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Abstract

3

It is known, that for a/most all n-vertex simple graphs one needs Q(n' ‘(Jogr) ™ ') extra
vertices to obtain them as a double competition graph of a digraph. In this note a construction is
given to show that 2n** are always sufficient. © 1998 Elsevier Science B.V. All rights reserved.
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1. Definitions

The double competition graph of a directed graph D == (V, </} is the graph G = (V. )
where xv e &(G) if and only if for some u, v € V((), the (directed) arcs wx. uy and ar,
vr€.o/(D). The double competition number of a (simple) graph, dk(G), is the smallest
integer & so that GU; (i.e., G and k isolated vertices) is the double competition graph
of some digraph. In most research only acyclic digraphs are investigated, but to obtain
the most general result possible, we omit this constraint. Double competition graphs
are also called competition-common enemy graphs. Generating each edge of G by two
new vertices one gets

dk(G) <214(G)l. (1)

The set of all (labeled) graphs over the elements {1.2..... n} is denoted by 4.
Obviously, |4" —=2(2). The statement “almost all graphs have property P~
therc exists a sequence ¢y, ¢a,... tending to O such that the number of graphs G & 4"
having property P is at least (1 — ¢, )2(5).

means that
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The neighborhood of x is denoted by Ng(x). As usual, w(G) denotes the size of
the largest complete subgraph in G. The chromatic number of G is denoted by y(G),
the complement of G is G. The induced subgraph, G|S, is a graph with the vertex set
SNV(G) and with the edges of G contained in S.

The system . ={$,S,,...,S5,} (where §; C V) forms a cliqgue cover of the graph
G=(V,6) if 6(G)= U, <,<,6(G|S;) and each induced subgraph G[S; is a complete
graph K(S;). The minimum possible ¢ is called the clique covering number, cc(G).
Adding ¢ + 1 new vertices, u and vy,...,v, to V(G), and defining a digraph D by
of i ={ux: xeV}U{xv;: x€8;,1<i<t} one gets the following improvement of (1):

dk(GY<1 + cc(G). 2)

A linear transversal system with parts {H,H,,...,H,} (where these parts are pair-
wise disjoint sets) is a system of subsets, ., of H := |JH; such that
1. [LNH<1 for all Le ¥ and 1<i<h;

2. the members of ¥ U{H,,...,H} cover every two-element subset of H exactly
once.
The existence of projective planes of prime orders (see, e.g., [6]) implies that for every
given system {H|,...,H}, there exists a linear transversal system . of size
|#]< P, ()
where p is a prime with pzmax {b,|Hi|,....|Hs|}. To prove (3) we simply take a
projective plane of order p, choose an arbitrary point, x, consider b lines 7/1,...,%

through x, put the set H; to £;\{x}, and restrict the line system of the projective plane
to | JH,.

2. Results

Competition graphs, since they were defined in the late 1960s, were a subject of
intensive research, see, e.g., the book of Roberts [9]. A number of basic properties of
double competition graphs can be found in Lundgren [8].

Kim [7] asked what is the maximum, dk(#), of the double competition number of
graphs G€ %", It is proved in [5] that for almost all simple graphs over n vertices one
needs Q(n*3(logn)~%?) extra vertices to obtain them as a double-competition graph
of a digraph. Hence,

dk(n)=QUn*(logn)~*?). (4)

The aim of this note is to give a construction showing that dk(G)<2s*3 holds for
every graph.

Suppose that GE€ %" is an arbitrary graph, and let V=V U---U}, (b=2) be a
partition of its vertex set. Let G; denote the induced subgraph G|V;. Let A; be the
chromatic number of G, i.e., the minimum number of cliques of G, covering all the
vertices of ;. Finally, suppose that p is a prime with p=max {b,h,...,h}.
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Theorem 1. There exists an acyclic digraph D with vertex set AUV UB, where these
three sets are pairwise disjoint, (ANB =90 and V N{(AUB)=W0), with arcs only going
Jrom A to V and from V to B, such that G (with the additional isolated vertices of
AU B) is the double competition graph of D. Moreover,

A| + |B| <(b*/2)max |V;| + max ce(G;) + p°.
The proof, an explicit construction, is given in the next section.

Corollary 1.
dk(GY<2n*?

holds for every graph G on n vertices.

Proof. Indeed, by a theorem of Erdds et al. [3], cc(G)<n?/4 holds for each G %"
Hence. (2) gives a bound for dk(G) smaller than 2n*? if n<20. For n>20 take the
largest prime p such that #n*3 > p > %n“. (Such prime exists by Chebishefl"s theorem. )
Divide the vertex set V(G) into b:={n/p]| almost equal sized parts, V =111 I,
(We have h< p.) Use the construction given by Theorem 1. We have max |} < p.
ce(G;)< p*/4 (by [3]), and an easy calculation gives the desired upper bound.

