approximations in number theory, has found interest and applications in geometry,
probability theory, ergodic theory, computer science, combinatorics. See the book
of Beck and Chen [BC)], the chapter from the Handbook of Combinatories [BS}, or
Vera 8és’ survey [S].

Orne of the basic problems in geometric and number theorctic discrepancy
theory is to find regular distributions of discrete objects, like a finite set of numbers
or points in a region of the Euclidean plane. A large number of classical results
can be formulated in this language. For example, it is obvious that an equidistant
set, of fractions with gaps exactly 1/n supplies the least inregular n-set in the unit
intarval. But as conjectured by van der Corput and proved by Aardenne-Ehrenfest
and subsequently improved by K. Roth, by Davenport and others, there is no such
well-distributed n-set. s, in the unit square; one can always find an aligned rectangle
R which contains more than p{R)n + evlogn or less than p(R)n — e/Togn points
of &, where ¢ is an absolute constant, and p denotes Lebesgue measure (see [B] for
detdlls).

The motivations of the second author lic far from discrepancy. In the course
of solving Waring’s Problem in 1909, Hilbert proved the existence, for all positive
integers n and k of rationals /\j >0 and a; € 2" so that

(1.4) (x] + -+ a2 z Ajlogrzy 4+ + T

Hausdorff [H] almost immediately gave a constructive proof of these identities using
Hermite polynomials; in his construction. there are only &+ 2 distinct age’s, or k+1,
if the restriction to Z" is relaxed. (These bounds do not depend on n.) Hausdorff’s
construction, however, is not best possible in this regard; for example there is a
representation of (z% + -+ + 22} in which «yr € {—1,0,1}. One way to find an
absolute lower bound is to set @ = 0in (1.4) for £ > 3. Consider the following
special case:

(1.5) (x* + %) ZZ)‘U(“ @+ ajy)?F

i=l ja)

It is not hard to show (see eg [R, p. 108]) that (1.5) is equivalent to a quadrature
formula for hemegeneous polynomials A, y) of degree 2k:

(1.6) % ' Dm h(cosé,sin#) d = 277 (2;) i} JZI Aijhlag. a;).
=1 j=
Write (a4, a;) = ri;(cos @y, sinfyy) and vy = Ayj s0 {1.6) hecomes
(1.7) L o h(cos,sin ) do = 272F (2};:) i i vih(cos t;;,sin8,;).
3 Jo k) 2 =tk 'E J
There exist homogeneous polvnomials /o which are spherical Lharmonics, so that

e exist homoge
the integral in (1.7) vanishes, hut “which are positive on “most” of the interval
[0, 27]. This quadrature formula is contradicted unless, in every case, we can he
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assured that at least one 6;; belongs to the small intervals of negativity for h. For
more details, see the forthcoming [R2]. Unfortunately, Theorem 3 shows that we
cannot automatically assume a larger discrepancy than expected, and so the original
purpose of the investigation has proved to be unfruitful in its application.

2. Sharpening the lower bound, and perfect grids.

We shall say that a sct of real munbers A is balonced if it containg as many
positive as negative numbers {(and, so, 0 € A if and only il | Al is odd.} For positive
integers m and n, define L{m,n) by:

(2.1)

F.09 9eY == Are (9 D¢+ 1) o= [+ 1 D6y = dpe L 2 TA2r 1] 261 1Y =4dre s 4
L{2r, 28) Ars, LiZr 284+ 1) = L{Z2r+1,25) drs+2, L(2r+1.25+1) rs+4,
THEOREM 1. For all integers m and n,
Ir
m,n) 2> ————,
flm,n) 2 Lim,n)

IfAp(4,B) = m, then there are exactly L{mn,n) distinct and evenly spaced rays
from the origin to A x 5 and both A and B are balanced.

Proor. First suppose that m = 2r and n = 2s. There are at mnost —1? & 1ay8,
and a total angle of 27, so the lower bound is iinmediate. If Ap(A, B) = H then
the angle botween any pair of consecutive rays must cqual the aperture. Suppose
now without loss of generality, that 4 and B have at least as many negative elements
ag positive clements. To be specific, suppose A has & < » positive elements and B
has £ < s positive elements. Then there will be &£ rays in the first quadrant which
form the boundary for b€+ 1 sectors. These sectors cover the quadrant and possibly
more, hence (k€4 1) 27 21 > 7 This implies vs < kf + 1. But & < r and £ < s, 80
kE=rand f =s. Thus. .A (md B must, be balanced.

