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ABSTRACT 

The following result is proved by using entropy of hypergraphs. If r,, . . . , r,, are 
permutations of the n element set P such that for every triple x ,  y ,  z E P, one can find a ri 
such that ~ ~ ( x )  is between r i ( y )  and r i ( z ) ,  then n < exp(d/2). We also study k-scrambling 
permutations. Several problems remained open. @ 1996 John Wiley & Sons, Inc. 

1. MIXING PERMUTATIONS AND A CONTAINMENT PROBLEM OF 
ORTHANTS 

The permutations 7rl, . . . , 7rd of the n-element set P are called 3-mixing if for any 
3-element set {i, j ,  k} C P, one of the permutations places i between j and k, 
another one puts j between the other two, and the same holds for k, too. Let g(d) 
denote the maximum n with the above property. 

Theorem 1.1. For all d 5.2 we have g(d) < ed’* < 1.65d. 

This problem is easily seen to be equivalent to the following. What is the 
largest number n such that one can find an n-point set X C  Old with the property 
that each orthant orth(x,E) whose origin x belongs to X and whose faces are 
parallel to the axis contains at most one additional point of X .  Here E = 
(q, e2, . . . , ed)  E (1, -l}d and orth(x, E )  is defined as the set of all vectors of the 
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98 FUREDI 

form xi + €;ti with ti 2 0 for all coordinates 1 s  i 5 d .  The pigeon hole principle 
gives g(d) : = max n 5 1 + 2d. Enomoto (unpublished) proved g(d) = 0 ( 2 ~ )  and 
this improved by Ishigami [7,8] to 

7‘d’5J 5 g(d) 5 4( ,d14J) d 

314 d These bounds asymptotically are (1.475. . .)d and (413 
For small values we have g(2) = 2, g(3) = 3, g(4) = 4, and g(5) 1 7  by the 

following example from [8]: 9 = (1234567,5273461,4217365,3251764, 7245163). 
Actually, it is easy to see that g(5) = 7 as was shown by one of the referees as 
follows. Suppose that there exists an example with five permutations on eight 
elements. Consider the elements in the positions 1, 2, 7, and 8 of these 
permutations. There are 20 such places. It is easy to see that no element can occur 
four times here. So there are at least four elements occurring exactly three times. 
However, if an element appears three times than all the three must be in positions 
2 and 7. However, this is impossible since there are only 10 such places. 

Let I(n, d )  be the largest number such that for every n-element set P C Rd 
there exist an x E P and an E E (1, - l } d  satisfying lorth(x, E )  n PI 2 1 + I(n, d ) .  It 
is easy to verify that 1(2, d )  = 1 and I(n, 2) = [n/21 (see [S]). Ishigami [8] showed 
that 

) - (1.754. . .)d . 

Theorem 1.1 is implied by the following stronger result. 

Theorem 1.2. For n ,  d 2 3  we have I(n, d )  > n exp(-d/2). 

The proof is given in the next two sections. In Section 4 we show that 
Iimd-= g(d)L’d exists. Section 5 contains further extremal results, and in Section 6 
we propose a series of open problems. 

2. THE ENTROPY LEMMA 

Let 9 be a multihypergraph with (the finite) underlying set (or vertex set) V, i.e., 
it is a collection of subsets of V, 9 = { F l ,  F2,  . . . , Fm}, where repetition of the 
members is allowed. The multiplicity of the set S C V is denoted by p(S) [or 
p(S, 9) to be precise], and set p = p ( 9 )  the maximum multiplicity, p = 
maxScv p(S). Here p(S) is a nonnegative integer with Cscv  p(S)  = m. Define the 
entropy function H( y) = y log,( 1 ly) + (1 - y) log,( 1 /( 1 - y)) for all 0 < y < 1, 
H ( 0 )  = H(1) = 0. Then H is a concave real function. The binary entropy of the 
hypergraph 9 is defined as 

We are going to use the following lemma which was first proved (for p = 1) by 
Kleitman, Shearer, and Sturtevant [ I l l .  The proof for multihypergraphs is 
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identical to the original one, we omit it. It is a consequence of the basic entropy 
inequality H( 5) I C i  H( ti), where 5 and tl, . . . , tk are random variables such 
that the values of the 6;'s completely determine 6. The interested reader can find 
a thorough discussion and additional applications in the survey of Alon [l]. 

