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Abstract: Let Forb(G) denote the class of graphs with countable vertex sets which do
not contain G as a subgraph. If G is finite, 2-connected, but not complete, then Forb(G)
has no element which contains every other element of Forb(G) as a subgraph, i.e., this
class contains no universal graph. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 53-58, 1997

1. INTRODUCTION

Given a glass, G, of graphs we say that it has a universal element U € G if any other graph G € G
is isomorphic to a (not necessarily induced) subgraph of U. The theory of universal graphs was
initiated by Rado [16, 17] who observed that there exists a countable graph containing all others
as an induced subgraph. In this paper on subgraph we always mean not necessarily induced
subgraph.

Given a cardinal « and a family F of so-called forbidden subgraphs, let Forb,, (F) be defined
as the class of all graphs with at most x vertices containing no subgraph isomorphic to any element
of F. The class of countable graphs Forb,, (F) is abbreviated as Forb(F).

© 1997 John Wiley & Sons, Inc. CCC 0364-9024/97/010053-06
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It is known (see [18]) that there is a universal element in Forb(K,,) for n = 2,3, ..., where
K, denotes the complete graph on n vertices. (For extensions to larger cardinals see [14].) In
[10] it was shown that there is a universal element in Forb(P,,) and in Forb({C,,, C, 11, }),
where P,,, C}, denote the path, cycle, respectively, on n vertices.

On the other hand, it is known that there is no universal element in Forb(C),) (Hajnal and Pach
[9] for n = 4, Cherlin and Komjath [3] for all n > 4), or for Forb(X, ;) (Komjath and Pach [11]),
where a, b > 2, and K, ; denotes the complete bipartite graph with color classes of sizes a and b.
The aim of this paper is to extend these negative results to all noncomplete 2-connected graphs.

2. THEOREM

For an arbitrary (finite) graph G = (V, £) with vertex set V, edge set &, call two edges e, f € £
equivalent, in notation e ~ f, if there is a cycle containing both of them (or if e = f). Itis
well-known (see e.g., Lovasz [15], page 43.) that this relation ~ is indeed an equivalence, and
for the equivalence classes £ U & U - - - = £ the following hold. Let V; = U{e : e € &;}, then
each of the the graphs (V;, ;) is either a single edge or a maximal 2-connected subgraph of G
(called block), and the sets Vi, Va, - - - form a (generalized hyper)forest, i.e., one can suppose that
Vi1 intersects V3 U Vo U - - - V; in at most one element.

The unification of two vertices x,y € V of the graph G results a graph G|, with vertex
set V' \ {z,y} U {z}, where z is a new vertex, the edges in V' \ {z,y} are unchanged, and z
is connected to all vertices of V' \ {z,y} connected to either of x and y. Note that in case of
x,y € V1,|Vi| > 2 (i.e., if they belong to the same non-trivial block), the other blocks of G are
unchanged (except x or y are replaced by z), while V; becomes V1 \ {z,y} U {z}.

Theorem 2.1. Let G be a finite graph and let B be a 2-connected, noncomplete block in G
which is not isomorphic to a subgraph of another 2-connected block in G. Then Forb(G) has no
universal element.

Note that G has the above property if, e.g., itself is a 2-connected, noncomplete graph. Also,
in more general, Forb(G) has no universal element if the cardinality of V' (B) is strictly larger
than the size of any other block (and B contains 2 nonadjacent vertices).

For the proof we give a lemma on hypergraphs in the next Section. Section 4 contains the
definition of 2 distinct G-free graphs, G(¢), where € € {0,1}*“. In Section 5 it is shown that
a countable G-free graph contains at most countable many of the G(¢)'s. The paper concludes
with a list of further problems.

3. HYPERGRAPHS OF LARGE GIRTH

A hypergraph H is a pair H = (V,’H), where V is a set (the set of vertices) and H is a fam-
ily of subsets of V. A cycle of length [(> 2) is a sequence of distinct vertices and edges
vy, V2, vy, K1, Ea, ..., E; such that {’Ui, Ui+1} C Ei(l <1< l) and {1}[, 111} C E;. The
length of the shortest cycle in H is called its girth. If the girth is at least 3 then |[E N E'| < 1
for all pair of edges, i.e., the hypergraph is linear or nearly disjoint. A hypergraph consisting of
only 2-element edges is called a graph. Note that if we replace the edge E by two smaller edges
F1, Fy such that |F} N Fy| < 1, F} U Fy C E then the girth does not decrease.