Now suppose m = 2r and n = 2s + 1 and first suppose that 0 ¢ B. Again, we
may assume without Inoss of generality that B has £ < » positive eloments. Consider
the 2rf rays with positive y component and the 2t + 1 sectors having at least one
bound among these rays. These sectors cover the upper half plane and more, and
so (2rf + 1)Ap{ A, B) > &, hence Ap{A,B) > —f;)t% > T,{”? It 0 € B, then we
may again assume that B has ¢ < s positive elements. The 2¢f rays with positive
component now bound 2rf + 1 sectors which cover the upper half plane (precisely
if A has both positive and negative elements - if not, then Ap(4,8) > !}, and
as bhefore, we obtain Ap(A,B) > 4:{1) > 1:3513 Thus Ap{A.B) > 1,—(2;)3—% it
equality occwrs, then 0 € B and there are precisely L(2r, 24 4+ 1) = 4rs + 2 rays
(those to the points in A x B with non-zero coordinates, plus rays in the positive
and negative x-directions), and they must therefore be evenly spaced.

Since f(m,n) = f(n,m), the only remaining casc is (m,n) = (2r +1,2s + 1).
This is handled similarly to the above. Suppose as before that A has & < » and
B has £ < s positive elements. If 0 is missing from either A or B, then the kf
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rays in the first quadrant ave edges of bound k€ 4+ 1 scctors with angle greatoer
than 3, so (rs + 1} Ap(A,B) > k(Ap{4,B) > 5. I 0 € Aand 0 € B, then

Ap(A,B) = W‘i}m’ with equality only when & = and £ = 5. d
We shall say that (A, B) is a perfect (m,n)-grid if |A| = m, |[B] = n and
Ap{A,B) = }ﬁ We show below that the angles of the rays in a perfect grid

P . | { oy 1 4] .
are determined by {(m,n) and that these induce identities among products of the

tangents of rational multiples of w. For this reason, we need to study the equation
2.2) tanatan 3 = tanytand < 1.
We shall assume without loss of generality that
{2.3) O<ao<y<do<B <3
Since tan ftan(% — 6) = 1, it follows immediately from (2.2) that
a+3, y+d<i
Levuma 1. If (2.2) and (2.3) hold, then in fact

LA & oy L
e (R &

|g]

=
~—
o)

e
~

——

[GE

Proor. Iftanftanws = A with t < w, then tant < v and u = arctan(A cot £,
andif welet @(t) =t+u=1t-+ ar(‘tan()\ cott), then
A~ tan® ¢t
A+ tan? t
hence @ (o) > E(v). W

(1) = —(1- A)

LEMMA 2. If (2.2) holds, then
(25)  sin(f — {8+ a))sin(f ~ (8 — 7)) =sin{§ — (B —a))sin(§ — (6 + 7))
where

(2.6) 0< i —(F+a)<

[

{0+, T-B-aj<i-(6-7)<i.
PrRoOF. We have

2sinasin 8 coa(J’ —a) — cos{a + 53)
2eosacos cos(B — a) + cos{a + 3)

tanatan 3 =

and similarly,

cos{d — v} — cos(y + 6)
cos{d -~ ) + cos(y + &)
After cross-multiplying and cancelling like terms, we obtain

tanytand =

cos(c + ) cos(d — v) = cos(f — ) cos(y + ¢).

We now reduce using cosx = sin(§ — ) to obtain (2.5). The inequalities in (2.6)
follow from (2.3) and (2.4). 0
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The reason we have recast our problem in this way is that (2.5) was completely
analyzed by Myerson [M, p. 80] when the arguments arc rational multiples of .
First, consider the identity

(2.7) sin Z sing = sin % sin (£~ £) .

MYERSON'S THEOREM. Suppose
(2.8} sin e sin oy = sinwag sinmwry.

