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If G is a finite tree with a unique vertex of largest, and _> 4 degree which is adjacent  to a 
leaf then  there is no universal countable G-free graph. 

0. I n t r o d u c t i o n  

Recent years have seen considerable progress in the theory of universal graphs, 
i.e., when one investigates the existence of universal elements of various classes of 
countable graphs. The first such result was given by R. Rado [13,14], who proved the 
existence of a universal countable graph, a countable graph which isomorphically 
enlbeds every countable graph. A well-known argument gives that  there exists a 
universal countable Kn-free graph where I(n is the complete graph on n vertices. 
Hajnal  and Pach [8] showed the nonexistence of a universal countable C4-free 
graph, and this opened the way toward proving non-existence results on classes 
characterized by the exclusion of some finite subgraphs. Komjgth and Pach [10] 
generalized this to the case when Ka,b, the complete biparti te graph on a, b vertices 

is excluded. Only for a =  1, b_< 3 is there a universal graph. Cherlin and Komjgth  
[3] gave another generalization of the Hajnal-Pach theorem, they showed that  there 
is no universal countable Cn-free graph where Cn is the circuit of length n > 4. In 
[9], however, it was shown that  there does exist a universal graph if all odd circuits 
up to a certain length are excluded (so we cannot exclude C5 alone but we can 6'3 
and C5). A recently proved counterpart  to this is the result of Cherlin and Shi [5], 
if Cnl, Cn2,...,Cn~ are excluded, then there is no universal graph except in the 
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above case when {n l , n2 , . . . , nk}  is a set of the first some odd numbers. It  is also 
proved in [9] that  there is a universal graph if Pn, the pa th  on n edges, or if all 
circuits fl'om a certain length onward are excluded. 

Another very general result is in [6], where we showed that  there is no universal 
countable G-free graph if G is a 2-connected noneomplete graph. 

At the other end of the spectrum stand the trees. After the above mentioned 
result on paths Goldstern and Kojman [7] proved that  there is no universal graph 
when an arrow is omitted, that  is, a tree with n >_ 5 edges and two vertices of degree 
3 in distance n - 4 .  Here we show nonexistence for a general class of trees; when 
there is a unique vertex of largest, and >_ 4, degree which has a neighbor of degree 
one. Our result, nevertheless, does not contain the above result on arrows. 

For our proof of nonexistence we need to show that  for r > 3 there exist r- 
regular, r-connected graphs with arbitrarily large girth (Lemma 3). This s ta tement  
and the s tatement  of Lemma 4 can be deduced from known properties of random 
regular graphs, i.e., in the model when one member is taken from the set of all r- 
regular graphs on a certain vertex set (see [1], Cor.2.19. on p.53, on short circuits, 
and Theorem 7.32. on p.174, on connectivity). Our proof seems to be different, 
more in the elementary context, via a packing statement.  A similar s ta tement  has 
been proved in [15]. 

We mention one more interesting subclass of results and problems. For certain 
cases when the existence of universal countable G-free graphs is to be shown one can 
proceed as follows. First, a case analysis shows that  from a certain structural  point 
of view finitely many different classes of G-free graphs exist. Then it is observed 
that  each has a universal element, finally the vertex disjoint union of them is taken. 
If G, the omitted graph, is disconnected, the la~st step cannot be executed, so for this 
case the appropriate not ion-- i t  seems--is  the following. The class of countable G- 
free graphs has finite complexity if there are finitely many G-free graphs, X1,..., Xn 
such %hat every countable G-free graph can be embedded into some Xi. This type 
of problems was first investigated in [11]; it was shown that  if G = K3 + K3, the 
disjoint union of two triangles, then the corresponding class is of finite complexity. 
A conjecture of [11], that  this can be extended to arbi trary Knl +"" +Kn~. has 
recently been established by Cherlin and Shi [5]. 

Acknowledgment. We are grateful to the referee for an excellent job. 

Added in proof. Recently L. Talggren proved tha t  there is a universal graph if a 
pa th  with a pending edge is omitted. G. Cherlin, N. Shi, and L. Talggren showed 
that  there is no countable, universal graph if the omit ted graph is a tree with at 
least 5 vertices and with no vertices of degree 2 [17]. 

