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ABSTRACT

Let L(n.,k.k,t) denote the minimum number of k-subsets of an n-set such that all the (%)
k-sets are intersected by one of them in at least ¢ elements. In this article L(n,k,k,2) is
calculated for infinite sets of n’s. We obtain L(90,5,5,2) = 100, i.e., 100 tickets needed to
guarantee 2 correct matches in the Hungarian Lottery. The main tool of proofs is a version
of Turan’s theorem due to Erdds. © 1996 John Wiley & Sons, Inc.

1. STEINER SYSTEMS AND t-COVERS

A system of k-element subsets, C, of an n-element underlying set V is called an (n, k, t)-
cover if every r-subset T C V is contained in some member of it, T C C € C. The
minimum size of an (n, k, t)-cover is denoted by C(n, k, ). A k-set covers exactly (’,‘)
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t-sets, hence C(n, k,t) = (’,‘)/(’;). This bound is best possible if every r-set is covered
exactly once; in this case C is called an (n, k, t)-Steiner system, S(n,k,t). Wilson [16]
proved that there exists a Steiner system S(n, k,2) if
n—1 nn — 1)
k—1 " %k -1
and n is sufficiently large compared to k,n > ng(k). Equation (1) holds, e.g., when
n =1 or k(mod k> — k). Other well-known Steiner systems are the S(g?,q,2) and
S(g* + g + 1,q + 1,2), the so-called finite affine and projective planes (respectively);
such planes exist if ¢ is a prime power (see [9]).
Every element v € V of an (n, k, t)-cover must be contained in at least C(n — 1,
k — 1,z — 1) members of C. This implies that C(n, k,t) = (n/k)C(n — 1,k — 1,
t — 1), which together with the obvious C(n,k,1) = [n/k] implies the so-called
Schonheim bound [12]

are both integers H

nln—1 n—1t+1
Cln, k1) {klrk—- 1 ‘Vk—t%— 11 —l—l s(n, k,t) )
Beside (1), there are several other cases when this bound is best possible. For example,
C(n,k,2) = s(n,k,2) ifan S(n — 1,k,2) exists. 3)

Indeed, one gets C{n,k,2) = C(n — 1,k — 1,2) + [(n — 1)/(k — 1)] by adding ap-
propriately [(n — 1)/(k — 1)] new members through the nth element to an (n — 1,k,
2)-cover. Another, isolated, example is

C(23,5,2) = 5(23,5,2) = 28. 4)

To prove (4) join the elements x,y to the vertex set of a finite projective plane
on 21 vertices, and then add 7 more 5-tuples containing this pair. For £ = 3, ¢ = 2
equality holds in (2) for all n [8]), and for k =4, ¢t =2 Mills [I11] showed that
C(n,4,2) = s(n,4,2) for all n # 7,9,10,19. (In the exceptional cases C = s + 1.)

2. THE LOTTERY PROBLEM

A system of k-element subsets, L, of an n-element underlying set V is called an
(n, k, p, t)-Lottery system if for every p-subset P C V one can find a member L € L
with |P N L| = ¢. The minimum size of an (n, k, p,)-Lottery system is denoted by
L(n,k, p,t). Obviously, L(n,k, p,1) = [(n — p + 1)/k]. In this article we mainly deal
with the case r = 2.

Cut the n-element set V into p — 1 parts, Ay,...,A,—y, of sizes ay,...,a,-1. Put
an (a;, k,2)-cover to A;. As every p-set in V meets an A; in at least 2 elements, these
families form a Lottery system, implying

Link,p,2) = min _ (Clapk,2) + - + Clap1,k,2). (5)
ay+ta, =n
A theorem of Hanani, Ornstein, and T. Sés [10] states that
nin —p +1)
Lin,k,p,2) = . 6
(n,k,p,2) k=D =D (6)

This implies that equality holds in (5) if an S(n/(p — 1),k,2) exists, for example
(for large n) if n = p — 1 or k(p — 1) (mod k(k — 1)(p — 1)). Brouwer [3] proved
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that equality holds in (5) for all n if k = p =3, namely, L2m + 1,3,3,2) =
C(m,3,2) + Clm + 1,3,2), L(4m + 2,3,3,2) = 2C(2m + 1,3,2), and L(4m,3,3,2)
=CQ2m + 1,3,2) + C(2m — 1,3,2). The aim of this article is to improve (6) thus to
determine L for further infinite classes.