There are only finitely many solutions to (2.8) other than (2.7), n which the x;
are rational nwmbers sabisfying 0 < a2 < 23 < 24 < 22 < 12 — in the following
numbered list, =, 1y, 1y and xy are given in order:

1. 1/21 8/21 1/14 3/14
2. 1/14 5/14 2/21 5/21
3. 4/21 10/21 3/14 5/14
4. 1/20 9/20 /15 4/15
5. 2/15 7/15 3/20 7/20
6. 1/30 3/10 1/15 2/15
7. 1/15 7/15 1/10 7/30
8. 1/10 13/30 2/15 4/15
9. 4/15 7/15 3/10 11/30
10. 1/30 11/30 1/10 1/10
11. 7/30 13/30 3/10 3/10
12. 1/15 4/15 1/10 1/6
13. 2/15 7/15 1/6 3/10
14. 1/12 5/12 1/10 3/10
15. 1/10 3/10 1/6 1/6
For reasons that will become clear IiLLtJ. woe make the foliowiug C(‘JI"{")H?‘JT}’:‘

COROLLARY 1. Suppose N is a positive integer. The only solutions to the
equations

(2.9) tan % tan %% = tan 2T tan 8% i
Py

{LTLeh

o 3T 4
(2.10) tan % tan 47 = tan 3T tan 8T,
where Nf2 >0 > b > 1, are given by
. ) e T 4

(2.11(1)) tan f—o tan 30 = tan 2T tan 37,
(2.11(1)) tan 5 tan T = tan 22 tan &%

307
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and
(2.12(1}) tan g tan ﬂg‘l‘lﬁ = tan 2 tan U‘—%—Pi
(2.12(ii)) tan f5 tan % = tan I tan 2,
(2..12(iil)) tan & tan 27 = tan ¥ tan 12
Proor. Let 7 =2 or 3. Then (2.9} or (2.10) is an equation of the form (2.2)
with

Henee by (2.5),
(213)  sin(3 - SR (g - ) = sing - gl sin(g — ),

We now apply Myerson’s Theorem. The equation (2.7), which is a disgunised version
of the double-angle formula for sines, is equivalent to

(2.14) Lan:r;tau(% + ’r) = tan 3z tan (% + :c) ,
which is also amusing ety .
when o = +5 L, provided 6 dlvuic% N, (Hxis 11(’53(1t1\o we cancel the minus signs
in tanx and t.m 3x.) Letting N = 6k, we obtain (2.12)(i). For completeness, we
must actually check all 16 cases where the ratio of argnments on opposite sides of
(2.14) is equal to 2 or 3, but we never get a “new” solution to (2.9) or (2.10} with
]<b<a<]\'/2——1
Any other solutions ¢

= I *
Lemma 2, we may make h(», follow1 ng i dcntlfu,dtlons

a0
LCLILL €4 IR

t o

,
o
)
-
2
ol
§
in
&

appear i the list of singular cases. By

Lady LU Apd

o 1 (ntl} R R (ot} e oyl = JL _fa—l) L (b))
mEy -y, mEy g {rm) =-S5 oy g
E a9 . R
Hence % =3 — 2y or 24 — 2 and JF = @y — @y Or Tz — x3 respectively. Hence it

suffices to look at the list of ‘-slll}__JIllrLI' golutions for those in which Jﬁ—} or -i“—'?
are equal to 7, which is 2 or 3. This occurs in equations 9, 11, 12 and 135, leadlng

to the singular solutions shown in (2.11} and (2.12)(ii) and (111). O

We now give some constructions of perfect {m,n)-grids, adopting in this sec-
tion the convention that m > n. These will turn out to bc the only examples.