Lemma 2.1. Let 9 be a multihypergraph of m sets with maximum multiplicity p 
and underlying set V. Let p(x) denote the fraction of sets in 9 that contain the 
element x E V. Then 

Let us remark that, as far as the author knows, the entropy function for 
extremal combinatorial problems was first used by Katona [lo] in 1966, and later 
the method was renewed in [ l l ]  and [3]. 

3. PROOF OF THEOREM 1.2 

From now on we consider only the permutation version of the problem. Let P be 
an n-element set, it is usually identified with [n] := {1,2, . . . , n}. The matrix 
M = [ M i , j ]  is called a d X n permutation matrix if each of its d rows contains each 
element of P exactly once. The rank of an element u in the ith row is denoted by 
q ( u ) ,  i.e., q ( u )  = j  for M i , j  = u.  For E E (1, -1}" let L(u, E )  let L(u, E )  denote 
the set of w E A { u } ,  with the property that 7ri(w) < q ( u )  if and only if E, = -1. 
That is, the element w E L(u, E )  precedes u in the ith permutation if and only if 
ei = -1. Define f ( M )  = max{lL(u, € ) I :  u E P, E E (1, - 1 } ' } .  [If 9 is a system of 
permutations, then l ( 9 )  is defined as l ( M ) ,  where M is a matrix with rows 
corresponding to the members of 9.1 Finally, let f(n, d )  = min{f(M) : M is a d x n 
permutation matrix}, g(d) = max{n: I(n, d)  I l}. 

For any two elements x, y E P define the set F(y, x) C [d] as the set of indices i 
with q(y)  < Iri(x).Define the multihypergraph 9(x) = {F(y,x): x # y  E P}. It has 
n - 1 members with maximum multiplicity at most 1 = l ( M ) .  The element i 
appears in the members of 9(x) exactly T,(x) - 1 times. The entropy lemma 
implies that 

Add up the above inequalities for all x E P: 

Using the symmetry and concavity of the function H ,  one gets that 
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On the other hand, it is a simple calculus problem to determine this integral. 

I,' - x  log, x - (1  - x )  log,(l - x) dx = (-2) 

Summarizing, we get 

n - 1  log, e n log, - <d(n - 1 ) ~ .  1 

This is equivalent to 1 > (n - 1) exp(-$ q), which is larger than n exp(-d/2) 
0 (for n, d 2 3). 

4. THE EXISTENCE OF LIMIT 

Call a system of permutations 9 2-scrambling if it reverses each pair, i.e., for 
every x ,  y E P one can find T ,  m' E 9 with ~ ( x )  < ~ ( y )  and d ( y )  < ~ ' ( x ) .  Let 
l*(n, d )  = min(l(9): 9 is a 2-scrambling d x n system of permutations}. Finally, 
define g*(d) = max{n : l*(n, d )  5 1). Obviously, 

l*(n, d )  2 l(n, d )  and g*(d) s g ( d )  . (4.1) 

Any permutation and its reverse form a 2-scrambling system, so, taking a set of 
permutations and joining one of the reverses to it, one can make the system 
2-scrambling. Hence 

l*(n, d )  zs l(n, d - 1) and g*(d) 2 g(d - 1) . (4.2) 

Roposition 4.1. limd.+z(g(d))"d = Iimd--( g*(d))"d . 

Proof. First, we show that 

l * ( n l n 2 ,  d ,  + d , )  5 l*(nl, d,)l*(n,, d , )  . (4.3) 

Indeed, consider the 2-scrambling systems, 9 and 9 of sizes d ,  X n ,  and d ,  X n, 
and with underlying sets P = {pl, p,, . . . , p,,}  and Q = { q l ,  . . . , q n 2 } ,  respec- 
tively. Consider the product of their underlying sets, P X Q. We define d ,  + d ,  
permutations of P x Q in the following rather natural way. Take a permutation 
T E 9, and form the ordered blocks R, = { ( p ,  q l ) ,  ( p ,  q, ) ,  . . . , ( p ,  q, , )} .  Then 
order these blocks using T.  Similarly, a permutation T'  E 9 naturally extends by 
using the blocks C ,  = { ( p , ,  q ) ,  ( p , ,  q ) ,  . . . , (p , , ,  4)). We claim that we obtain a 
2-scrambling system; if ( p ,  q, ) ,  (p ' ,  q,) E P x Q with i < j ,  then their order is 
reversed in the extension of a permutation 7 ~ '  E Q reversin q, and q,. 

