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ABSTRACT 

Let L(n,k,k,t) denote the minimum number of k-subsets of an n-set such that all the ( i )  
k-sets are intersected by one of them in at least t elements. In this article L(n,k ,k ,Z)  is 
calculated for infinite sets of n’s. We obtain L(90,5,5,2) = 100, i.e., 100 tickets needed to 
guarantee 2 correct matches in the Hungarian Lottery. The main tool of proofs is a version 
of Turan’s theorem due to Erd6s. 0 1996 John Wiley & Sons, Inc. 

1 .  STEINER SYSTEMS AND &COVERS 

A system of k-element subsets, C ,  of an n-element underlying set V is called an (n ,  k, t)- 
cover if every t-subset T C V is contained in some member of it, T C C E C. The 
minimum size of an ( n ,  k, t)-cover is denoted by C(n ,  k, t ) .  A k-set covers exactly ( f  ) 
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t-sets, hence C(n,  k , t )  2 (:)/(:). This bound is best possible if every t-set is covered 
exactly once; in this case C is called an (n ,  k ,  t)-Steiner system, S(n,  k ,  t ) .  Wilson [16] 
proved that there exists a Steiner system S ( n ,  k ,  2) if 

n - 1 
k - 1 

n(n - 1 )  
and are both integers 

k (k  - 1 )  

and n is sufficiently large compared to k ,  n > no(k). Equation ( 1 )  holds, e.g., when 
n = I or k(mod k2  - k ) .  Other well-known Steiner systems are the S(q2 ,  q ,  2 )  and 
S(q2  + q + l , q  + 1,2), the so-called finite u6ne and projective planes (respectively); 
such planes exist if q is a prime power (see [9]). 

Every element v E V of an (n,k,t)-cover must be contained in at least C(n - 1, 
k - 1,t - 1) members of C .  This implies that C ( n , k , t )  2 ( n / k ) C ( n  - 1,k - 1 ,  
t - l),  which together with the obvious C(n, k ,  1) = [n/kl  implies the so-called 
Schiinheim bound [ 121 

Beside (l) ,  there are several other cases when this bound is best possible. For example, 

C(n, k , 2 )  = s(n,  k ,2 )  if an S ( n  - I ,  k , 2 )  exists. (3) 

Indeed, one gets C ( n , k , 2 )  5 C(n - 1,k - 1,2) + [(n - 1)/(k - I ) ]  by adding ap- 
propriately [(n - l ) / ( k  - 1)1 new members through the nth element to an (n  - 1, k ,  
2)-cover. Another, isolated, example is 

C(23,5 ,2)  = s(23,5,2) = 28.  (4 )  
To prove ( 4 )  join the elements x , y  to the vertex set of a finite projective plane 
on 21 vertices, and then add 7 more 5-tuples containing this pair. For k = 3, t = 2 
equality holds in (2 )  for all n [8]), and for k = 4, t = 2 Mills [ I  1 1  showed that 
C(n ,4 ,2 )  = s (n ,4 ,2 )  for all n # 7,9, 10, 19. (In the exceptional cases C = s + 1 . )  

2. THE LOTTERY PROBLEM 

A system of k-element subsets, L ,  of an n-element underlying set V is called an 
(n ,  k ,  p ,  t)-Lottery system if for every p-subset P C V one can find a member L E L 
with IP f l  LI 2 t .  The minimum siLe of an (n,k,p,t)-Lottery system is denoted by 
L(n,  k ,  p ,  t ) .  Obviously, L(n ,  k ,  p ,  1 )  = [ (n  - p + l ) / k ] .  In this article we mainly deal 
with the case t = 2. 

Cut the n-element set V into p - 1 parts, A , ,  . . . , A p - l ,  of sizes a ] ,  . . . , u p - ] .  Put 
an (a , ,  k,2)-cover to A , .  As every p-set in V meets an A, in at least 2 elements, these 
families form a Lottery system, implying 

A theorem of Hanani, Ornstein, and T. S6s [ lo]  states that 

This implies that equality holds in ( 5 )  if an S ( n / ( p  - 1) , k ,2 )  exists, for example 
(for large n )  if n = p - 1 or k ( p  - 1) (mod k(k  - l ) ( p  - 1)). Brouwer [3] proved 
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that equality holds in ( 5 )  for all n if k = p = 3, namely, L(2m + 1,3,3,2) = 

C(m,3,2) + C(m + 1,3,2), L(4m + 2,3,3,2) = 2C(2m + l,3,2), and L(4m,3,3,2) 
= C(2m + 1,3,2) + C(2m - l,3,2). The aim of this article is to improve (6) thus to 
determine L for further infinite classes. 