If n =2, then f(2r,2) = ;1—" and f(2r +1,2) = ,LJ 5, hence f{m,2) = f,” in
either case. Let A4 = {cot 2"’—)”1—)—3 1<j<m}and B={-1,1}. Then therc will
(24—

me

. 2q—
be rays with argument T above the z-axis and 7 + % below the z-axis,
2

and these constitute 2in = mn my% with common 'cmgular separation =~

2" o
If n = 3, then f{2r,3) = 4.+> ancl f2r+1,3)= h+4, hence f(m, 2} = 5255
in either case. Now let A = {cot =

1<) <m}pand B={-1,0,1}. Then
the rays above the x-axis have argument E{ZCT’ 1 € j € m, and those helow the
x-axis have the same arguments plus #. There are two rays on the z-axis, which
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j T

have arguments 0 and 7, and together these give a complete system of angles 2 rl
0<y3<2m+ L

We have f(4,4) = £ Let A = {£lttanZtan?7} and B =
{x tan Z 4tan 37}, Then the fom rays i the first quadr dnt hdw slopes tan

tan 3T and their reciprocals, tan § In (Lnd tan $%. Repeating in the other four quad-
1a1‘1ts we see that the 1(1\,5 thC dng]u “’+1 .0 <7 <15 and so (A, B) is perfect.
Similarly, f{3,5) = - Let

A={0,%1, & tan 7 tan 2T m

= {0, & tan 5, & tan 3£},

Then the four rays in the first quadrant have slopes tan ¢ :
lg and tan 2Z. There arc rays in the four (lno('rmm of the axes, and
afl.ot mﬂectlon, we see that there are 20 rays evenly spaced with angle 5.

Finally, f{6.4) = {5, and let

0‘3

tan =

ban £ 39 3 9
A= {:f:tdn_}a,:i:].:itan;ﬂ ! B={:tt&ul§%,:btduﬁ}
2 1157

Once again, by symmetry, it suffices to look at the first quadrant. Using the identity
tan(Z —#) = (tanf)~!, we see that the rays to the points {a;,d;) have slopes

tan? 42 tan 55 .
{2.15) tan o7, tan i—z{ ;Tl , ,“‘4‘” . tan i—’;, tan iff
tan 55 tan® 5% - -

oo U

But upon tamnb (2.12)(1) Wltll the pOSlthC sign and k=4, we see that tan s tan 5r =
tan 37 2 Ttan 57, and since tan 27 ‘ran 57 = 1, the middle two numbers in (2.15) are

tan 3% 55 and tan L 55, as desir ul.

We now show that the pattern of angles illustrated by these examples is the
onty p()&;qibilit'y for a perfect grid. For convenience, we assuine that if 4, Bis a perfoct
(m,n)-grid, and one of m and » is odd, then n is odd, temporarily suspending the

assurnption m < n.

LeMMA 3. If (A, B) is a perfect (m,n) grid and n is odd, then the erguments
of the rays from the origin to AxB are contained in {;m < F<Lim,n)—1}.

If m = 2r and n = 2s, then the arguments of a perfect (m,n)-grid consist of
(QIHUT . < 5 < dps — 1),

4rs

ProoF. The first assertion is immediate from the fact that in a perfect grid,

if 71 is odd, then 0 € B, so one argument is 0, and they are separated by [(,)J >

For the sccond statement, suppose m = 2r, n = 25, and A = {a;, —¢; 1 1 <i <
r}and B = {b,, _d 21 <.j < s}, where a4, b, ¢i,d; > 0. Farther, let A = [1; e
D = H d Suppose the ray with the smallest argument
/ 1 /

N T 11 PRl T i PR 1
.J_H. WE WISII TO sNOowW Lhat 7 = ppopg 1T we Take thie
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product of the slopes of all the rays in the first quadrant, we obtain the formula

re-L L. B
H tan(f + ££) = H H e . ;m
f=-Q gl == l
There are three other formulas, found from the other three quadrants:
Zprg—1L b -
Yi
H [tan(f + 4 72=) H H C’“
f=rs i=1 j=1
Brs—1 (i’ Dr
[T oo 220 =1111%
i=2rs =1 j=1
Aprs—1
IIumw+p_|vH[1
{=3rs i=1 j=1

tan -+ 7 /2| = (tana) !, it follows from the foregoing that
BJ' Cé DJ' ‘45

Pl o T
Since the product of these four fractions is 1, i¢ fo]lo“s that each fraction is itself
equal to 1, hence

Since

rs—1
Fi(8) H tan{f + ,,H)
Pasi)
Observe that F is strictly increasing on (0, 577 ). By paiving off the terms for £ and
rs — 1 — £, we see that F'(5z) = 1. Thus 6 = . 3]

THEOREM 2. There are no perfect (m,n)-grids with m > n unless m = 2 or
3, or (m,m) € {(4,4),(5,3), (6,4)}.