1. N o t a t i o n ,  de f in i t i ons  

A graph is any set of two-element subsets of some set (called the set of vertices). 
Tha t  is, our graphs are undirected, loopless, and (with one exception) without 
double edges. If x is a vertex then d(x), the degree of x is the number  of edges 
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incident to x. If  x, y are vertices, then d(x,y),  the distance o f x  and y is the length 
of the shortest path  between x and y. For simplicity we say that  a graph has girth 
g if there is no circuit of length < g (has girth at least g would be the proper name). 
Given two graphs X1 on V1 and X2 on V2 then an embedding of X1 into )(.9 is an 
injection f :  V1 ~ V2 such that  if x and y are joined in X1 then f (x ) ,  f (y )  are joined 
in X2. If G, X are graphs, X is G-free if there is no embedding of G into X. Ifo~t ' is 
a class of graphs then X ~ is universal if every YEo~ embeds into X.  We notice 
that  usually when the existence of a universal element is proved, we are able to 
show that  there is some element which isomorphically embeds every element. On 
the other hand proofs of nonexistence (like the one in the present paper) usually 
show that  elements with the weaker embedding property fail to exist. 

2. L e m m a s  

Given the graphs X and Y on the same vertex set, an alternating (X ,Y) -  
path of length h is a sequence of distinct vertices (xo , . . . , xh)  such tha t  the pairs 
{xo,xl  }, {Xl,X2},... are alternately edges of X and edges of Y. 

An alternating (X, Y)-circuit of length two is a pair (x, y) of vertices such that  
x, y are joined, in X and in Y. For an even number h > 2 an alternating ( X , Y ) -  
circuit of length h is a sequence of distinct vertices (xo, . . . ,  Xh-1) such tha t  x2i and 
x2i+l are joined in X and x2i+l and x2i_t_ 2 are joined in Y (with the understanding 
that  Xh =x0) .  

We notice that  if both  X and Y have degree < c then the number of vertices 
reachable from any given vertex of V by an alternating (X ,Y) -pa th  of length < h 

is at most l + c + . . . + c  h < 2 c  h (for c>2) .  

The following Lemma is a generalization of a theorem of Catlin and Sauer- 
Spencer (see [2,16]). A similar result when X,  Y are bipart i te has been proved in 

Lemma 1. If  c>2, h is even, X and Y are graphs of degree <c on the same vertex 

set V with IV] > 9c h then there is a permutation 7r : V --+ V such that there is no 
alternating (Tr(X), Y)  c'ircuit of length <<_ h. 

Proof. Let V = { x l , . . .  ,xn}. In the p r o o f i f A C { x l , . . .  ,xi}, and ~ : { x l , . . .  ,x{}--+ V 
is a mapping then 9~[A] = {~(a) : a  E A} and ~(X)  is the graph formed with the 
edges of the form {~(x j ) ,~(xk)  } where l<__j<k<i and xj,  xk are joined in X.  

By induction on 1 < i < n  we show that  there is an injection ~ :{Xl , . . .  ,xi}--+ V 
such that  there is no alternating (~(X),Y)-circui t  of length < h. The case i = n  
gives the desired result. 

For n = 1 our s tatement  is trivial. 

In order to show the inductive step assume that  we have found a ~o : 
{ x l , . . . , x i - 1 }  --+ V as required but we cannot extend it to an appropriate  

~ ' : { X l , . . . , x i } - ~ V .  Set S = { ~ 5  : J  < i , {~ ' j , x i }  c X } ,  U = V - R n g ( ~ ) .  The 
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fact tha t  for a certain y E U we cannot  select 9J(Xi) = y means tha t  there is some 
al ternat ing (X, ~ ( X ) ) - p a t h  of length < h - 1  from y to an element of ~[S]. The  ver- 
tex y is thereibre reachable from S by an al ternat ing pa th  of length at most  h -  1. 

Hence IuI _< Is1.2c _<2d 
We conclude tha t  i - 1 _> IVI - 2c h > 7c h. 

Fix a vertex yCU. Our idea is to show tha t  there exists an xj (with 1 < j  < i )  

such tha t  the following function is appropriate:  ~ ' :  { x l , . . . , x i }  ~ V, ~ ' (x j )  = y, 

~ ( x i ) = p ( x j ) ,  otherwise ~ is the same as ~. 

