QUADRILATERAL-FREE GRAPHS
WITH MAXIMUM NUMBER OF EDGES

ZOLTAN FUREDI

Mathematical Institute of the Hungarian Academy of Sciences,
1364, Budapest, P.O.B. 127, Hungary®
and
Bell Communications Research
Inc., Morristown, NJ 07960

July, 1988

ABSTRACT. Let ¢ be an integer and G be a graph on ¢2 + ¢ + 1 vertices without a
1
cycle of lengh 4. Here it is proved that the number of edges |[E(G)| < Eq(q +1)2.

Moreover, equality holds (for g > qo) if and only if G is obtained from a projective
plane via a polarity with ¢ + 1 absolute elements.

1. DEFINITIONS

A hypergraph H is a pair (V,€) (or (V(H),E(H)) if it is necessary to denote H),
where V', the set of wvertices, is a finite set, and £, the set of edges, is a collection
of subsets of V. If every edge contains exactly two vertices, then H is called
a graph. A (hyper)graph is called simple if it has no multiple edges. Let £[x]
denote the set of edges containing z € V. deg(H,z) stands for |E[z]| (i.e. the
degree of x). Set D(H) = max{deg(H,z) : z € V}, the maximum degree. If all
the degrees are d, then H is called d-reqular. A 1-regular subgraph is called a 1-
factor. For a vertex z € V, Ny (z) (or briefly N(z)) denotes its neighborhood, i.e.,
Nu(z) = {y € V : © # y and there exists an edge E € £ with {z,y} C E}. If
all the edges have k elements, then H is k-uniform. The hypergraph H is called
intersecting if ENE’ # () for all edges E, E' € £. Morover it is called 1-intersecting
if [ENE'| =1 holds for all distinct edges. If |[E N E’| < 1 holds for all distinct
edges, then H is called a linear (or 0-1 intersecting) hypergraph. The restriction
H|X stands for the hypergraph (VN X, {ENX : EF € £ and |[EN X| > 1}). The
induced subhypergraph H|| X has vertex set X and edge set {E € £ : E C X}. The
dual hypergraph H* is obtained by interchanging the roles of vertices and edges
of H keeping the incidences, i.e. V(H*) = £ and E(H*) = {€[z] : z € V}. The
incidency matrix M (or My) is an |E| by |V| matrix with 0-1 entries, M(E,z) =1
if z € E and 0 otherwise. For a simple graph G its adjacency matrix A (or Ag) is
a symmetric |V| x |V| matrix with A(z,y) =1 if {z,y} € £(G) and 0 otherwise.

A finite projective plane of order ¢ (or briefly, a PG(2,q)) is a (¢ + 1)-uniform,
(¢ + 1)-regular, 1-intersecting hypergraph H = (P, L), where the vertex set P has
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¢? + ¢+ 1 elements. The elements of P are called points, and the members of £ are
called lines. It follows that |£| = ¢>+¢+1 and every pair of points u, v is contained
in a unique line L[u,v]. The desarguesian projective plane, DPG(2, q), is obtained
from the finite field, F,, as follows. The points of this plane are the equivalence
classes in ¥\ {(0,0,0)} of the relation “~” defined by (z,y,z) ~ (¢',y', 2') if there
exists ¢ # 0 in F such that (z/,y/,2') = (cz, cy, cz). The line [a, b, c| of DPG(2,q)
has the equation of the form az + by 4+ cz = 0 in F, with (a,b,c) # (0,0, 0).

A polarity m of the projective plane H is a bijection 7 : P <> L such that z € L
(x € P.L € L) implies w(L) € w(x). A point z (line L) is called absolute (with
respect to 7) if z € w(x) (m(L) € L). The number of absolute points is denoted by
a(r). In other words, let P = {z1,...,2q24q41} and £ ={L1,...,Lgz1q4+1}. Then
the bijection z; <> L; is a polarity if and only if the incidency matrix, M, of the
projective plane is symmetric. Moreover, the number of absolute points equals to
the number of nonzero entries in the main diagonal of M, i.e.,

a(m) = trace M.

A theorem of Baer [B] states that for every polarity one has a(w) > g+ 1, and even
more

(1.1) a(m) =q+1+m/q

holds for some non-negative integer m. It is easy to see, that for the DPG(2, q) the
bijection

(1.2) (a,b,¢) < [a,b,c|

defines a polarity 7 with a(7w) = ¢+ 1. (A point (a, b, ¢) is absolute if and only if it
is on the conic a? + b? + ¢ = 0.)

The polarity graph. The following definition is due to Erdds and Rényi [ER]
from 1962. Consider a H = PG(2, q) and suppose it has a polarity w. Let M be a
symmetric incidency matrix of H defined by 7. Replace the 1’s in the main diagonal
by 0’s. The obtained matrix, A, is an adjacency matrix of a graph G = G(x), called
the polarity graph. Obviously,

(1.3) G () is quadrilateral free.
If H is desarguesian, and = is defined by (1.2) then two points (z, y, z) and (2, y’, 2’)
are joined in G if and only if 22’ + yy’' + 22’ = 0. A point not on the conic

2?2 + y2 + 22 = 0 is joined to exactly ¢ + 1 points and each of the ¢ + 1 points on
this conic are joined to exactly ¢ points. Thus

(1) £(G)] = Jala+ 1)

We will use the notations |z] and [z] for the lower and upper integer part of the
number z, resp. The notation (3) for a real z stands for z(z — 1)/2.
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2. RESULTS

Let f(n) denote the maximum number of edges in a (simple) graph on n vertices
not having a cycle of length 4, (i.e., quadrilateral-free). P. Erdés [E38] proposed
the problem of determining f(n) more than 50 years ago. It is easy to see (K6vari,
T. S6s, Turdn [KST], Reiman [R]) that

f(n) < <n(1+ Vin—3),

-

ie. forn=¢>+q+1

(2.1) @ +q+1) < (@ +q+1)(g+1).

DN | =

On the other hand, as Erdés, Rényi, T. Sés [ERS] pointed out in 1966, the polarity
graph shows that the upper bound (2.1) must be very close to the optimal one. The
same result was proved simultaneously and independently by W. G. Brown [Br].

1
(2.2) If ¢ is a prime or prime power, then §q(q +1)2< f(¢®+q+1).

The above two inequalities imply an asymptotic solution, that is

Fn) ~ gnv/n.