Proor. Suppose (m,n) is given and (A, B) is a perfect (i, n)-grid with m <
n. We have already shown thai perfect (m, n)-grids exist in the listed cases.

We first show that there are no other perfect (m, n)-grids with m,n < 6.

Suppose (A, B} were a perfect (4, 5)-grid, and write A = {a; > ay > 0 > a3 >
ae}and B ={b > b2 > by = 0 > by > bs}. By Lemma 3, the angles of the rays in
the first quadrant are {j5 : 1 < j < 4}, hence

(2.16) {f’j < ﬁi, fm < 2—‘2} = {tan T, tan 2™ = T tan 87 o tan 9
This implies that tan § - tan 4; = tfmT tan 2& %, but this is numerically false
(2.064.. # 1.453..) (We cannot apply the Corollary because § + 'l > 5)

Similarly suppose (A, B) were a perfect (6, 5)-grid, aud Wuto ={a > ay >

a3 >0 >ag > a5 > ag) and B={b > bs > b3 =0 >4 >bs}. By Lemnma 3, the
angles of the rays in the first quadrant are {5 : 1 < j < 4} and

17)  {Z1<i<si< <2} = {an g e ran S}
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Of ali the fractions ﬁ—’ clearly the smallest two are fjj and either £ 2 or (—’ﬁ and the
largest is 4 Hence the algebraic identity ba by — Ei% implies that

[CN %) [i2)
B bir
(2.18) tan Z tan 42 = tan 35 tan &,
. L)
with @ < 5. Since (”Tgh < Z, the Corollary states that no solution to (2.18) exists,
so no perfect (6, 5)-grid exists.

VT

>

Finally, suppose (A, B) were a perfect (6, 6)-grid, and write A = {a1 > az >

gy > 0> aq > as > ag) and B = {by > by > by > 0> by > b5 > bs}. By Lemma 3,
we have
2.19 "7 1<i<3,1<5<3}={tan X, tan 35, tan F
(2.19) i i = 36 "8l 55 36
We must argue more ("ru'e-fully here than before because of (2. 11){1) Again, we can
conclude that b‘ = tan 5% and either Hi or 2—1 is equal to tan ; hence

b;; b b; b)

= = ——— = tal g tan gy = tan gy 3” - tan 5% ’”’

(L (s Ts (1)
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This implic«s that {a,b) = (11,5) or (a,b) = (13,7). Since 22 « &2 b b we must

az az’? an? oy
have & o= < tan laluT’ so the latter is impossible. But if "'; = tan L;—B’i t.hen we must
have
[)1 ba bl bz
— = = = m=ptan AT fan HE = tan Tt Lz

thy U sy g
which is numerically false (16.324 # 8.003). Hence no perfect (6,6)-grid exists,
The general argument follows the pattern of the last two examples. Suppose
first (A, B) is a perfeet (m,n)-prid, where n = 25+ 1 is odd and m = 2r or 21+ 1 is
either even or odd, ». s > 2, but (r,s) # (2,2). Wiite A = {ay > -+ >0, > 0...}
and B={b > - > by > bey1 =0 > ...}. Observe that L(m,n) = 2¢ is even in
any case. By Lemina 3, we have

(2.200) {%J— 1 << 1 <3< .s-} = {mn T, tan 2E ... tan W‘IB/“) ”}.

7

. . . b; : b ; :
As before, the smallest fractions -2 are %1- and either 2 or = H’ , and the largest is
:%. Hence

by by be Dy
(2.21) el 2 Bl ey tan T tan AT = tan 27 tan 2T

ay € a3 0
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AN

[\

Since (r,5) # (2,2), a < [(t — 1)}/2] — 1, hence a + 1 < #/2, and the Coroliary may
be invoked. There is no solution at all to {2.21), except in the special case where
t = 30, hence L{m,n) = 60. Since 4 | 60, this means that m and n are odd, and
4rs + 4 = 60 implies that rs = 14. Since r,s > 2, this gives cssentially one case -
(m,n} = (5,15).