Theorem 1.
) 1 a; — 1 ap-1 — I_D
= 2 i+ g, | A——
Linjep2)= | min _ % (“'(k - 11 T 1{ k=1 "

The lower bound in the right-hand side of (7) is denoted by l(n, k, p,2). If [I{n, k, p,2)]
equals to the upper bound in the construction (5), then we get equality.

Corollary 2. Equality holds in (5) (and in Theorem 1) for

@n=ilk — 1)+ p—k(modk(k — 1)(p — 1)), fori = 1,2,...,p,n > nplk);

® n=ik -1+ (p—k +(p—1D0%) (mod k(k = 1)(p — 1)), for i =1,
2,...,p, k =2(mod 4), n > nylk);

@ n=ilk =) +p—k+10modkk —1)(p —1), for i =12,....,p,n>
no(k);

Wn=ik—1D+(p-—k+1)+(p-—DEGE)+10mod k(k — 1)(p — 1)), for
i=1,2,...,p,k =2mod 4),n > no(k);

(e) L(n,3,3,2) = [I(n,3,3,Dforn &9, 10 (mod 12). (Thus we almost got Brouwer’s
result);

(f) L(n,4,4,2) = [I(n,4,4,2) for n = 0 — 15,17,34,35 (mod 36), (n > ng);

(&) L(n,5,52) =[l(n552)] for n=4,58,9,12,13,16,17,20 (mod 80) for
n > ng.

(h) L(90,5,5,2) = 100.

The latest statement says that exactly 100 tickets needed to guarantee two correct
matches in the Hungarian Lottery. Turan proved a lower bound 87, T. Nemetz 93,
and V.T. S6s 97 (see in [10]), she also noted that L(90,5,5,2) < 102. Of course, our
result does not have too much practical importance. The probability of the event that
a single ticket has two matches is exactly 1 — (("7*)) + k(22%))/(%) which is about
k/2-times larger then 1/L{(n, k,k,2). In the case (n,k, p,1) = (90,5,5,2), this means
that on average about 43 tickets are needed to get two matches. (In another type of
Hungarian (also Austrian) Lottery 6 numbers are selected randomly from 45 numbers.
For this case 15 = L(45,6,6,2) = 14 > 13 = [1(45,6,6,2)]. For the German, French,
British, . .. Lottery 19 = L(49,6,6,2) = 16.)

3. TURAN’S THEOREM AND THE PROOF OF THEOREM 1

For a graph (or multigraph) G the number of edges is denoted by e(G), the number of
edges through a given vertex x (i.e., the degree), is denoted by degg(x). A graph G with
vertex set V has p independent vertices, a(G) = p, if some p-subset of V contains no
edge. Turdn [14] proved, that if G has n vertices and @(G) < p, then

2¢(G) = a,+~nj}zr,},1=n (ai(a; — 1) + + ap-1{ap—1 — 1)), ®)
moreover here equality holds if and only if G consists of p — 1 vertex-disjoint complete
graphs of almost equal sizes. The right-hand side of (8) is atleastn(n — p + 1)/(p — 1).
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The main tool of our proof is the following version of Turdn’s theorem, due to Erdds
[7]. If a(G) < p, then there exists a graph H on the same vertex set V consisting of
p — 1 vertex disjoint copies of complete graphs such that

deg; (x) = degy, (x) for every x E V. 9)

Since 2¢(G) = Y ey deg (x), (9) immediately implies (8). For a proof of (9) and for
further extremal results see, e.g., Bollobds’ book [2].