Fix xj and assume tha t  ~ creates an al ternat ing (~r(X),  X)-c i rcui t  C of length 

< h. It  must  obviously contain one or bo th  of y, z = qo(xj). We are going to 
distinguish cases and in each case give a bound on the number  of vertices xj tha t  
may  fall into tha t  case. 

Case 1. Tlle length of C is two. 

In this case there is an edge, e E X N ~ ' ( X ) .  If  e is between z and y then xr 
and xj  are joined in X,  implying tha t  there are at most  c possibilities for xj.  If  e is 

between z and some element of ~[S] then ~(xj)  is joined to ~[S] and the number  

of possibilities is at most  IStc<c 2. If e is between y and some other  vertex t, then 

t must  be a neighbor of y (at most  c possibilities) and xj is a neighbor of ~ - l ( t ) ,  

at most  c 2 possibilities. In Case 1., we have altogether < 2c 2 + c  possibilities for xj.  

From now on we assume tha t  the length of C is > 2. Set T =  {xk : k  < 
i,{xk,xj} x}. 

Case 2. C contains y but not z. 

In this case the ~ ' ( X )  edge of C incidental to y must  go to piT].  Hence (by 
removing this edge from C) there is an al ternat ing (X, ~ ( X ) ) - p a t h  of length <_ h - 1  

from y to ~[T]. This gives < c h possibilities. 

Case 3. C contains z but not y. 

Similarly, there is an al ternat ing ( X , ~ ( X ) ) - p a t h  of length _< h - 1  from z to 

cp[S]. As [S[ < c  this gives < c  h possibilities for z, and so for xj.  

Case 4. C contains both y and z. 

In this case is the circuit C, which has even length, split by y and z into two 
paths,  P1 and P2. 

Subcase 4.1. P1 and P2 are of  odd length. 

Let P1 be the al ternating (X, ~ ' ( X ) ) - p a t h  from y to z. I t  is an (X, p ( X ) ) - p a t h ,  

which gives _~2c h - 1  possibilities for z, and so for xj.  
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Subease 4.2. P1 and P2 are of even length. 

Then one of them, say P1, is a ( p ' ( X ) , X ) - p a t h  from y to z. If its first vertex 
after y is u then u C ~[T] so z and u are joined in ~ (X) ,  i.e., there is an alternating 
(X, ~(X))-circuit  of length [PI]. A contradiction to the inductive assumption. 

To finish the proof we observe that  at most 2ch+2c h-1 +2c2+c< 7c h vertices 
of the form xj  can fall under the various cases, a contradiction to our hypotheses. | 

Lemma 2. Given d, g, ttmre is a number v(d,g) with tile following property: I f  X ,  
Y are two graphs on the same vertex set V, with [V[ >v(d,g  ) and both graphs are 
of degTee <_ d and girth g, then there is a permutation 7r : V--* V such that the graph 
7r(X) U Y contains neither double edges nor circuits of length < g. 

Proof. Apply the previous Lemma to X r, y i ,  where two vertices are joined in X ~ 
if their distance in X is <9,  and likewise for YP. Observe that  the degree of X ~, YP 
can be bounded by d and 9- Any circuit in 7r(X)UY is either a circuit in 7r(X) or 

is one in Y or gives rise ~o an atternal.ing (~r(X~), Y~)-circui~. | 

Lemma 3. I f  k > 2, 9 are given, there are arbitrarily large k-regular, k-conuected 
graphs with girth g. 

Proos By induction on k. Nor k = 2  one can simply take a long enough circuit. 

Assume now that  we have an example X on some vertex set V for 1~, 9 and 
]V] >v(k ,g ) .  We build an example for k + l ,  g on a set of size 2IV [. YVe first take 
two copies of X,  say X1 and X2, on disjoint vertex sets V1 and V2. By Lemma 1., 
there is a bijection ~:V1--+V2 such that  ~ (X1)UX2 contains no short circuits. 

To construct the desired graph Z take the edges of X1, X2, along with the 
ulatching F of the edges of the tbrm {x,~(x)} for x ff 1/t. Clearly, Z is ( k + l ) -  
regular and the girth of Z is g. 