Suppose (A, B) were a perfect (5,15)-grid. With the notation as above, (2.20}
and {2.21) become

(2.22) {"” 1<1<21<7<‘s}—{tanm,mn S0 ldn“" .

b'? b( I)H I)(
(2.23) T = — tan L tan & = tan 35 tan 4%,
aL sy

i

where (a, ) = (7,4} or (11,8). Now 9'; < f—:j for 1 <4 <35, hence @ <9, Thus

by @
— =tan &, — =tanZf, .
Li‘/l L 2 2 L (142 (Ll J

b b(;
2L o {tan -,i,’,t[m



THE MAXIMAL ANGULAR GAP AMONG RECTANGULAR GRID POINTS 131

o _~&/INe~_ e

But, if tan % = f—:l then there will be five other equations

be b be b
2.24 — = 12 — tan L tan SF = tan : ” tan LT
( ) a2 iy €1 30 30 SO
for 1 < j < 5, and the Corollary says that at most two other identities such as (2.24)
may exist - with (a;,b;) = (11,8), (14, 13), the latter coming from the violation of
the @ + 3 < % constraint. This is impossible, so we must have
bﬁ A 1)7

27
tan =5 = — tan oz = —.
30 a 30 az

Since tan % < %L < 2 o=, we must have tan 2% & = i—:? But then,

by by b7 bs
(2.25) TETE tan 45 tan 5z = tan 42 tan 37

£ i fln ‘50,

After taking (2.11)(i) with the negative sign and & = 5, we see tha.t {2.25) implies
that ¢« = 9. To rec ,apltulaw, at this point, we hawe 1dr,nt1f19d - as tang—r’; for
(a;, b;) = (7,1),(6,1),(5,1),(7, 2) (6,2),(5,2) with & = 1,2,3,4, 7l 9 respectively.
The next ray has gng,umont tdn % and must be the smallest —L with j < 4; hence
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it is 2—’: Finally,

(2.26) br b = br by = tan g5 tan §§ = ta.n L tan 22,
iy U9 a3z ay

But a computation shows that (2.26) implies @ = 11.29.. is not an integer, and at
long last, we've shown that there is no perfect (15,3)-grid.

Suppose now that (A4,8) is a perfect (m,n)-grid, where m = 2r, n = 2s,
m > n > 2 but {m,n) £ (2.2),03,2). Write 4 = {a1 > --- > a, > 0...} and
B={b > - >0bs>0>...} Observe that L(m,n} = 4rs and by Lemma 3, we
have

: . 95—
{2.27) { Lo1<i<rl <5< } {tan =, tan i, tan (3'—;,})_”-}
As before, we can argue that tan 77— = 2—1 and tan 3% e = I'ﬂ—’ll or b‘;;l , and

b b —1 by by

{2.28)} Je Tt o 3 eml o pap I s tan 7 = tan 2T tan :”’
ay s (1] re e

Observe that "J” > ”“q‘ when 1 < § <s—1and 2 <4 <r. Thus, there are at least

(r - 1)(s — 1\ — 1 =rs —»r— g rays in the first (;Lg_.d_r nt with angle greater than

-b“ . and so0

as

(2.29) a<2r+2s-—1.

If (2.12)(i) holds with (2.29}, then Gk = 4rs and 2k £ 1 < 2r + 25 — 1, hence
(2.30) Ars =6k <6r+6sF3 = (2r—3)(25—3) <9F3

It is easy to check that the integer solutions to (2.30) for r > s > 2 arc {2,2), (3,2),
(4,2), (5,2), (6.2), (7,2), (3,3). Since 4rs = 6k, rs is a multiple of 3, and the only
undiscussed case is (r,8) = (6,2}, for which we must have k = 8 and the negative
sign. The identity is

- tan 37 tap T
ta.n 43 = tan gy tan o5
— br 157 et ri,,_ b ba i
and =tan j5, > = tan g and either 2% or 28 is equal to tan CIf = tan g,
then dl’l argument identical to (2 24) shows that thex e are too mdny identities of the
form (2.10), hence :—:— = t(m . But now the same argnment shows that we must
have [" = a,n-m bt
b(—j b4 Z)(; b4
(2.31) —— = —— = tan fgtan §5 = alngtdn T
Ty (i3 2y (1)

But a computation shows that (2.31) implies a = 18.29.. is not an integer, and so
there is no perfect {12,4)-grid using (2.11}(i).