It is very likely, that a more carefully chosen partition of ¥(G) can yield a better
result. We propose the problem to prove dk(n)=o(n*?*).

Conjecture 1. dk(n)=O(n*3(logn)=2 7).
This Conjecture is true for almost all graphs.

Corollary 2.
dk(G)<O(n*3(logn)~2?)

holds for almost all graphs on n vertices.

Proof. Indeed, let b= |n'3(logn)~%3 . Divide the vertex set }'(G) into b parts, }* - I
- UV, of sizes (n/b)— 1 <|Vi|<(n/b)+ 1. The graphs G;:= G|V; behave exactly as
independent random graphs on |¥;| vertices. It is well known, e.g., [1]. that the vertex
covering number, i.c., the chromatic number of the complement, of a random graph
G; is O(|¥i]/log |V;]) with a very high probability. So it holds for a/l i simultaneously
with high probability. We get max{h, y(G,)....,2(Gp)} =O(n*(logn)™' ). Again.
using the construction given by Theorem 1, we get p=0(n**(logn)~' ).

The clique covering number of the random graph G€%* has been recently deter-
mined by Frieze and Reed [4] to be ©(k?/(logk)?). The lower bound is trivial. be-
cause w(G) <2logk holds with an extremely high probability. The previous best upper
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bound, cc(G)<O(k*(loglogk)/(logk)?), was due to Bollobas et al. [2]. According to
Remark 1 in [4], one can see that cc(G) is close to its mean value with very high prob-
ability. Again the independentness of the G;’s implies that cc(G,) <O(|¥;|?/(log|Vi])?)
holds simultaneously for all i with large probability. This implies max; cc(G;) <
O(n**(logn)~%7), resulting in the desired upper bound for dk(G). [J

It seems to me that there is some room to improve the lower bound (4).

Conjecture 2. dk(G)=O(n*3(logn)=*) holds for almost all graphs on n vertices.

3. The construction of the acyclic digraph

Here we prove Theorem 1. We can assume that each ¥ has at least two vertices as
otherwise the theorem follows from (2). We build the digraph D from four types of
arcs, o7 ;= .o\ U.ofr URB| U H,.

First, take b extra vertices {ay,...,ap} and let .«7; be the set of arcs connecting a;
to each vertex of ¥,

o ={ax 1<i<h, xeVi}

Second, for every 1<i<j<b take a |Vj|-element set {a;;(x): x€V;}, and connect
a; ;(x) to x and to all the neighbors of x in V}, ie.,

oy i=Ha; j(xx: 1<i<j<b xelj}
Ua; j(x)y: 1<i<j<b, xel, yeViNNg(x)}.

The set A:={a;: 1<i<b}U{a;(x) 1<i<j<b,x€V;} has b+, [Vil(b—1i)
elements, which is at most (b*/2)max|Vj|.

Third, consider a clique cover S; , C V; (1 <a<cc(G;)) of G, take m:=max; cc(G;)
extra vertices {wj,...,w,} and connect every vertex of | J, <i<pSi.z With an arc to w,,
ie.,

By ={xwy: XE Sj 4 1<i<h, 1<a<ce(G)}.

Fourth, consider a clique cover of the vertices of G;, V=V, U--- UV, and let
& :={/1,¢2,...} be a linear transversal system with parts H;:={V;1,..., Vi, }. Take
|#| new vertices z),z,,... and connect each vertex of the sets V;; forming the set /j
to zg, i.c.,

,QQZZ{XZ”I XC V,“SEZ/g, 1<i<h, 1<ﬁ<‘$”’

The set B:={w;: 1<i<m}U{zp: 1<B<|¥|} has at most max; cc(G;) + p? ele-
ments by (3).

Finally, we show that the above defined directed graph D induces G. Obviously, each
edge, xy, of the double competition graph of D must connect vertices with positive
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in- and outdegrees, so it must be contained in V. Moreover, if wx, uy. xw, and vw arc
arcs of .<Z(D), then u should be in 4 and w in B. The set of pairs {x, v} <} which
have a common neighbor v with ux, uve .o/, U.o/> is formed by the pairs in some I
and by the edges of G:

h

U E(K(V))YUE(G). (

l<i<h

The set of pairs {x. v} in ¥ which have a common neighbor w with xw, ywe 4, L 4,
is exactly the pairs in some S;, or in }7, and all the pairs connecting two parts of the
partition {¥,.... };}:

U swhu | U rnxn]. (6)

l<i<h I<i<j<h

The intersection of the sets of pairs of (5) and (6) is £(G), implying that G LU/ 5 is
the double competition graph induced by D. [
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