In order to show that  Z is (k + 1)-connected assume that  A C_ V1, B C V2, 
IAI+IB I <k  and A U B  separates Z. If  B = 0  then the (connected) X2 is in one of 
the remaining components, but F adds every element of V1 - A  to that  component.  
A similar argument works if A = 0. If, however, A, B # 0, then by the properties of 
x ,  as [A{, [BI < k, both V 1 - A  and 1 /2 -B  induce connected graphs, and there is at 
least one edge between them, as [AUBI<k<IV1  { so A U B  cannot cover F.  | 

Lemma 4. Given r > 3, a, 9, there exists a natural number f ( r ,g ,a)  with the 
following properties. For every N there is an r-regular 3-connected graph X with 
at least N vertices, with girth g, such that if  the vertex set V of X is decomposed 
as V = A U B  with IAI, IB] > f (r ,g ,a) ,  then the number of edges between A and t3 
is at least a. 

Proof. We first argue that  there exists a 2-connected graph Y with girth g on some 
vertex set of w elements containing exactly 2a vertices of degree r -  1 and w - 2a 
vertices of degree r. 

This can be proved with a simple modification of the proof of Lemma 2. Let 
T be a large enough connected ( r -  1)-regular graph of girth g. Take two disjoint 
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copies of it, as in the construction of Lemrna 2. Rather than joining them by a 
matching we draw only [ T [ -  a >_ 2 edges between them. 

Set f(g,r,a) = aw. Given N as in the s tatement  of the Lemma let Z be a 
2a-regular 2a-connected graph with girth g on a set I with tIf >N/w. 

For i E I let ~ be a graph isomorphic to Y on some vertex set Wi such that  
the sets {1~i :i E I} are disjoint. We extend the union of those graphs U { ~  :i E I} 
to an r-regular graph X on W = U{Wi : i E I} in such a way that  the following 
holds. If i, j ~ I are joined in Z then there are x E Wi, y E Wj joined in X,  which 
are of degree r - 1  in Y/, Yj. This is obviously possible as the degree of i in Z is the 
same as the number of vertices with degree r -  1 in Y/. 

Assume that  W = A U B  is a decomposition in which tAt, tt7t > f(g,r,a)=aw. 
We have to show that  there are at least a edges between A and B. If there are at 
least a indices iEI  such that  AAWir BNWisa(~, then (as Y is connected) each 
such IV/ contains an edge between A and B and we are done. 

In the other case all but __ a -  1 of those sets are entirely in A or in B. If 
the mmlber of edges between U{Wi:  Wig A} and U{Wi : Wi C B} is < a then the 
removal of < 2a points disconnects Z, a contradiction. 

We finally show that  X is a 3-connected graph. Assume that  the removal of 
two vertices, x l  and x2, disconnects X. 

If Xl and x2 are in distinct vertex sets, i.e., xl  E Wi, x2 E Wj for some iT~j, 
then, X i -  {Xl}, X j -  {x2} are connected, and as Z is connected, X -  {Zl,X2} is 
connected as well. 

Assume now that  Xl, x2 E Wi for some i. Remember  the way how 'Xi was 
created. We took two copies of some graph T on some sets W~ and W/l' and drew 

an appropriate partial  matching F between them. Let Ai C_ W~, Bi C W~ I be the sets 

covered by F. The vertices in U = (W~-Ai)U(W.['-Bi) are covered by those edges 

of X which go between W~ and some other Wj, hence because Z - { i }  is connected, 

the set U - { x l , x 2 }  and the part  outside Wi are in one connected component.  

If Xl ~W/l, x2EW[', then again, as T is 2-connected, W/ / -{x l}  and W['-{z2} 
are both connected which, establishes that  X -  {xl, x2} is connected. 

If, finally, xl ,  x2 E W[. (say), then Wilt is entirely in a component.  Then the 
edges between Bi and Ai would form all the vertices in Ai into that  component,  
which therefore contains everything. . I 

'c 

Lemma 5. Same as the previous Lemma, except that W e require X be connected 
and having four vertices al, a2, bl, b2 of degree r ,  1, all other vertices of degree r, 
al~d d(al,a2), d(bl, b2) > g -  2. 