To determine the exact value of f seems to be hopeless, except in the case n =
q> + q + 1. Erdés [E74, E75, E76] conjectured that equality holds in (2.2). (1.1)
implies that the polarity graph cannot have more edges then the bound in (2.2).
On the other hand, Erd8s, Rényi, and T. Sés [ERS] proved that equality never
holds in (2.1). (This was the so-called Friendship Theorem.)

In [F] the Erdés conjecture was proved whenever ¢ is a power of 2. The aim of
this paper is to prove it for all values of ¢, in the following stronger form.

Theorem (2.3). Let G be a quadrilateral-free graph on g + q + 1 vertices. Then
1

IE(G)| < iq(q + 1)2. Here equality holds only for the polarity graphs, (whenever

q> qo)-

McCuaig [Mc] and independently Clapham, Flockart and Sheehan [CFS] deter-
mined f(n) and all the extremal graphs up to n < 21. For ¢ = 2 (and g = 3) there
are 7 (2, resp.) graphs with maximum number of edges, and only one of them is the
polarity graph. So the constrain g > ¢go can not be omitted (as it was mistakenly
stated in the earlier work of the author [F].) It seems to me that there are no other
exceptional cases even for 4 < ¢ < gg, but eventually in the case ¢ = 5 (see the end
of the Section 8). The value of gy proven in this paper is 190, and probably it can
be lowered.

Conjecture 2.4. (McCuaig [M]) Each extremal graph is a subgraph of a polarity
graph.

It was proven for n < 21.
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The proof of the Theorem is lengthy, and we have to distiguish between several
subcases. In the next Section we collected further definitions and lemmas. In
Section 4 it is proved that for an extremal graph

D(G)<qg+1.

The Section 5 contains the proof of the Theorem for all even ¢’s. The last 4 Sections
deal with the case ¢ odd. Only in Sections 8 it is proven that

(g + 1)

NN

(2.5) fl@®+q+1)<

Moreover, for the extremal graph all degrees are either ¢+ 1 or g (whenever ¢ > qq).

3. LEMMAS
We will use the following more exact form of Jensen’s inequality. Suppose that
k1,...,kn and a,r are nonnegative integers such that > k; > am+r, and 0 <r <
m. Then

(3.1) > (2) > r(“ ; 1) +(m—r) (g)

Moreover, here equality holds if and only if exactly r of the k;’s equal to a + 1, and
the other k;’s equal to a. [

A linear space L is a pair (P, L) consisting of a set P of points and a set of L of
subsets of P called lines with the properties that

(1) any two distinct points z and y are contained in a unique line L[z, y], and
(2) every line contains at least two points.

Note that the dual of a 1-intersecting family is a linear space. The linear space is
called trivial if it has only one line, £ = {P}. The linear space is called a near
pencil if it has a line which contains all but one of the points of P.

In 1948 deBruijn and Erdés [BE] proved that for every nontrivial linear space
one has

(3-2) L] = |P.

Moreover, here equality holds if and only if L is either a near pencil or a finite
projective plane PG(2,q). Jim Totten [T] described all the linear spaces with v
points and at most v 4+ /v lines. An easy consequence of his classification is the
following. Suppose that (P, £) is a nontrivial linear space with

(3.3) L] = |P|+1,

then L is obtained as a restriction of a PG(2,q) into ¢* + ¢ points.

A hypergraph H is said to be embedded in the linear space L, if V(H) C P and
E(H) C L. Vanstone [V] pointed out that if H is a (¢ + 1)-uniform, 1-intersecting
hypergraph with at most ¢? + ¢ + 1 vertices, moreover |£| > ¢2, then H can be
embedded into a projective plane of order g. Recently, Metsch [M] improved this
to

(3.4) €] > ¢* — (¢/6).
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Suppose that, as earlier, we have a (¢ + 1)-uniform, 1-intersecting hypergraph H
over q2 + ¢ + 1 vertices. Such a hypergraph is called a partial projective plane. S.
Dow [D] proved that if

(3-5) EH)|[ > ¢® —q+1,

and H can be embedded into a PG(2, q), then this embedding is unique.
Suppose now that H is a linear hypergraph (not necessarily a linear space) such
that every edge has at least k elements. Then, as Corradi [C] proved

k2|E|
) VH)| > — "
(3.6) VI )|—k—1+|€|

Lemma (3.7). Let M be the incidency matriz of a projective plane of order q.
Suppose that M; ; = M, ; whenever 1 <i<¢*—q+3 orl1<j<gq¢*—q+3, ie,
M s symmetric, except a small submatrix in its lower left corner. Then the whole
M is symmetric.

Proof: If not, then M and its transpose M 7T give two different extensions of the
partial projective plane defined by the first ¢ — g+ 3 rows of M. However, by (3.5)
these two extensions must be the same, appart from the ordering of the rows. But
in this case every row, but eventually one exception, contains at least two 1’s from
the first g2 — g + 3 columns, so the ordering of the rows is also determined. [

A biplane of rank k is a k-uniform, k-regular hypergraph (V,¢&), with ('2“) +1
edges, the same number of vertices, such that |[E N E’| = 2 holds for every two
distinct edges E, E’ € £. No biplane is known for k£ > 13.

Lemma (3.8). Suppose that M is an incidence matriz of a biplane of rank q + 1.
Suppose further that M is symmetric, and trace M = 0. Then q = 2 or 5.

Proof: A special case of a theorem of Hoffman, Newman, Strauss, and Taussky
[HNST] says that for a symmetric biplane of rank ¢ + 1 one has

trace M =q+1+4a+v/q—1,

where a is a nonnegative integer. (The proof goes in the same way as the proof of
the next Lemma, i.e. we have to calculate the eigenvalues of the matix M MT.) In
our case trace M = 0, so \/g — 1 = t must be an integer dividing ¢ + 1 = 2 + 2.
This implies that t =1 or 2, i.e., g =2 or 5. [

Lemma (3.9). Suppose that M is a symmetric 0,1, —1-matriz with (¢*> +q+2)/2
rows and columns. Suppose further, that every row contains exactly ¢ + 1 nonzero
entries, the scalar product of every two rows is 0, and the trace M = —q+ 1. Then
q<3.