Lemma 3. Let G be a multigraph on n vertices with a(G) < p. Suppose that every
degree is divisible by k — 1. Then

2¢(G)= _min (k- 1)(4‘2 _” + o+ “""VJ;I—_TID' (10)

aytta,=n k

Proof of Lemma 3. Applying (9), we see that there exists a partition A; U --- U A,
of the vertex set of G such that if a; denotes |A;]|, then for every .vertex x € A; one
has deg, (x) =Zaq; — 1. The divisibility property of the degree implies that deg; (x ( ) =
(k — D[(a; — 1)/(k — 1)], yielding (10). O

Proof of Theorem 1. Let L be an (n, k, p,2)-Lottery system on the n-element set V. The
set of pairs covered by the members of £ defines a multigraph G (i.e., the multiplicity
of T C V,|T| = 2 is the number of sets L € £ with T C L). The Lottery -property
is equivalent to the fact a(G) < p. As the edge-set of G was obtained from L, we
have that

1£1(5) = e, ‘ (1)

moreover, deg; (x) for an element x € V is exactly (k — 1) times larger than the number
of sets, L, with x € L € L. One can apply Lemma 3 to G to get the desired lower
bound for | £ | from-(11). O

Proof of the Corollaries. The function f(x) = x[x — 1/u] (u = 2, integer) is not
convex, but it is easy to minimize the right-hand side of (7) using the following two
inequalities

fa+ 1D+ fy—1) = flx)+ f(y) forintegers 0 < x + 1 =y (12)
except whenever (x — 1)/u is an integer,
fo+w+ fly —w < flx)+ f(y)forx +u<y. (13)

Indeed, e.g., in case of (12) one gets f(x) + f(y) — fx+ 1) — fly—1) =
x(((x = D/ul = [x/ul) + (y = D [y — D/ul = [y = 2/uD + {(y — D/ul -
[x/ul), and here all the three terms are nonnegative. Similarly, f(x) + f(¥) —
fae+w—=fo-—uw=~(—x—u+ul(y—1/ul —[(x = 1)/ul = 1), which
is positive for y > x + u.

Repeatedly applying (12) and (13) one gets the following more explicit form. Write n
asn=ualp—1)+blk —1) 4+ c + (p — k), where a,b,c are nonnegative integers
with 1 = b =< p — 1,1 = ¢ =k — 1. Then the right-hand side of (7) is minimized
when the sequence (ay,...,a,-1) consists of b — 1 times a; = a(k — 1) + k, once
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a; = alk — 1) + 1 + ¢ and the rest of them (p — b — 1 copies) equal to a(k — 1) +
1. We get

Lk — D)(p = 1)+ bk —1)+c+ (p — k)k,p,2)

- %(an +ba— 1)k — 1) + bk +¢) = Ik, p.2) (14

One can apply (14) with k = p = 5, (a,b,c) = (5,2,2) to get the lower bound
1(90,5,5,2) = 99.6. The proofs of the cases (a)—(g) are similar easy calculations. The
upper bounds are supplied by (1), (3), and (4), the exact results about C(n, k,2) mentioned
in the first section. ]

4. FURTHER LOTTERY PROBLEMS

Brouwer and Voorhoeven [4] notes that the Hanani, Ornstein, T. S6s bound (6) naturally
extends to the case t > 2

Link.p.t) = T(n,p,l)/(];), (15)

where T(n, p,t) (the Turdn number) is the minimum number of 7-sets such that every
p-subset of an n-set contains at least one of them. The problem of determination
of T(n,p,t) is open for all r > 2; the best lower bound, due to de Caen [5], is
(',1)(’,’:1l “(n - p + 1)/(n — ¢+ 1)). This and (15) give the following extension
of (6)

(',1) n—p+1
GO

t—1 t

Lnk,p,1) = (16)

The case r > 2 seems to be hopelessly difficult, for example for the German lottery
it gives L(49,6,6,3) = 87. An ‘“easy” upper bound is the following. In the Mobius
plane of order ¢ (Dembowski [6]) there are g + 1 points, g(g*> + 1) circles, and each
circle contains ¢ + 1 points. Thus for g = 5, g(¢g*> + 1) = 130 = C(26,6,3), hence
L(49,6,6,3) = L(26 + 26,6,6,3) = 2 - C(26,6,3) = 260. A better upper bound due
to Sterboul [12], is 175 (recent computer constructions gave 174, as the best bound we
know). In the case of n = 45 we have got only 1(45,6,6,3) = 66. For n = 90 formula
(16) gives L(90,5,5,3) = 1914, while C(45, 5, 3) is at least [by (2)], so an upper bound
obtained by two (45, 5, 3)-covers consists of at least 2,970 tickets. For further designs
that can help to solve lottery problems see Beth, Jungnickel, and Lenz [1].
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