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Let ex(n,K33) denote the maximum number of edges of a K3j-free graph on n vertices.
Improving earlier results of Kovari, T. Sos and Turan on Zarankiewicz' problem, we obtain
that Brown's example for a maximal K3 3-free graph is asymptotically optimal. Hence

^ 5 / 3

1. The Turan problem

Given a graph L, what is ex(n, L), the maximum number of edges of a graph with n
vertices not containing L as a subgraph? This is one of the basic problems of extremal
graph theory, the so called Turan problem. The most well-known case is ex(n,Ki) = \n2/A\
(cf. Mantel [11], Turan [13] and for a survey see Bollobas' book [1]). The Erdos-Stone-
Simonovits theorem [5, 6] says that the order of magnitude of ex(«, L) depends on the
chromatic number of L, namely lim^ooex(n,L)/ (") = 1 — (x(L) — I)"1. This theorem
gives a sharp estimate, except for bipartite graphs.

Until now, the only asymptotics for a bipartite graph which is not a forest, ex(n,K2,,+i) =
jyfi(l +o(l))n3/2, is due to Erdos, Renyi and Sos [4] and Brown [2] for the case of C4

(for the most recent results see [8]); the case t > 1 can be found in [7]. Brown [2] gave a
construction using finite affine geometries showing e x ^ . K ^ ) ^ (p5 — p4)/2 for all odd
primes. Here we prove an upper bound showing that his example is nearly optimal.

Theorem 1. ex(n,X3>3) = ±n5/3 + 0{n5/3~c) for some constant c> 0.

The previous best upper bound, mentioned below as (1), was (21/'3/2)"5/'3 + n.

2. The main theorem

Given m,n,s and t integers, m ^ s ^ l , n ^ t ^ l , what is the maximum number,
z = z(m, n, s, t), such that there exists a 0-1 matrix M with m rows and n columns containing
z l's without a submatrix with s rows and t columns consisting of entirely of l's. In 1951
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Zarankiewicz [14] posed the problem of determining z(n, n, 3,3) for n < 6, and the general
problem has also become known as the problem of Zarankiewicz. To avoid unnecessary
repetitions, from now on, we suppose that s ^ t. Obviously, z(m, n,s, 1) = (s — l)n. It
is easy to see that z(n,n,s,2) < riy/(s — l)n — s + 1/4 + (n/4), and it is known that this
bound is asymptotically correct, i.e., limn_ooz(n,n,s,2)n"~3/2 = Js— 1 (Kovari, Sos and
Turan [10] for s = 2, Hylten-Cavallius [9] for s = 3 and Mors [12] for all s). For fixed s
and t, the best (and simplest) general upper bound

z(n,n,s, t) < (s - l)1/f n2-1/r + (t - l)n (1)

is believed to give the optimal exponent of n.
Considering the adjacency matrix of a XS)(-free graph on n vertices we get 2e\(n,KSyt) ^

z(n, n, s, t). Hence Brown's example implies

(2)

The probabilistic method [3] gives a lower bound for z of order Q(n2-('+s-2)/(s'-1)) only.
Since 1956 the upper bound (1) was only slightly improved by Znam [15] in the second
order term. A proof and further results can be found in [1]. The aim of this note is
to present an improvement of (1) yielding that the lower bound of (2) is asymptotically
correct and that Brown's construction is asymptotically optimal.

Theorem 2. z(m,n,s,t) < (s - t + \)lltnml-llt + tn + tm2~2/t holds for all m ^ s, n ^ t,

For fixed s,t ^ 2 and n,m -» oo the first term is the largest one for m = 0{nl/^~x)). The
upper bound in Theorem 2 is asymptotically optimal for t = 2 and for t = s = 3. It would
be interesting to see whether this extends to other values.

3. Lemmata

Define (£) as a real polynomial x(x— l) . . . (x — k + \)/k\ of degree k for x ^ k — 1, k ^ 1
integer. For k — 1 > x > 0 let (£) = 0 , and for all real x ^ 0 1 e t ( J ) = l. Note that these
functions are convex.

Lemma 1. Let v,k ^ 1 be integers, c,XQ,x\,...,Xk ^ 0 reals. Then

£ (xl) < c ( ? ) imPlies £ *•• ^ *oc l /v i / f c+(k - Dv.

Proof. Let S = X ^ , ^ x<- The case S < (k — l)v is obvious. For S ^ (k — l)v Jensen's

inequality gives v I J ^ c ( J. Hence

v ^ x0 xo — 1 xo-k + l f x0

c S/u S/j> - 1 " ' S/v - k + 1 \S/v - k + 1,

Rearranging we get the desired upper bound for S. •
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Lemma 2. Let t ^ 2, v ^ 1 be integers, y\,...,yv ^ t — 2 reals. Then
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Proof. The case t = 2 is an identity. For t ^ 3 and for arbitrary reals a, b ^ t — 3 one has

implies

a \ / fc \ I"/ /J \ / /i \ 1
• (3)

Add up (3) with (a, b) = (yi,yj) for all 1 < i,j ^ v. Rearranging we get the desired

inequality. D

4. Proof of theorem

The case t = 1 is trivial, the case t = 2 is known (see [1]), so we suppose that s ^ t ^ 3.
(Though inequality (4) below yields the upper bound for t = 2, too.) For any 1 < i < m let
Rt =:{j:Mjj = 1}, Cj\— {v.Mjj = I}, yj-.= \Cj\, i.e., the number of nonzero entries in the
/ column. We may suppose that \Rt\ ^ t, \Cj\ ^ t for all i and j (otherwise we can use
induction on n + m). Fix (— 2 rows, 1 < i'i < ii < ... < ir_2 < m. Consider all t-element
subsets of Rtl n ... n /?,,_2. Any such set T is contained in at most s — t + 1 further Rx,
because M has no s x t full 1 submatrix. We obtain

lh n . . . n Rit_

t

Using L e m m a 1 (with v = m — t + 2, k = t, c = s — t+l, XQ = \Rh n ... fl /?,-,_21), one h a s

< (s - 1 + l)1 A(m - 1 + 2?-1/'\Rh n . . . n Rit_2\ + (t- l)(m - 1 + 2 ) .

Add up the above inequality for all the (t™2) choices ofi\,...,it-2- Then in the left-hand

side we count ((— 1) times each full submatrix of size ( f - l ) x l . We obtain

Apply Lemma 2 with u = n, yj = |C,-|. We get that the left-hand side is at least
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Thus

" \Cj\ I - n(t - 2) sC (s - t + l)1/r(m - £ •

^ (5)

y J

^ [ t-2

If the last fraction is at most m(t 2)/', then (5) implies the desired inequality for ^ \Cj\.
Finally, we suppose that the fraction exceeds m^~2^', i.e.,

m

Apply Lemma 1 again (with values v = n, k = t — 2, c = n/mx~2/t, xo = m, x, = |C,|). One
gets that

J2 \Cj\ < m

We are done. •
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