Proof: Consider the product of M by its transpose. We have that MM7T = M? =
(g + 1)I. Consequently, every eigenvalue of M is +1/q + 1. So

—q+1=traceM =a+/q+1

holds for some integer a. If ¢ # 1, then a # 0, and \/q + 1 = ¢ is an integer dividing
—q+ 1= —t2+2. Again, it follows that ¢ is either 1 or 2, implying g =0 or 3. [
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Lemma. Suppose that H = (P, L) is a non-trivial linear space. Then

(3.10) ) deg(H,z) > 3(|P| - 1).

Moreover, if H is not the near pencil, then

(3.11) )~ deg(H, z) > 4|P| - 8.
z€EP

Proof: Let k = max{|L|: L € L}, |Lo| = k. Then deg(H, z) > k for all x ¢ Ly.
So
> " deg(H,z) > 2k + k(|P| — k).

Here the right hand side is at least 4|P|—8 for 4 < k < |P|—2. The case k = |P|—1
provides the near pencil. Finally, if ¥ < 3, then || > ('g')/ 3, and the statement
easily follows by inspecting the cases |P| < 6 separately. [

4. THE MAXIMUM DEGREE IS AT MOST ¢q+1

Let G be a quadrilateral-free graph on n = ¢ + ¢ + 1 vertices, V(G) =
{v1,...,up}. As the cases ¢ < 4 were settled in [Mc], [CFS], we suppose that
q > 5. (Although, with a little more efforts the results of the next two and the last
sections can be extended to the cases ¢ = 3 and 4.) Suppose that

(4.1) 21E(G)| > q(qg+ 1)~

We will see that here equality holds, and for ¢ > g9 G is a polarity graph. Suppose
that v; has maximum degree D. Clearly, D > ¢+ 1. The aim of this section is to
prove that D = g+ 1.

Consider the hypergraph N = (V(G), ), defined by the neighborhoods of the
vertices of G, i.e., N = {N(v) : v € V(G)}. Denote Ng(v;) by N;. For N € £(N)
let v(N) denote the vertex for which N(v(N)) = N. (As in the extremal graph
every vertex has degree at least 2, the above notation is justified.) Since G is
quadrilateral-free, this hypergraph is linear, so

(4.2) (Z) _ <|V(2G)\) =S (\Ngun)

veV

Using the Jensen’s inequality we get

(Z) > n(Z |N2(v)|/n)7

which yields the quite close upper bound
n
21£(G)| =) IN(v)| < 71+ Vin=3) = (¢’ +¢+1)(g+1).

This proof was given in all the early papers [ERS], [Br], etc.
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Next we give a better upper estimate for |£(G)|, than (4.2). The idea we use is
fairly simple, basically it is the same as in [F]|. We separate the neighborhood of vy,
N; = Ng(v1), and investigate the rest of the graph. Consider the subhypergraph
N; = N|(V \ Ny). It is still linear on n — D vertices, so

(4.3) (n;D) >y ('Ni;N”).

2<i<n

As |N; \ N1| > |N;| — 1, we have

(4.4) D OINAN =D N[ - (n—1) >2/£(G)| - D~ (n—1).

2<i<n i>1
Then (4.1) gives
(4.5) > INi\Ni|>(n—1)g—D
2<i<n

Using the Jensen’s inequality again, (4.3) and (4.5) imply that

G B )]

or equivalently

(4.6) (mn=1)(n—-D)n—-D-1)>((n—1)g—D)((n—-1)(¢—1) — D).
As a first step we prove that

Proposition. For g > 3 one has

(4.7) D <q+2.

Proof: Suppose on the contrary, that D > g 4+ 3. Then for ¢ > 3 it is easy to
check the following inequalities, (which are linear in D).

(4.8) (g+1)(n—D)<(n—1)g—D
(49) an-D=1)<(n—1)(g-1)-D

However, the product of (4.8) and (4.9) contradicts to (4.6). O
From now on suppose that D = ¢ + 2. Then

(4.10 ("37) =@ -2+ @ ("3"):

i.e., the right hand side of (4.10) is at least as large as the right hand side of (4.3).
Then (3.1) implies that

Z INi\ N1| < (¢ —1)g+ (g +1)(g — 1).

This and (4.4) give 2|€(G)| < ¢(g+ 1)? + 1. Hence,

(411) £(@)] = Jala+1)%



S LZOLTAN FUREDI

Proposition (4.12). FEquality holds in (4.5).

Proof: Suppose on the contrary. Then Y, |[N;\ N1| > (¢* —1)g+(¢+1)(¢—1).
This, (4.10) and (3.1) imply that N covers all pairs of V' \ Ny, i.e., it is a linear
space. Moreover, exactly g2 — 1 of the edges of N1 have cardinality ¢, and the other
q + 1 edges have cardinality ¢ — 1. It follows that all degree in N; is exactly ¢ + 1.
Indeed, for an arbitrary vertex = € V' \ N7 we have

F-1=V\Ni|=1+ Y  [E[-1<1+(q—1)deg(Ny,z).

This gives deg(Ny,z) > g+ 1. However,
S deg(Ny, ) = SO IN: \ i = (g + DV \ M),
T i>1

so there is no vertex of N; of degree larger than ¢ + 1. This is a contradiction,
because deg(N1,v;) = deg(N,v1) =¢+2. O
Now (4.11) and (4.12) imply that

(4.13) Y INAN|= ) deg(G,z)=n—1+D.
Ne&(N) €Ny

This means that all edges of N intersect Nj.

Definition (4.14). Define the graph of uncovered pairs, U, as follows. V(U) =
V(G) and {z,y} € E(U) if {z,y} is not covered by any edge of N, or, equivalently,
N(z)NN(y) =0.

For any z € V '\ Ny all E € £(N;) intersects N; in exactly one element. Hence
the number of uncovered pairs between x and Ny is |N1| — deg(N, z). So the total
number of uncovered pairs between V' \ N; and Ny is

(4.15) Z (q+ 2 —deg(G, 7)) = ¢*
z€V\Ny

(Here, in the evaluation of the sum, we used (4.11) and (4.13).) Denote by v the
number of vertices in G of degree ¢ + 2. Then (4.5) and (3.1) imply that

Z<|Ni>N1|) > (u—1)(q;1) +(q2—2y)(;1) +(q+1+y)<q;1>

=1
= (n;D> —(q—v).