In the final case, (2.28) holds as a consequence of {2.11){ii) or (iii}, hence
drs = 60, so (r,s) = (5,3) and (2.29) implies that a < 15. This rules out (2.11}(iii)
and we are left with one more calculation. We are con‘;idpring a perfect (10,6)-
grid, and as before, f:': = tan J, %1 = tan BT, with {&= = {tan 3 tan 32}

ﬂ.)’(l]
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Regardless of which angle is which, we have tan &7 = 9% or "’1— and the appropriate
rectangle leads to one of two possible equations:

am 771' bt AT ik
(2.32) tan g tan &5 = tan ¢& tan 2%, tan 5 tan gF = tan g5 tan 35,

But a final computation shows that (2.32) implies @ = 21.205,b = 16.66, and so
there are no perfect (10,6)-grids. A

Lot us conclude this section with a conjecture. Call an (A, B) grid equian-
gular if the angular gaps between any consecutive rays arc exactly 2w/N. Beside
the equiangular grids described in Theorem 2 one can have the following example
A =B :={0,%1,+tanZ} where N = 16. We conjecture that thesc are the only
equiangular grids, (or at least there are only finitely many more).

3. An asymptotically optimal upper bound when m = n.
The key to our construction is the following Lemma.

LEMMA 4. For each integer n > 2, there exist sets C and D, with |C| < 3.613n
and |D| < 2.861n such thot the rays fmm the origin to {(,,d } lie in the sector
arctan(1/n) < 6 < x/4 with consecutive angle al most 1/n%.

Proor. We define ¢ and T as unions of short arithmetic progressions. Let
{a,a+d,...;by:={a,a+d,...,a+rd}, where e+rd<b<a+ (r + 1)d;
this contains f[’—l}‘i] elements. Now let

n—1
(3.1) C= U{m 2430, G+ Dt u (R,

=1

(3.2)

D= U {n? +nvi— 1Ln* +nvi—1+1, oot Vvl u(nt +avn - 11
fe=1
We have
=1
LC|—1+Z[ Al <14+ (n-1) +nz 2 - +2.612375.n < 3.613n.
i=1

Furthermore,

n—1

D=1+ S [EYEDY e 14 (n - 1)+
D Z[ ! n; \f+f—

=n + 1.8600251...n < 2.861n.

i=1

Next observe that, if 0 < u < v < 1, then by the Mean Value Theorem,
v — w > arctano — arctanu. It therefore suffices to show that if 1/n < w <1, then
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there exist ¢ € C and d,d" € D so that

d' d d d 1
~<w<— - = — < =5,
c « =

because this implies that the sector containing the ray with angle arctanw has
angular measurce less than 1/n%.

For a given w < 1, we will investigate the first coordinate of the intersection
point of the lines y = wx and y = n®. Definei by i < 1/w < i+1, with 1 <4 <n-—1.
Then in? < n° fw < (i + 1}n?, Lence there exists ¢ € € so that

¢— i < ’“:; <
hence
n? < we < n? + Vin.
Hence theve exist d,d’ € D with 0 < d — d' <4 50 that d < we < d. Thus,

d’ d d i 7 1
Swso LTS I<iET

— .

[

Proor oF THECREM 3. We show that for all n
1

(2D
220 168

Here the right hand side is less than =% for n > 110, and less than — for n >
16,000, For n < 110 the n x n integer grid {(¢,0) :n/2 < a,b < nf2} has aperture
2=1 which is less than 220/n°.

To prove (3.3) let

(3.3) Flnn) <

Ap =8B, =C,UuD,U~C,u =D, U{0,n,—n}.

Then [A,| = |B,] < 12.95n + 1. We shall show that Ap{A4,,,B8,) < 1/n»2. Thus, if

we let m = | %=L 1 then f(n,n) < 1/m? For n sufficiently large, we obtain the
L12.0954° FAACES LY I :

hound announced in the abstract.