Theorem 1. 

The lower bound in the right-hand side of (7) is denoted by Z(n, k ,  p ,  2). I f [ l (n ,  k, p ,  2)1 
equals to the upper bound in the construction (5), then we get equality. 

Corollary 2. EqualiQ holds in (5) (and in Theorem 1) fo r  
(a) n = i ( k  - 1) + p - k (mod k(k - l ) ( p  - I ) ) ,  for  i = 1,2, .  . ., p , n  > no(k); 
(b) n = i ( k  - 1) + ( p  - k) + ( p  - 1) ( i )  (mod k(k - l ) (p  - l)), for  i = 1, 

(c) n = i(k - 1) + p - k + 1 (mod k(k  - 1) ( p  - l)), for  i = 1,2,. . . , p ,  n > 

(d) n = i ( k  - 1) + ( p  - k + 1) + ( p  - 1)(:) + 1 (mod k(k - l ) ( p  - l)), f o r  

(e) L(n ,  3,3,2) = [l(n,  3,3,2)1 f o r  n f 9, 10 (mod 12). (Thus we almost got Brouwer's 

(f) L(n,4,4,2) = [l(n,4,4,2)1 for  n = 0 - 15,17,34,35 (mod 36), (n  > no); 
(g) L(n,5,5,2) = [l(n,5,5,2)1 fo r  n = 4,5,8,9,  12, 13,16, 17,20 (mod 80) f o r  

(h) L(90,5,5,2) = 100. 

2,. . . , p ,  k = 2(mod 4), n > no&); 

no(k); 

i = 1,2,. . . , p ,  k = 2(mod 4),n > no(k);  

result); 

n > no. 

The latest statement says that exactly 100 tickets needed to guarantee two correct 
matches in the Hungarian Lottery. Turiin proved a lower bound 87, T. Nemetz 93, 
and V.T. S6s 97 (see in [lo]), she also noted that L(90,5,5,2) I 102. Of course, our 
result does not have too much practical importance. The probability of the event that 
a single ticket has two matches is exactly 1 - ( ( " k k ) )  + k(iIf))/(E) which is about 
k/2-times larger then l/L(n, k ,  k, 2). In the case (n ,  k, p ,  t )  = (90,5,5,2), this means 
that on average about 43 tickets are needed to get two matches. (In another type of 
Hungarian (also Austrian) Lottery 6 numbers are selected randomly from 45 numbers. 
For this case 15 2 L(45,6,6,2) 2 14 > 13 = [Z(45,6,6,2)1. For the German, French, 
British, . . . Lottery 19 2 L(49,6,6,2) 2 16.) 

3. TURAN'S THEOREM AND THE PROOF OF THEOREM 1 

For a graph (or multigraph) G the number of edges is denoted by e ( G ) ,  the number of 
edges through a given vertex x (i.e., the degree), is denoted by degc(x). A graph G with 
vertex set V has p independent vertices, a ( G )  2 p ,  if some p-subset of V contains no 
edge. Tudn [14] proved, that if G has n vertices and a ( G )  < p ,  then 

moreover here equality holds if and only if G consists of p - 1 vertex-disjoint complete 
graphs of almost equal sizes. The right-hand side of (8) is at least n(n - p + l)/(p - 1). 
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The main tool of our proof is the following version of Tur5n’s theorem, due to Erd6s 
[7]. If a ( G )  < p ,  then there exists a graph H on the same vertex set V consisting of 
p - 1 vertex disjoint copies of complete graphs such that 

deg, (x) 2 deg, (x) for every x E V . (9) 

Since 2e(G)  = xxEV deg, (x), (9) immediately implies (8). For a proof of (9) and for 
further extremal results see, e.g., Bollobk’ book [ 2 ] .  

Lemma 3. 
degree is divisible by k - 1. Then 

Let G be a multigraph on n vertices with a ( G )  < p .  Suppose that every 

- 

2e(G)  2 min (k - l)(alrL ‘ 1  + ... + .,-p-’ k - 1  - 1 1 ) .  (10) 
u l f .  +u,,-l=n k - 1  

Proof of Lemma 3. Applying (9), we see that there exists a partition A ,  U . . . U A,- I 

of the vertex set of G such that if a,  denotes IA,], then for every vertex x E A, one 
has deg, (x) 2 a, - 1. The divisibility property of the degree implies that deg, (x) 2 

0 ( k  - 1)[(a, - l ) / ( k  - 111, yielding (10).  