This implies that the number of uncovered pairs in V' \ Ny is at most
(4.16) EUN[(VAM))[<g-wr

We claim that v = 1. Indeed, suppose on the contrary that |Ny| = ¢ + 2, and let
{z} = Ny N N;. Then the number of uncovered pairs between Ny and V \ Ny,
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similarly as in (4.15), is also ¢2. The number of uncovered pairs between Ny \ {z}
and Ny \ {z} is exactly

(q+1)* = (|€] — deg(x)) = deg(z) — ¢ < 2.

But the total number of edges in U is at most g2 + ¢ — v. This implies that
deg(U, z) > ¢> — ¢+ v — 2. Obviously, the number of covered pairs containing z is
at least 2(¢ + 1). This altogether is more than ¢? + ¢ pairs coming out from z, a
contradiction. So we have obtained that all neighborhood but N(vy) have at most
q + 1 elements.

Suppose that the vertex v € V '\ Ny has degree (in N) at most q. Then

(417)  deg(UI(V\N1),0) = [V AN =1~ > (IN|-2)
veEN€EE(N)

> (q+1—deg(®))(g—1) - 1.
This and (4.16) give that every degree in V' \ Ny is at least g. We know from (4.12)

that
Z deg(z) =(n—D)(¢g+1) — 1.
€V \Ny

As deg(v1) = ¢+ 2, this implies that there are at least 2 vertex outside N7 of degree
g. Then (4.17) implies that there are at least 2(¢ — 2) — 1 uncovered pairs in V' \ NVj.
This contradicts (4.16) for ¢ > 4.

5. ¢ IS EVEN

From now on we suppose that D = ¢ + 1. In this section we prove the theorem
for all even gq.

Proposition. For any vertexr v one has

(5.1) Z deg(z) <n —1+ deg(v),
zEN (v)

moreover, if here equality holds, then deg(v) is an even integer.

Proof: The number of (v, z,y) paths, is 3 n(,)(deg(z) — 1), and cannot exceed
n— 1.

In the case of equality, all vertices (distinct to v) can be reached in (exactly)
two steps from v, (i.e., deg(U,v) = 0). Namely, for all y € N(v) there exists an
x € N(v) with {z,y} € £. However, the induced subgraph, G||N(v), does not
contain a vertex of degree larger than 1, so it is a union of disjoint edges. [

The above Proposition holds for all g. From now on we suppose that ¢ is even.
This part of the proof was independently settled by McCuaig [Mc]|, as well.

Corollary (5.2). Suppose that deg(v) = q + 1. Then there exists an x € N(v)
with deg(x) < q.

Proof: Otherwise all degree in N(v) is ¢ + 1, implying ZmeN(U) =(qg+1)? =
n — 1+ deg(v). However, ¢ + 1 is an odd integer. [
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Let S(i) denote the set of vertices of degree i, and let S = S(q)US(g—1)U...,
the set of vertices with small degrees. Then (5.2) implies that

1S(g+1)] <) deg(z) < qlS|.
TES

So |V| < (¢ +1)|S], yielding |S| > ¢ + 1. On the other hand we have

(5.3) (n—1)(g+1) <2/E(G)[=n(g+1)— Y (¢+1—deg(z)) <n(g+1) -S|,
z€S

which gives |S| < ¢+ 1. In this way we obtained that |S| = ¢+ 1, and every degree
in § is exactly q.

A vertex v has property 1 (or sometimes we call it regular), if deg(v) = ¢ + 1,
and it has only one neighbour from S. Denote R the set of vertices of property 1.
Then (5.2) implies that

|R|+2|(V\ S)\ R| < the number of edges between S and V '\ S < ¢* +¢.

This gives |R| > ¢ — q > 0.

Let v be an arbitrary vertex of property 1. Denote its neighbours by v1, va, ..., vg41.
Then, as in (5.1), one can prove that N(v) contains exactly ¢/2 vertex-disjoint
edges, say {vor—1,v2t} (1 <t < q/2).

Proposition (5.4). deg(vy4+1) = ¢, i.e., it is an isolated vertex in G| N (v).

Suppose on the contrary, say, vy is the only vertex in N(v) of degree q. Let
N; = N(v;) \ {v} \ N(v). Then Ny,..., Ngy1 is a partition of V'\ {v} \ N(v), and
INi|=¢q¢—2, |[Na| =---=|Ng| =¢q—1, |[Ngt1| = ¢. Every N; (2 < i < g) contains
at most [|V;|/2] = (¢/2) — 1 edges. There is no edge between Ny;_1 and Ny;.
Moreover there are at most min{|V;|, |N;|} edges between N; and N;. So taking
account all the edges adjacent to N3, say, we have

3 deglz) < INs|+2(INsl/2) + S min{|Nil,[N;[} = (g + 1)|Ns| - 2.
z€N3 1<5<q+1 j#3,4

So N3 (and every N; for 3 < i < ) contains at least two vertices of degree q. These
vertices together with v; and SN N, y1 makes at least 2¢ —2 small degrees. However
|S| = g+ 1, a contradiction for ¢ > 2. So we obtained that the only possibility is
that SN N(v) = {vg41}. O

Apply Corollary (5.2) for v;, 1 < i < q. Then SN N; # (§, implying that each
N; contains exactly one vertex, u;, of degree ¢q. That is, that every v; has property
1, too. In more general, we obtained that if a vertex has property 1, then all of its
neighbours of degree ¢ + 1 have property 1, as well. Let W = S(¢+ 1) \ R, i.e.,
the set of nonregular vertices (of degree g + 1). Apply the above argument for all
v; (where all of them are regular vertices, so do their neighbours, 1 < i < ¢). We
obtain that

W C N(’Uq_+_1).

Similarly, starting with v; instead of v, we have that W C N (u;), implying that

wc () Nuw),
1<i<q
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implying that |W| < 1. On the other hand W # 0, so |[W| = 1.

We concluded, that there exists a vertex w (W = {w}) of degree ¢ + 1 which is
joined to every vertex of degree q. Moreover all the other vertices of degree ¢ + 1
have property 1. Then N(w) = S. Then (5.2) implies that S contains no edge of
G. Then (5.4) implies that N(z) does not contain any edge of G for all z € S.

These last two properties give that the following hypergraph, H, is linear.
EMH) ={E(z): x € V}, where

B N(z) if deg(z) =q+1,
E(z) = {N(x) U{z} if deg(z) = q.