Lemma 3.1.  For every k and g there exist a t = t(k, g) and a countable hypergraph H(k, g)
with vertex set w and with edge set { E1, Es, - - -} with the following properties:
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—|Ei| =k,
—the girth of H is at least g (hence it is nearly disjoint, if g > 3),
—(i+t)e B, Cc{i—ti—t+1,...,i+t}

Proof. One can easily make a probabilistic proof using Lovasz Local Lemma (see [15] Ex-
ercise 2.18, or [1] Section 5) or one by the greedy algorithm. Here we present a (basically)
constructive example. [

Erdds and Sachs ([5], also see in Bollobas [2], Theorem 1.4’ on p. 108.) proved that for every
6 and g there exists a d-regular graph of girth at least g on at most 69 vertices. Duplicating the
edges and vertices of such a graph G; one obtains a bipartite G2 which is §-regular and of girth
at least g. (The standard duplication can be done as follows: take two disjoint copies of V(G1),
call them V7 and V3; join two vertices u; € Vi and va € Vs if ujve € £(G1).) An explicit
construction of such a GG, can be found in [7].

Proposition 3.2. For every k and g there exist a natural number t and a 2(k — 1)-regular graph
G(k,g) of girth at least 2g with vertex set [t] = {1,2,...,t} such that its edge set can be
decomposed into t (k — 1)-stars with t distinct centers.

This means, that there are functions e; : [t] — [t](1 < j < k — 1) such that the edge set of the

stars S; = {(4, €1()), (¢, e2(3)), - - -, (4, ex—1(3)) }(1 <7 < t), where ej, (i) # e;, (i) if j1 F# jo.
form a partition of £(G(k, g)).

Proof of the Proposition. Start with a 2(k — 1)-regular bipartite graph G of girth at least
2g. (The existence of such a graph is mentioned before the Proposition). We may suppose that
its color classes consist of {1,2,...,s} and {s + 1,5 + 2,...,2s} (and that s < 2(2k)%9).
Konig's theorem says that the edge set of a regular bipartite graph can be decomposed into perfect
machings, My U -+ U Ma,_1) = £ (and here each M consists of s pairwise disjoint edges).
Define ¢t = 2s and for 1 < ¢ < s and let e;(i) = x be the other endpoint of the edge in M
covering the vertex i(1 < j < k — 1), while for the stars with centers s < ¢ < 2s one can use the
matchings M 1,..., Mas. [

Using the construction of the above Proposition one can define the hypergraph H(k, g) as
follows. Write ¢ in the form ¢ = at 4 r where a is a nonnegative integer, 1 < r < ¢, and define
E, ={i+t}U{at+¢;(r): 1 <j < k—1}. We claim that this hypergraph has the desired
properties. Sincet —t <4 —1r =at < at +¢ =i —r+t < i+t the third property follows. We
claim that the girth of H is at least g.

Suppose, on the contrary, that H contains a cycle with vertices x1,xo,...,2; and edges
B, Ei,,...,E;, withl < g. Write ¢, = a,t +r, and x, = b,t + s, where 1 < r,,s, <.
Since z; and x, are vertices in E; , they are from the form a;t + ej(rl) or 71 + t. Consider
the vertices s; and s» in the graph G(k, g). If 1 = a1t + ej, (1) and z2 = a1t + €;,(r1) then
s1 = ej,(r1) and s = e;,(r1). Thus, s; and sy are distinct since x; and zo are distinct and
Py := (s1,71, 52) is an 59 — so-path of length 2in G(k, g). If 1 = a1t +e;(r1) and o = iy +1¢
then s; = e;(r1) and from zo = a1t +r1 +t = (a1 + 1)t + r; follows s, = r1. Again
s1 # sg and Py := (s1, 82) is an s1 — so-path of length 1 in G(k, g). Finally, if x1 = i; + ¢ and
xo = a1t +e;(r1) we get s1 # so and an s; — so-path P; of length 1 in G(k, ¢) in the same way.
Using the paths P, generated by x,,, z,,+1 and E;, one gets a closed walk in G of length at most
21 with vertex set {ry,ra,...,7} U{s1,...,s;}. The girth of G exceeds 2, so this walk cannot
contain a proper cycle. Hence it is a closed walk along the edges of a subtree of G. We will get
a contradiction as follows.

Suppose that, e.g., s is an endpoint of that tree with the pendant edge {w, s2}. Then the paths
Py and P; both contain {w, sz }. The edge sets of the star-decomposition of G(k, g) are pairwise
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disjoint so this implies that the hyperedges E;, and E;, were obtained from the same star, i.e.,
r1 = ro. However, E;, # E;,, sor; = ro implies that t(a; — as) = i1 — i is at least . We get
that these two edges are disjoint, contradicting the fact x5 € E;, N E;,. [

4. FINITELY DETERMINED G-FREE GRAPHS

For the proof of Theorem 2.1 here we define continuum many G-free graphs, G(c), where
e = (e1,€2,--)isa0—1sequence. Letk = 2|V (G)|—1,g = |V(G)|+1, and let xu be an edge of
G such thatu € V(B), and denote by z the new vertex of G|,,,. Consider the hypergraph H (k, g)
supplied by Lemma 3.1. The vertex set of G(¢) is defined as V(G (¢)) = w = V(H(k, g)). Now
we are ready to define the edge set of G(e). Let f; : V(G) — E; and g; : V(G|yy) — E; be
injective functions with f;[V(G)] N ¢;[V(Glay)] = 0, gi(2) = i+ t, and f;(x), f;(u) are the
smallest elements in F;. Now let