Proof of Theorem 1. Let L be an (n ,  k ,  p ,  2)-Lottery system on the n-element set V .  The 
set of pairs covered by the members of 1: defines a multigraph G (i.e., the multiplicity 
of T C V ,  IT1 = 2 is the number of sets L E .L with T C L ) .  The Lottery property 
is equivalent to the fact a ( G )  < p .  As the edge-set of G was obtained from L: ,  we 
have that 

ILl(:) = e ( G ) ,  (11) 

moreover, deg, (x) for an element x E V is exactly ( k  - 1) times larger than the number 
of sets, L ,  with x E L E L: . One can apply Lemma 3 to G to get the desired lower 

0 bound for IL I from (1 1). 

Proof of the Corollaries. The function f(x) = x[x - l /u] ( u  2 2, integer) is not 
convex, but it is easy to minimize the right-hand side of (7) using the following two 
inequalities 

f(x + 1) + f ( y  - 1 )  5 f ( x )  + f ( y )  for integers 0 < x + 1 5 y (12) 

except whenever (x - l ) / u  is an integer, 

f (x  + u )  + f ( y  - u)  < f ( x )  + f(y) for x + u < y .  (13) 

X(KX - l)/ul - [x/ul) + ( y  - 1) ( K y  - l)/u1 - N y  - 2)/ul) + (KY - 1)/u1 - 
Indeed, e.g., in case of (12) one gets f ( x )  + f ( y )  - f ( x  + 1) - f ( y  - 1) = 

[x/ul), and here all the three terms are nonnegative. Similarly, f(x) + f ( y )  - 
f ( x  + u )  - f ( y  - u )  = ( y  - x - u )  + u ( [ ( y  - l)/u] - [(x - l)/u] - l ) ,  which 
is positive for y > x + u. 

Repeatedly applying (12) and (13) one gets the following more explicit form. Write n 
as n = a ( p  - 1) + b(k  - 1) + c + ( p  - k) ,  where a,b ,c  are nonnegative integers 
with 1 5 b 5 p - 1,1  5 c 5 k - 1 .  Then the right-hand side of (7) is minimized 
when the sequence (a,, . . . , a p - l )  consists of b - 1 times a,  = a(k  - 1) + k ,  once 
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ai = a(k - 1) + 1 + c and the rest of them ( p  - b - 1 copies) equal to a(k  - 1) + 
1. We get 

L(a(k - 1) ( p  - 1) + b(k  - 1) + c + ( p  - k) ,k ,p ,2)  
1 

2 -(an + (ba - l ) (k  - 1) + bk + C )  =: I(n,k,p,2) (14) k 

One can apply (14) with k = p = 5 ,  ( a , b , c )  = (5,2,2) to get the lower bound 
1(90,5,5,2) = 99.6. The proofs of the cases (a)-(g) are similar easy calculations. The 
upper bounds are supplied by (l) ,  (3), and (4), the exact results about C(n,  k, 2 )  mentioned 
in the first section. 0 

4. FURTHER LOTTERY PROBLEMS 

Brouwer and Voorhoeven [4] notes that the Hanani, Omstein, T. S6s bound (6) naturally 
extends to the case t > 2 

where T ( n , p , t )  (the Turan number) is the minimum number of t-sets such that every 
p-subset of an n-set contains at least one of them. The problem of determination 
of T(n,p,t) is open for all t > 2; the best lower bound, due to de Caen [S], is 
(:)(:I;)-’((n - p + l)/(n - t + 1)). This and (15) give the following extension 
of (6) 

The case t > 2 seems to be hopelessly difficult, for example for the German lottery 
it gives L(49,6,6,3) 2 87. An “easy” upper bound is the following. In the Mobius 
plane of order q (Dembowski [6]) there are q2 + 1 points, q(q2 + 1) circles, and each 
circle contains q + 1 points. Thus for q = 5 ,  q(q2 + 1) = 130 = C(26,6,3), hence 
L(49,6,6,3) 5 L(26 + 26,6,6,3) 2 . C(26,6,3) = 260. A better upper bound due 
to Sterboul [12], is 175 (recent computer constructions gave 174, as the best bound we 
know). In the case of n = 45 we have got only L(45,6,6,3) 2 66. For n = 90 formula 
(16) gives L(90,5,5,3) 2 1914, while C(45,5,3) is at least [by (2)], so an upper bound 
obtained by two (45,5,3)-covers consists of at least 2,970 tickets. For further designs 
that can help to solve lottery problems see Beth, Jungnickel, and Lenz [l]. 
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