As H is a (¢ + 1)-uniform and (¢ + 1)-regular linear hypergraph, it follows that it
is a projective plane. Its incidency matrix obtained from the adjacency matrix of
G, is obviously symmetric. So the bijection x <+ E(z) is a polarity of this plane,
the graph G is a polarity graph.

6. ¢ IS ODD, THE INTERSECTING CASE

In this section we suppose that R = {N(z) : z € V,|N(z)| = ¢+ 1} is an
intersecting family. Denote by O the family of the neighborhoods of the vertices
with degree at most ¢. We know that |Q| < ¢ + 1, even more

(6.1) D (g+1—deg(x)) <q+1,

€S
where S = S(q) U S(g — 1) U..., the set of vertices of small degrees. As R is a
1-intersecting family of size at least ¢2, (3.4) can be applied, i.e., there exists a
family P such that R UP forms the line set of a finite plane. For every N € Q the
hypergraph P|N is a linear space (not considering the edges of size less than 2).
We distinguish between two cases.

Case I. Suppose first that for all N € Q there exists a (unique) P = P(N) € P,
such that N C P. Then the incidency matrix, M’, of RUP majorates the incidency
matrix, M, of R U Q. (We supposed that the ordering of the vertex sets and R
in both matrices are the same, and the for the row N € Q we associate the row
P(N) in M'.) Where are the new entries? As R UP is ¢ + 1 uniform and ¢ + 1
regular, the new entries must be in the rows corresponding to P, and in the columns
corresponding to S. Then M and M’ coincide outside of the lower left corner. The
matrix M is symmetric, we can apply Lemma (3.7). We obtain that M’ is also
symmetric.

(1.1) implies that M’ has at least ¢ + 1 nonzero elements in the main diagonal.
However, trace M = 0, so M’ was obtained by adding g + 1 new elements to the
main diagonal of M. That is, G is the polarity graph. [

Case II Suppose that the edges of P|Ny with at most two elements form a
nontrivial linear space for some Ny € Q. Denote this linear space by Ng. Then
(3.2) gives that

(6.2) P| = |Nol,

which is equivalent to |Q| > |Np|. Denote |Ny| by m. Then (6.1) and (6.2) give
that

(6-3) g+1> Y (+1-|N)>(@+1—|No|)+(1Q —1)>¢
NeQ
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This implies that |Q| < [Ny| + 1, or equivalently
P| < |No| +1.

Then one can apply (3.3) which says that one of the following three cases holds for
Ny.
(i) Ny is a near-pencil, or
(ii) it is a finite projective plane, or
(iii) it is a finite projective plane with one point deleted.

In all these three cases we can see that the number of intersecting pairs of the lines
of Ny is at least

(6.4) (g’) .

(We remark that this holds for all linear spaces, see [FF].) In other words, (6.4)
means that the number of pairs {P, P’} (P, P’ € P) such that PN P' N Ny # 0 is
at least (7;) Moreover, at the vertex v(Np), the degree of P is at least ¢ + 1 — m.
So we have a lower bound for the total number of intersecting pairs {P, P'}.

("= (2)= () (72)

This inequality implies that

(6.5) m > q—+/2q.

From (6.3) we obtain that all but eventually one vertex of S\ {v(Ny)} has degree
q, and that exceptional vertex has degree ¢ — 1. This implies that

(6.6) Z deg(P,z) = Z (deg(Q,x) +q+1—deg(z)) <2m+ 14+ |NyNS]|.
z€Ng z€No

Here we used that Q is a 0-1 intersecting family, hence )5 deg(Q,z) < [N| +
|Q| — 1 holds for every N € Q. Moreover we used the fact that v(Ny) ¢ No.

In the cases (ii) and (iii) the ) .y deg(P,r) is at least m./m — m, while the
right hand side of (6.6) is at most 3m + 1. This leads to m < 16, hence (6.5) yields
q < 22.

In the case (i), Ny is a near-pencil, so the left hand side of (6.6) is at least 3m —3.
So (6.6) implies that

[No N S| > |No| — 4.

In other words, deg(Q,v(Np)) > m — 4, so at least m — 4 lines of P go through
v(Np). However, at least m — 1 lines of P go through a certain point, z € Np,
because Ny is a near-pencil. As |P| < m + 1, we obtain that at least m — 6 lines
of it have to pass both z and v(NNp). This is impossible for m > 7. So m < 6 and
then ¢ < 11. [

Finally we remark that this part of the proof can be done easily for all odd ¢’s
by a slightly more careful calculation.



QUADRILATERAL-FREE GRAPHS WilTh MAXIMUM NUMBRER OF BRDGED 15

7. ¢ IS ODD, THE ALMOST INTERSECTING CASE

From now on we suppose that R = {N(z) : z € V, |[N(z)| = ¢ + 1} is not an
intersecting family, say, F, F’ € R, FNF' = (). Then for all z € F at least one of
the following cases holds. Either
(7.1a) deg(z) < g, or
(7.1b) z € UQ, i.e., x is covered by a small edge of N.

This follows from the fact, that if Nz] = {F, Ny,...N,}, and all members of it
have g + 1 elements, then the family {F, N1\ {z},... N, \ {z}} is a ¢ + 1-partition
of V. However, FNF' = ( and |N; N F'| <1 imply |F’'| < ¢, a contradiction. [

Let |Q|=¢q+1—t, (t >0). Then (7.1) implies that |F'N S| plus the number of
(F, N) pairs with FN N # (), N € Q is at least ¢ + 1. Hence we have

(7.2) IFNS|>t.

Again (7.1) implies that there are at least ¢ sets Fy, Fy, ... F} from R disjoint to F'.
Indeed, deg(R \ {F'},z) < ¢ — 1 for all x € F, hence F is intersected by at most
g% — 1 sets from R\ {F}.

The roles of F' and F] are symmetric, so (7.2) holds for F}, too. Then the family
{FNS,F{NS,...F;NS} is a linear hypergraph with every member having at least
t vertices. Then (3.6) gives that

t2(t+1)

!
. >
q+12\S|z|(FmS)I |(FmS)|_ ST

%

which yields

(7.3) t < /2.

Hence |Q| > ¢+ 1 — \/2q, which together with (6.1) imply that

(7.4) 1S(@)| > g+1—2t>q+1-24/2,
and

(7.5) every degree in N and
the cardinality of each member of Q is at least ¢ — ¢t > ¢ — 1/2¢.