By considering the eight scts of rays to the points (+¢;, +d;) and (£d;, *¢;),
we see that the full range of angles has been covered with the exception of four
narrow sectors of width 2arctan(l/n) < 2/n, centered in the direction of the axes.
By symmetry, it suffices to consider 0 < 8 < 1/n, and once agaiu, it suffices to show
that there arc rays whose slopes differ by at most 1/n? covering the sector.

There are rays to (n, 0}, (n®,n) and to {¢,n) for every ¢ € C. This hits the
positive w-axis and the smatlest slope which appears is n/n® = 1/n?. The difference
between slopes for consecutive ¢; is

T n nleip —e) | nitin 1
- = < GG < '—'—D
1 [+ CiCi41 ('I,ﬂ")‘ n=
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4. Concluding remarks, further distribution problems

The natural extensions of the work of Section 2 would be to compute f(m,n)
for other values of (1n,n) and perhaps find characterizations of (A, B} so that its
aperture is at least locally minimized with respect to perturbations of the elements.
In terms of the original prohlem, it would be interesting to determine the dimension
of the vector space over Q spanned by {tan {\—Tf 1 <j < N/2Y

The natural extension of Theorem 3 would be to extend this upper bound by
constructing an m x n grid, P, with Ap(P) = O(1/mn). In [FR] we shall do this
for m!'/? << n < . We think that such an upper bound does not exist when the
ratio of 1 and n is extremely large.

We were not able to establish any significant improvement on the trivial lower
hound, One can conjecture, that, indeed, for large n, f(n,n) > (1 +<)2x/n* for
some absolute constant ¢ > 0,

We do not have any information on the global distribution of the n? directions.
We conjecture, that its {classical) discrepancy is very large, maybe even Q(n?). This
means that for some fixed € > 0, for every grid one can find a small sector with angle
a, such that the number of directions from P in that sector differs from {(o/27)n?
by at least en”.

The obvious example, the integer lattice {—n,—(n —1},....-1,0,1,...n)%,
has many huge gaps, of order O(1/n), not only between the direction 0 and
arctan{1l/n), but near arctan{a/b) for small b. It has very dense and relatively
thin sectors, and ifs discrepancy is really 2(n®).

Diamond and Pomerance [DP] have studied the minimum non-zero gap be-
tween the directions of the set S(r}, the set of lattice points on the plane with
distance from the origin at most +. It is very close to 1/(r? — ), though the number
of directions is Q{r?).

We cannot even prove that the ratio of the aperture {maximum gap) to the
minimum gap goes to oo when e, n both tend to oc.

A general method in discrepancy theory is to obtain an estimation from the

discrepancy of the {of a) random structure. Indeed, if we select a random n-set
(for € and D) from the members of the geometric sequence 1,4, ¢%,¢%, .. ., q'""”'2 tog
where ¢ = 14(1/n?), then one can generate a grid of discrepancy about O(log r/n?).
This example, with a more careful combination of random and intentional selection
leads to another example showing f(rn,n) = O(1/n>).
h on the striucture of the set A + A: where
als {(vectors), and 4 + A is the set of numbers of the
form a + o' with a,d" € A, see e.g., the books of Freiman [FF] and Ruzsa [Ru]. In
our problem we consider the angles of the fractions, which can be reformulated as
differences (or sums) in the exponent, thus Theorem 3. vields an example for an
n-set such that the maximum gap in arctan exp{ A4+ 4) is at most J(1/n7}. One can
think that the machinery developed for the 4 4+ 4 type problems can be used here.
Also, instead of considering the transformation arctan exp(-), it would be interesting
to investigate other elementary funetions.

4 is
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We also think, that further study of this problem can lead to an explicit
construction of a problem of Erdds and Purdy, solved by Alon [A], proving that the
size of the smallest subset S of the n x n lattice L such that the lines through at
least two of the points of 8§ cover L is between Q(n*/?) and O(n** logn).

All of the above problems have natural generalizations for higher dimensional
Euclidean spaces, and aiso for other normed spaces, whose study also could lead to
interesting phenomena.
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