Let E E (1 ,  - l } d l + d 2  and write it in the form E = ( E  , E ), where E' E (1,  - 
l}"'. It is obvious that L ( ( p ,  l ) , ~ )  contains L ( ~ , E ' )  x L ( q , e 2 ) ,  and it is 
contained in 

1 9  

W ( P ,  E l )  u { P } )  x ( U q ,  E 2 )  u {q})\(P7 4). 
We claim that if there is any ( p ,  q')  E L ( ( p ,  q) ,  E), then L ( ( p ,  q ) ,  E )  = { p }  X 
L(q,  E ' ) .  Indeed, let q = q, and q f  = q, and suppose that i < j .  [The other case, 
and also the case ( p f ,  q )  E L ( ( p ,  q) ,  E )  are similar.] Then ( p ,  4 , )  precedes ( p ,  qi) 
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in the block Rp and so they are not reversed in each of the permutations obtained 
from a T E 9. We get e1  = {1,1, . . . , 1). However, the permutations obtained 
from 9 form a 2-scrambling system, so if p“ Z p ,  then there exists a permutation 
d‘ placing the block Rpv before R,, implying (p”, q”)$L((p,  q), e). 

Summarizing, we get that L ( ( p ,  q), E )  is either equal to L ( p ,  E ’ )  x L ( q ,  E ’ )  or 
to { p }  x L(q,  E’) or to L(p,  e l )  x { q } .  In all of these cases its size is at most 

Using (4.3), we get g*(d, + d , )  L g*(d,)g*(d,). The sequence (1 /d) log g* (d )  
is bounded above, so classical calculus (Fekete’s theorem) can be applied to get 
that lirnd+-(l/d) log g* (d )  exists and equals to its supremum. Finally, (4.1) and 

0 

49 )1(9 1. 

(4.2) imply that (lld) log g(d) also must have the same limit. 

Note that, the 5 x 7 example in section 1 is not 2-scrambling (the pair {2,6} is 
not reversed) so we do not have g* (5 )  = 7. It is very likely that g*(5) is only 6. 
However, {2,6} is the only unreversed pair so with a slightly modified definition 
of the product 9 x 9 one can get Ishigami’s lower bound ( l . l ) ,  too. We omit the 
details. 

5. COMPLETELY SCRAMBLING PERMUTATIONS 

Call a family of permutations T ~ ,  . . . , T, of the n-element underlying set P 
completely k-scrambling if for every ordered k-set ( p , ,  . . . , pk)  of k distinct 
elements of P there is some i with r , ( p l )  < ~ , ( p , )  < * - * < r , (pk ) .  That is, the T,’S 

give all the k! permutations of every k-set. The cardinality of the minimal 
completely k-scrambling family is denoted by N*(n ,  k). Spencer [15] proved that 

k 
log, n 5 N * ( n ,  k) 5 log,(k! / ( k !  - 1)) log, 

as k 2 3, fixed, and n+ m. Obviously, for a completely 3-scrambling system 9 
one has 1(9)= 1. On the other hand, starting with a 3-mixing system, 
{T,, . . . , T ~ } ,  and reversing each of them, one gets a completely 3-scrambling 
system of permutations. So Theorem 1.1 and Ishigami’s example give 

2 In 2 log, n < N*(n,  3) < (lO/log, 7) log, n + O( 1) . 

The coefficients here are 1.386. . . and 3.562. . . [in (5.1) for k = 3 we get 1 and 
11.405. . .I. 

For k > 3  Ishigami [9] have recently improved the lower bound in (5.1) to 
(k - 2)!/(log2 k) log, n for n large compared to k .  One of the referees noted that 
a very simple argument gives N*(n ,  k) 2 (k - 2)! log,(n - k + 2) for all n I k I 3. 

Theorem 5.1. For all n 2 k 2 3 we have N*(n,  k) > i ( k  - l ) !  log, n. 