Let Z C R be an intersecting subfamily. In this section we deal with the case
that there exists an Z with

1
(7.6) Z| > ¢® - e
Then (3.4) implies that there exists a (q+1)-uniform family P such that ZUP form
the line set of a projective plane. We may suppose that F ¢ Z. Let £ be the set
of at least 2-element edges of the hypergraph (F,P|F). Then (F, L) is a nontrivial
linear space. For an arbitrary vertex x we have

(7.7) deg(P,z) = deg(R\ Z, ) + deg(Q, z) + (¢ + 1 — deg(z)).
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Add up (7.7) for all z € F. As N is a linear hypergraph, and F € R \ Z, the
following upper bounds are obtained.

zeF

S deg(Q,x) < /).

reF

The above two inequalities, (6.1) and (7.6) give that

Y deg(P,z) < 20+ 1+ (V| = Z]) < 3.16...q + 2.
zEF

For g > 6 the right hand side is less than 4(¢ + 1) — 8, so (3.11) implies that the
linear space (F, L) is a near pencil. Denote the center of this near pencil by zy, i.e.,
(F\ {zo}) € L. Then deg(P,xo) > q. Apply (7.7) to zo. As [R\Z| < ¢q/6 +1t by
(7.6), and (¢ +1 —deg(z)) <t+1 by (7.5), we obtain that

)
(7.8) deg(Q, o) > 61~ 2t — 1.

This inequality implies that )" _deg(Q,z) for z € F'\ {zo} is at most (¢/6) + ¢+ 2.
Then (7.1) gives that

IFNS| > (g+1)— (% +t+2).
However, (7.8) implies that [N (zo) N S| > 2¢—2¢t—1. As |S| = g+ 1 —¢ we obtain
that [F N N(zg) N S| > 2¢q — 2t — 3. This is larger than 1 for ¢ > 30, by (7.3). We
arrived to the contradiction |FFN N(zp)| > 2. O

8. ¢ IS ODD, THE DISJOINT CASE

This is a continuation of the previous section. From now on we suppose the
opposite of (7.6), that is, for all intersecting subfamily Z C R one has

(8.1) IZ] < ¢* = (a/6).

Definition (8.2). A verter z € V is called regular if deg(z) = ¢+ 1 and Nx]
consists of q¢ (q + 1)-element sets and one q-element set. Let R = {x € V : z is
reqular }.

For a regular vertex z we have

[UNTz][ =1+ ) (IN[-1)= V[ -1,

€N

so exactly one other vertex remains uncovered. Denote it by f(z). So z is regular if
and only if deg(U, z) = 1, and then the only uncovered pair through z is {z, f(x)}.
Note that, if f(z) is regular, too, then f(f(x)) = z.
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Suppose now that z is regular and z € @ € Q, (i.e., Q is the ¢ element set
through z). Then for all set N € R we have

(8.3) NNQ =0 implies f(x) € N.

Indeed, NNQ = 0 and [N N N;| < 1 for Ny,...N, € Nz]\ {Q} imply that
IN N (UNz])| < g. Consequently, N \ (UN[z]) #0. O
Similarly, if FNF' =0, F, F' € R and = € F is regular, then

(8.4) flx)e F'. O

The proof of the following statement is analogous to (5.1). Suppose that z is regular.
Then

(8.5) G||N(z) is a 1-factor. O

Suppose that @ € Q, |Q| = ¢g. Then it is impossible that all of its vertices are
regular, i.e.,

(8.6) Q ¢ R.

Proof: Suppose on the contrary, and let u € @ arbitrary. Then G||N(u) is a
1-factor, by (8.5). So there is a vertex u’ such that {u',v(Q)} is an edge contained
in N(u). Hence, the edge {u,u’} is contained in @ (= N(v(Q))). This implies that
every degree in G||Q is at least 1, so it must be a 1-factor. But this is impossible,
because ¢ is odd. [

A corollary of (8.6) is the following. For all Q € Q, |Q| = g, one can find at least
t+ 1 sets N € R such that

(8.7) NNnQ=0.

Indeed, suppose on the contrary, then at least g2 members of R intersect ). Then
every degree of () is regular, a contradiction. [J

Let F be the family of those (¢ + 1)-element sets from R which are disjoint to
another large set, i.e., F={F € R:3F' € R, FNF' = (}. We are going to define
a subset

(8.8) {F\,F| Fy,F},.. Fy,FYCF

such that F; N F] = () and s > ¢/12. We have at least one disjoint pair {Fy, Fy}.
In the (i + 1)’th step consider R \ {F1, Fy,...F;, F]}. If its cardinality exceeds
q> — (¢/6), then it contains a disjoint pair {F;11, F},,}, by (8.1). This procedure
supplies at least ¢/12 pairs. [

The hypergraph consisting of the sets {F; NS} and {F/NS} (1 <4 < s) is linear.
So we have an ¢ such that

(8.9) <|FZ-QSI) n (IF{;S|> < %(E\) <6(g—1).

This implies that

(8.10) ‘min {IF;N S|+ |F,NS|} =T < /24¢+ 1.
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Proposition (8.11). There are at least g+ 1 — 2T sets Q € Q such that |Q| = q
and Q intersects both F; and F} in regular vertices.

Proof: deg(Q,z) > 1 for all x € F; U F}\ S, by (7.1). For all Q € Q we have
QN (F; UF!)| < 2. Let B (A) be the collection of the traces of the g-element (less
than ¢ element) sets on (F; U F;) \ S. Then Proposition (8.11) follows from the
following easy statement:

Suppose that A U B is a collection of 1 and 2-element sets over the set X such
that

() [X|> 2 42T

(ii) deg(AUB,xz) > 1 for all z € X

(i) |A] <1

(iv) JAUB|=q¢+1—1t,
then there exist By, Ba,...Bgi1—27 € B such that

(o) B; is disjoint to all other members of AU B

(8) |Bif =2. O

For ¢ > 98 we have T' < (¢+1)/2, so (8.11) implies that there exists a g-element
set Qo such that Qo N F; = {u} and Qo N F] = {u'} are both regular vertices.

Proposition (8.12). There is exactly one set N € R avoiding Q-

Proof: There are at least ¢ + 1 such sets by (8.7). Suppose that N € R and
NNQoy = 0. Then f(u) € N and f(u') € N hold by (8.3). However, by (8.4),
f(u) € F] and f(u') € F;. Hence f(u) # f(u'). Then the pair {f(u), f(u')}
uniquely determines the set N. [

This proof gave that t = 0, so every set in Q has ¢ elements, and |S| = ¢ + 1.