E(G(e)) = U{gi(a)gxb) tab € E(Glay)}
U U {fi(a)fi(b) : ab € E(G — zu)}

ie;=1

U U {fi(@) fi(uw)}-

1:;,=0

Remember that the F; are pairwise nearly disjoint. Thus, with X; := f;[V(G)] and Y; :=
9i[V(G|zy), the induced subgraph G(e)[Y;] is isomorphic to G|, for every i, G(e)[X;] is iso-
morphic to G — zu if ¢; = 1, and G(¢)[X;] contains only one edge if ¢; = 0.

We claim that G(¢) is G-free. It is sufficient to see that B is not a subgraph of it. But this
is obvious, because, by definition, any cycle, C, of length at most |V (G)| must be contained
entirely in some F;. As every two edges of B are contained in a short cycle, any copy of B
must be contained completely in some E;. But B is neither a subgraph of G — zu nor of G|,,,
implying our claim.

The graph G(¢) is finitely determined, i.e., any embedding into a G-free graph the location of
the vertices {1,2...,t¢} determines the rest of its vertices. This will be made explicit in the next
section.

5. THE NONEXISTENCE OF UNIVERSAL GRAPHS

In this section we prove that there is no universal G-free graph. Suppose, on the contrary, that
U is a countable G-free graph containing all G(g)'s. Let [e] : w — V(U) be an embedding of
G(e) into U. There are only countable many ¢-subsets of V/(U), so there exist € # ¢’ such that
the initial segments of the embeddings of G(¢) and G(¢’) are identical, i.e.,

plel() = ¢le'](j)  foralll1 < j <t. (5.1)

The functions ¢[e] and ¢[e’] are abbreviated as ¢ and ¢’. We claim that (i) = ¢’ (i) must hold
for all 7 > 0, i.e., the vertex sets of these two graphs are embedded in the same way. Indeed,
(5.1) holds for each 1 < 7 < ¢; for larger ¢ we use induction. Suppose that 7 > ¢ and the equation
(5.1) holds for every 1 < j < 4. The images of Y;_; \ {i} under ¢ and in ¢’ are identical by the
induction hypothesis and by the fact that the elements of this set are contained in {1, 2, ...,7—1}.
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The set ¢(Y;_+) contains a copy of G \ {z}, the set ¢(Y;_+) contains a copy of G \ {y}, (and
these copies are compatible). So (i) # ¢'(i) would result a copy of G, a contradiction.
Finally, let ¢; = 1, e; = 0. Then, on the set ¢(X;) we get a subgraph of U isomorphic to
G — zu. Considering ¢’ (X;) we get an edge of U (joining the images of the first two vertices of
X;) However, ¢ = ¢, so these edges altogether give a copy of G. Hence U is not G-free, this is
a contradiction. [

6. FURTHER PROBLEMS, CONJECTURES

Let ¢(G), the complexity of a class of graphs G, be defined as the least cardinality of a subset
Go C G with the property that any element of G is isomorphic to a subgraph of some Gy € Go.
Obviously, G has an universal element if and only if ¢(G) = 1. Let F, (and Gy) denote the class
of all countable graphs containing no k vertex-disjoint (edge-disjoint, respectively) cycles. It was
proved (Komjath and Pach [13]) that ¢(Fy) = ¢(Gr) = w for every 1 < k < w. In the above
sections we have proved that every G-free graph (in the case of Theorem 2.1) can contain only
countable many of G(e)'s, hence ¢(Forb(G)) is continuum. (This was shown for the complete
bipartite graphs K, , with a,b > 2 in [12]).

The case of disconnected GG is more complicated, Cherlin and Shi [4] showed that 1 <
c(Forb(K,,, + Kp, + -+ Kp,)) < oo forall s > 2, ny,...,ns > 2. (This was proved
firstin [12] fornqy = --- =ngs =2 and forn; =ny =3, s = 2.)

Another seemingly hard problem is the case of trees. It is easy to prove (see in [12]) that
for the star S, with » > 4 edges the class Forb(S,.) is not universal, while Forb(S3) contains a
universal element. Call a graph B a bridge if it is obtained from a path by adding 2 and 2 pendant
edges to both endvertices. Goldstern and Kojman [8] have proved very recently that Forb(B) is
not universal.

We are able to decide whether Forb((G) is universal or not for several more classes of graphs;
e.g., among those connected graphs of 5 vertices exactly 5 are universal. This, and further
constructions, are the subject of a forthcoming paper [6].
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