For the proof we have to recall an old problem of RCnyi [14]. Given an 
arbitrary underlying set V, and consider two of its partitions P, P’. These are 
called crossing (or qualitatively independent) if every class of P has a nonempty 
intersection with every class of P’. A partition into t parts is called a t-partition. 
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Let I,(u) denote the largest cardinality of a family of t-partitions of a u-element set 
under the restriction that any two partitions in the family are crossing. Recently, 
Gargano, Komer, and Vaccaro [6] have proved that 

1 2 
lim sup - log, I,(u) = 7 

holds for every f. We only use the following upper bound, which is an easy 
corollary of a theorem of Bollobis [2], as was pointed out by Poljak and Tuza 
[13]: 

Ll-+cc u 

Proof of Theorem 5.1. Let  IT^, . . . ,  IT^ be a completely k-scrambling system of 
permutations of the set [n]. Consider the subpermutations   IT;(^), . . . , IT;@ - 2 ) )  
for all i E [ d ] .  There is a permutation of [k - 21, say it is (pl ,  . . . , pk- , ) ,  which 
occurs at most dl(k - 2)! times. Let V := {i: vi(p1) < mi(p,) C .  * - < 7ri(pk-,)}. 
For every element x E [n]\[k - 21 we define a (k - 1)-partition of V, P(x) := 
(P , (x ) ,  P z ( x ) , .  . . ,Pk-l(x)) as follows: P , ( x ) : = { i E V :  r i ( x ) < m i ( p l ) } ,  P , (x) :=  
{ i E V :  I T ~ ( ~ , _ ~ ) < I T ~ ( X ) < I T ~ ( ~ , ) }  for 2 5 a s k - 2  and Pk-l(x):= {iE 
V : r i (pk - ’ )  < IT;(x)}.  Any two partitions P(x) and P ( y )  are crossing because 
there are permutations which places x and y in all possible (k - 1)’ ways between, 
before and after the elements p l ,  . . . , pk-,. So (5.2) implies n - (k - 2 )  5 
($’,~$:~~). Using IVI I d l ( k  - 2)!, an easy calculation gives the desired lower 
bound for d .  0 

6. FURTHER PROBLEMS, CONJECTURES 

One can propose the more general problem of looking for the minimal number of 
permutations of n elements that scramble all k-element subsets up in various 
ways. More precisely, let 9’ be a family of families of k-permutations and call a 
system 9 of n-permutations 9’-mixing if for all k-element subsets K C  [n]  the 
system { I T ( K ) :  IT E 9) E 9. What is the minimum size, f(n, Y), of a family of 
9’-mixing permutations? In other words, we are looking for the minimum number 
of permutations of [ n ]  with prescribed k-subpermutations. 

An important example is the following. Call the set of permutations 9 
k-scrambling if for every (now unordered) k-set {pl ,  . . . , pk}  C P and for every 
distinguished element of the set, say pi, there is a permutation IT E 9 such that 
..(pi) precedes all the other (k - 1) pi’s. The cardinality of the smallest k- 
scrambling family is denoted by N ( n , k ) .  This notion goes back to Dushnik [4] 
who found a formula for N(n, k) when 2VE I k I n. For k is fixed and n + 03 an 
argument due to Hajnal and Spencer [15] gives that 

k - 1  
log, log, n 5 N(n ,  k )  5 log, log, n . 

log,(2k-11(2k-1 - 1)) 

In [5] the asymptotic N(n, 3) = log, log, n + (i + o(l))log, log, log, n was 
proved. The determination of N ( n , k )  is equivalent to the question of the 
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dimension of the partially ordered set formed by the (k - 1)- and 1-elernenf 
subsets of [n] and ordered by inclusion. More about poset dimensions and their 
connections with permutations can be found in [16]. 

It would be interesting to decide if the order of f ( n ,  9’) is always 0(1), 
@(log log n) or @(log n), for monotone systems. Monotonity means that d E 9, 
d C 93 implies 93 E 9’. (All the above results dealt with monotone properties.) 

In another related series of problems one considers partitions instead of 
permutations. For example, Korner [12] proved the following. Let f ( d )  be the 
maximum n such that one can find d partitions A i  U Bi = [n], A, n Bj =0, 
1 I i 5 d such that for every triple T C [n], and element x E T one can find an i 
with either A, n T = { x }  or Bi f l  T = { x } .  Then ( 2 / 6  - ~ ( l ) ) ~  < f ( d )  < (fi + 
4 1  N d .  
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