In the rest of this section we suppose that Q is totally disjoint, i.e., QN Q' =0
hold for all Q, Q' € Q. The other case will be investigated in the next section.

As deg(Q,z) < 1 for all vertices, it follows that [N N S| <1 for all N € N. So
ISN Q| =1 for all Q@ € Q, by (8.6). Moreover, every pair in S is uncovered. Then
the following graph G* is quadrilateral free. V(G*) = V U {w} and £(GT) =
EG)U{{w,z} : xz € S}. So GT is obtained by adding a new vertex, w, to G, and
joining it to S. Then

NG =RU{S}u{Qu{w}:Qec Q, we S}

As |UNJz]| = ¢*> + ¢ + 1 for all vertex x of G, similarly as in (5.1) and in (8.5),
we obtain that

(8.13) GT||N(z) is a 1-factor.

Call a hypergraph H regular 2-packing of order q if it is q + 1-regular, g + 1-
uniform and linear over ¢? + ¢+ 2 elements. The above defined N'(G7) is a regular
2-packing. The existence of regular 2-packings is an open question, only finitely
many are known. The latest results can be found (or at least a reference to it) in
Lamken, Mullin, Vanstone [LMV]. Another simple characterization was given by
Ryser [Ry]. But in our case the incidency matrix of N (G™) is symmetric, since
it was obtained from a graph. Now we recall a basic property of the struture of a
regular 2-packing H = (X, &).
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There exists a partition of the vertices into 2-element sets X = X (1)U... X (3 (¢?+
g+2)), such that | X;NE| < 1forall E € £. (These are the uncovered pairs.) There
exists a partition of the edge set £ = £(1)U...E(3(¢® + ¢ + 2)) into disjoint pairs.
(These are the only disjoint pairs in £.) Moreover, if £(i) = {E, E'} then F and E’
intersect the same g + 1 pairs. These imply that the following hypergraph B is a
biplane. V(B) = {X(1),...X(3(¢>+ ¢+2))} and £B) = {{X(a1),... X (ag+1)} :
there exists an edge £ € £ such that F C Ui<i<q+1X(as)}

In our case, the biplane obtained from N (G™) is symmetric and there are no
entries in the main diagonal. Indeed, (8.13) implies that if X; = {z,y} then y ¢
N(z). Hence the submatrix X; x {N(z),N(y)} is empty. Lemma (3.8) can be
applied, which says that ¢ =2 or 5. [l

9. ¢ IS ODD, THE DISJOINT CASE (THE END)

This is a continuation of the previous section. Define Q™% C Q as the set of
those g-element sets which intersect all but one members of R. By (8.11) and (8.12)
we have that

(9.1) Q%] > g+ 1—2T.

This implies that deg(Q,z) < 2T holds for every vertex z. The dual of this in-
equality says that

(9.2) INNS|<2T

for all N € N. Moreover for every set F' € F

(9.3) [FNR|>q+1—4T.

Claim (9.4). Suppose that Qo € Q™8, Q1 € Q, QoN Q1 # 0. Then Q1 is disjoint

to at least ¢ — 1 members of R.

Proof: Let xz € Qp \ Q1 be an arbitrary vertex. It is regular, its degree is g + 1,
so at least one member of N[z] (and this member is not Qy) avoids the g-element

Q:. O
The above claim and the definition of Q& imply that

(9.5) the sets in Q'8 are pairwise disjoint.

The next step is done only in order to keep the value of gg (the bound in the
second half of the Theorem) to be low.
Claim (9.6). For q¢ > 190 we have T < 10.

Proof: Let Sy be the set of vertices {v(Q) : Q@ € Q™8}. We have Sy C S.
Then U||Sy is a complete graph by (9.5), or in other words for all N € N one has
|IN N Sp| < 1. So instead of (8.9) we can use the following

<|FZ- ﬂ;9| — 1> n <|le ﬂ25| — 1) < <|S\250|> (¢/12)-1.

As |F;N S|+ |[F/NS| =T, and |S\ So| < 2T, the above inequality yields T' < 10
for q is sufficiently large. 0O
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Proposition (9.7). Let F € F. Then there is a unique F' € F disjoint to it.

Proof: Suppose on the contrary, and let Fy, F5 € R such that FF N F; = () and
FNFy, =0. Let z € FN R. Then (8.4) gives that f(z) € Fj, and similarly,
f(x) € F5. For the vertex {u} = F} N F» we have that f(z) = u for all z € F N R.
Then, by the definition (8.2), we have that {u,z} € £(U), (i.e., an uncovered pair)
for all z € F N R. This means that the sets through u avoid F N R. So at least
q — 4T members of N avoid F. This implies that

) " deg(x) < IN|+ (IF| —1) — (¢ — 4T) = ¢* + ¢ + 1 + 4T.
zEF

However,

Zdeg =(qg+1)(g+1)—=|FNS|> (¢g+1)*—2T,
el

by (9.2). The above two inequalities contradict each other for T' < ¢/6. O
The total number of disjoint {N, N’} pairs (N, N’ € N) is

09 lei= (T (DY) -1 (D) = e

Every Q € Q\ Q™8 intersect at least ¢ — 2T others by (9.2). So deg(U,v(Q)) <
g+ 2T. As R contains exactly |F|/2 disjoint pairs, and Q"8 cannot have more
than ('Q;egl), we obtain that

reg
ey < 2l jov e +iew+ (197),

This, (9.1) and (9.8) imply that

Fl _d*—q
. s
(9-9) 2 = 9

_(6T% - 3T +1) > (g) — 600.

As FNS # () for all F € F, (9.9) implies that at most 2¢ + 1200 F intersect S in

more than 1 element. Hence the number of disjoint pairs {F, F'} C F intersecting
S in exactly 1-1 element is at least

q* — 5q

— 1800.
2

Call such a pair perfect. There are perfect pairs, (for ¢ > 63), so in the inequalities
(9.1)—(9.3) we can use the value T = 2.