Proof. Take the example of Lemma 4, select two pairs of neighboring vertices, 
{al ,a2} and {bl,b2} and remove the edges between al  and a2, respectively bL 
and b2. l 
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Theorem. Assume that r >_ 3, T is a (finite) tree with two neighboring vertices of 
degree r + 1, 1, respectively, and of degree <_ r for the other vertices. Then there is 
no universal, countable, T-free graph. 

Proof. The idea is that  we produce continuum many T-free graphs so that  no two 
can be embedded into the same T ' f r e e  graph. This is obviously nonsense as the 
vertex disjoint union of them certainly embeds both. But the vertex disjoint union 
will be just about the  only amalgamation of two of those T-free graphs. 

We star t  with the (obvious) observation that  if S is a finite tree with all degrees 
at most r then every rrregular graph with sufficiently large girth embeds S. Let 
g be large enough that  every r-regular graph of girth g embeds T minus the edge 
specified in the description of T. 

Set a = 4r 2g § 1 and let B0, B1,.., be disjoint sets with [BoI > 4f(r,g,a), 
]Bi+lt > tBi l+4f(r ,g ,a) .  For each i is Xi a graph with the vertex set Bi as 
described in Lemma 5. If F(0) < F(1)  < ... is an increasing sequence of natural  

numbers, let X(F)  be the following graph. Its vertex set is AS uAf u . . .  where 

A( = BF(i). We include the graphs on XF(i) into X(F)  and if a[,  a~, b~, b~ are 
Sa0 a0/ the vertices specified in Lemma 5, then we also add the following edges: t 1, 2s, 

{bOl,a}}, 0 1 i " {b2,a2},...,{bl,aZl+l i i+i },{b2,a 2 },. . . .  Clearly, X(F)  is r-regular, and by 
a z 7~ z the selection of the vertices a~, 2,bl,b2, it has girth g. As for every sequence F 

there is such a graph, we indeed have continumn many graphs. 

Assmne t h a t  some X(F)  is embedded by some mapping 7r into U, a T-free 
graph. Then X(F)  must occupy a full connected component,  as otherwise there 
is a vertex v in X(F)  so that  7r(v) is joined (in U) to a vertex w which is not in 
the image of X ( F ) .  But then we can identify 7r(v) with the (r + 1)-degree vertex 
of T, w with its 1-degree neighbor, and we can build the rest of T using 7r(X(F)). 
That  would show that  U is not T-flee. I t  suffices, therefore, to show, that  if F # F '  
then X(F)  and X(F')  may not be mapped onto the same vertex set, i.e., if X ( F  t) 
is mapped onto X(F)  then a copy of T is produced. By an argument  as above, it 

suffices to show that  by mapping X ( H )  onto the vertex set of X(F)  there will be 
two vertices to be joined which have distance > g  in X(F).  

F' u A F ' u . . ,  be a bijeetion. P i c k / w i t h  F( i ) r  Let ~r:AFo UAF1 U...--+A 0 
Assume first tha t  there is an index j that if 

D = ~r(A/F') A [A0 F U A1 F U . ' . o A ; ] ,  

A F . - -  n [ j+l  u A +2 u ...] 

then ID[, IF] > f (r ,g,a ). 
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There  are at most  2r g vertices in AFoUA~U ... U A ;  in dis tance at nmst  g - 1  

f rom b~, b~, and likewise, there are at  most  2to vertices in A ; +  1 U . . .  of dis tance 

_<9-1  f rom a j + l ,  a j + l .  All but  4r 2g of the pairs (x,y) with x E A ~ u A F u . . . U A ; ,  

y C A ; +  1 U. . .  are pairs of vertices in distance > g. By  the s t a t emen t  of L e m m a  5., 

there is such a pair  in 7r(X/), and this edge can be used to build a copy o f T .  

If there is no index j as claimed, then all bu t  <_ 2f(r,g,a ) elements  of ~r(A F ' )  

are in the same Aj. A similar a rgument  shows tha t  all bu t  <_ 2f(r,g,a) elements  

of A ;  must  be in some 7r(A~'). But  then  k = i  and IIA.~t--IAiF'I[ <_ 4f(r,g,a), a 

contradict ion.  | 
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