From now on we supppose, on the contrary of the previous section, that there
are intersecting g-sets. This implies that there exists a Qo € Q \ Q™8. First we
claim that

+ 7
QN R < T~
Indeed, if |Qo N R| > (¢ +9)/2, then (9.9) implies that there exists a disjoint pair
{F,F'} C F, such that F N Qo and F' N Qg are both regular. Then (8.12) implies
that Q¢ € Q'®8, a contradiction.
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Qo has at least ¢ — 4 vertices of degree g + 1, so the above argument gives that
at least

a+7

(9-10) Qu\(SUR) > (-4~ 1]

of them are contained in another g-element sets. So there are sets ) € Q™8 such
that @ N Qo # 0. (By (9.1) and (9.10), there are at least (¢ — 21)/2 such sets.)
Then (9.4) gives that Qg is avoided by at least ¢ — 1 sets from R. Hence Qo has at
least

Qo \S|—5>¢q—T7

vertices where it is intersected by ¢ element sets, especially it is intersected by at
least ¢ — 7 — 2T = q¢ — 11 members of Q8.

For a (Q € Q™8 denote the unique g + 1-element set disjoint to it by J(Q), and
its unique vertex z with deg(R,z) = ¢ — 1 by ¢(Q). The existence and unicity of
J(Q) and ¢(Q) are proved in (8.6) and (8.12). Let C = {c(Q) : Q € Q*®}. For
every Q € Q\ Q'8 we have obtained that

(9.11) QoNC|>q—11.

This implies that Qg is unique, and |Q™8| = ¢q. Moreover,

lu@ns|<|QoNS|+ the number of sets from Q™8 avoiding Qo < 15,
(9.12) [V (UQUS)| < [SN(UQe)| < 11.

Claim (9.13). SN (UQ) =0, i.e., C = Qo.

Proof: First we prove that [V'\ (UQ™8US)| < 1. Suppose that x € V'\ (UQ™8US).
Then for all @ € Q™8, Q N Qo # 0 implies that J(Q) € N|[z]. If there was another
y e V\(UQUYS), y # z, then J(Q) € Ny|, too. This implies that the unique set
N € Nz]nNy] avoids all Q € Q"8 which intersect Qy. Then |[NNS| = |S\UQ 8|
Here the left hand side is at most 4, by (9.2), while the right hand side is at least
g — 11, by (9.12), a contradiction.

Suppose now that {z} = V' \ (UQU S). Then N[z] C R, so N(z) € R, and
N(z)nS = (. Moreover, z ¢ N(z), and |[N(z) N Q| < 1. These imply that
|N(z)| < g, a contradiction.

Suppose finally that (V \ §) C UQ, but there exists an z such that {z} =
V\(SuUQres). Then there exists a unique @ € Q such that Q1NS # 0. (Q1 # Qo-)
Then the vertex v(Q1) has degree q. As all but one degree in @7 is ¢ + 1, v(Q1)
carries ¢ — 1 sets from R and one set from Q. However such a vertex does not exist
(except @1 NS). O

Now we are able to describe the exact structure of the graph of uncovered pairs
U. As S ={v(Q) : Q € Q}, we have that all pairs in S\ {v(Qo)} are uncovered. As
Q € 98 and J(Q) are disjoint, the pair {v(Q),v(J(Q))} is uncovered. However,
as we have seen in (8.6), G||Q is almost a 1-factor, the only isolated vertex is ¢(Q).
This means, that

{v(@), (@)} € £(U).

We obtain, that ¢(Q) = v(J(Q)). As deg(Q,z) = 2 for all z € Qy, it follows that
all edges of Nv(Qo)] intersect S in exactly 2 elements. Hence {J(Q) : Q € Q™8} =
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N[v(Qo)]. All the other sets from R intersect S in exactly one element. We claim
that UJ(Q) is disjoint to @, meaning that

(9.14) {v(Qo),c(Q)} € £(U).

Proof: Let w be a new vertex and define the following graph G; over V U {w} \
{v(Qo)}. Join w to all vertices of S\ {v(Qo)}, otherwise G1||[(V \ {v(Qo)}) =
G|(V \ {v(Qo)}). Then G; is quadrilateral free over ¢ + g + 1 vertices with
2q(g+1)? edges. Moreover, N'(G1) contains disjoint g + 1-element sets. Hence, by
the above arguments, G; has the same structure as G. Denote the set of vertices
of degree q of Gy by S;. Then S; = {w} U Q. Hence we obtained that S; does
not contain any edge from Gy.

Now return to G. As Qo does not contain any edge we obtain that all sets of
the form N(c(Q)), i-e., J(Q), avoids Qo, proving (9.14). O

Finally, the rest of the edge set of U is a 1-factor on V' \ (S U Qo).

Define the following hypergraph, H, over the vertex set V U {w}.

EH) =RU{QU{w}: Qe @} U{Qo U{v(Qo)}} U{S\ {v(Qo)} U{w}}.

E£(H) can be obtained as the neighborhood structure of the following graph G.
Add the new vertex w to G, and join it to each vertex from S\ {v(Q)}. Moreover
add loops at the vertices w and v(Qp). (So from now on we allow loops in graphs.)
Then £(H) is a regular 2-packing with symmetric incidency matrix. Consider the
disjoint pair decomposition of V(H), V(H) = {w, v(Qo) }U{c(Q), v(Q)}U{z1, 2 }U
AT (2 —q)/25 :c’(qZ_q) /2}, where Q € Q8. Consider the corresponding disjoint pair
decomposition of E(H), E(H) = {S \ {v(Qo)} U {w}, Qo U{v(Qo)}} U{J(Q),QU
{w}} U{N(z1).N(z})}.... Every 2 x 2 submatrix of the incidency matrix of H
induced by the above decompositions is either full of 0 or I or J — I.

Define the following {0, 1, —1} matrix M of size (¢® + ¢+ 2) x 3(¢> + ¢ + 2).
Replace each 2 x 2 submatrix by 0, 1, or —1 if it is empty, I, or J — I, respectively.
Then MMT = (¢ + 1)I. (8.13) still holds for z € V \ (S U Qp), so the main
diagonal of M corresponding to the squares {N(x;), N(z;)} % {z;,«}} contains
only 0’s. Moreover, ¢(Q) € Q U {w} and v(Q) € J(Q), so the corresponding
part of the main diagonal consists of —1’s. Finally, w € (S \ {v(Qo)}) U {w} and
v(Qo) € QoU{v(Qo)}, hence tha first entry of the main diagonal is 1. We obtained
that trace M = —g + 1. Lemma (3.9) can be applied, implying ¢ < 3.
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