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Abstract

First, we give a brief summary of the latest results concerning the Turan numbers of
bipartite graphs. Second, we overview the tools used to determine the Turdn number of
the four-cycle, ex(n, Cy). These mainly include the investigations of finite linear spaces
and quasi designs. Our main result is that the maximum number of edges of a Cy-free
graph on ¢* + ¢+ 1 vertices (for ¢ > 25) is at most $¢*(¢ + 1). Here equality holds only
for graphs obtained from finite projective planes using a polarity.

1 Notation, Definitions

A hypergraph H is a pair (V(H),E(H)), where V(H) is a finite set, the set of wertices,
and E(H), the edge set, is a multiset of subsets of V(H). Where no confusion results, we
abbreviate V(H) and £(H) to V and £. Also, usually we identify the hypergraph H by its
edge set and talk about the family £. Note that H may contain the same set more than
once. If we want to emphasize that H contains (or might contain) multiple edges then we
call it a multihypergraph. If H does not contain multiple edges then it is called a simple
hypergraph. In most cases, by ‘hypergraph’ we mean a simple hypergraph.

25 is the set of all subsets of S. (‘2) denotes the set of all k-subsets of the set S (k > 0).
Obviously, \(“Z)| = (}) for |S| = n. A hypergraph is a k-graph, or k-uniform hypergraph,
if all edges have k elements. The 2-graphs are called graphs. The rank of H is defined as
max{|E|: E € E(H)}. (*Z) is called the complete k-graph over S, and it is denoted by K.
So the complete graph on n vertices is denoted by K2, or briefly by K,,. We use C,, for the
cycle of length n. K (A, B) denotes the complete bipartite graph with parts A and B, and

K, stands for a complete bipartite graph K (A, B) with |A| = a, |B| =b.
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F is a subhypergraph of Hif V(F) C V(H) and E(F) C £(H). For A C V(H), we denote
by H[A] the induced subhypergraph on A. Let £y(A) denote the members of £ containing
A;jie. &(A) ={FE € £: A C E}. The cardinality of £({v}) for an element v € V is called
the degree of H (at v), and it is denoted by degy (v), or briefly by deg(v). H is d-regular if
degy(v) = d for all v € V. A subhypergraph M C & is called matching if every pair of its
members are disjoint. The largest cardinality of a matching in H is the matching number,
v(H). If v(H) =1, then H is called intersecting.

A projective plane of order q is a g + 1-uniform hypergraph, H = (P, £), with ¢> + ¢ +1
vertices and with the same number of edges, such that each pair of vertices is contained
in a unique hyperedge. In other words it is an S(¢®> + ¢ + 1,¢ + 1,2) Steiner system.
The vertices in this case are called points, the hyperedges lines. For a prime power ¢, an
important class of projective planes can be obtained from the finite field of size ¢, F, as
follows. These are called Desarguesian planes and are denoted by PG(2,q). The points of
PG(2,q) are the ¢ — 1-element equivalence classes of 2\ {(0,0,0)} with the equivalence
(z,y,2) ~ (cz,cy,cz) (for nonzero ¢ € F). The line [a,b, ] consists of the classes of the
form (z,y,z) with az + by + cz = 0.

2 The Turan problem

Extremal problems have a central role in combinatorics. Extremal graph theory applies a
broad array of tools and results from other fields like number theory, linear and commutative
algebra, probability theory, geometry, and information theory. On the other hand, it has a
number of interesting applications in all parts of combinatorics, like in coding theory, design
theory, and also in geometry, integer programming, and computer science.

This paper has two parts. First, a brief overview is given of the latest results concerning
the Turdn numbers of bipartite graphs, second we sketch the main ideas of the proof of a
conjecture of Erdds concerning the maximum number of edges of the Cy-free graphs.

Given a graph F, what is ex(n, F'), the maximum number of edges of a graph with n
vertices not containing F as a subgraph? For example ex(n, K3) = [n?/4]. This special case
is due to Mantel [37]. Turdn solved the case of complete graphs, F' = K,. Let T, denote
the complete r-partite graph on n vertices with almost equal parts. That is |V(T})| = n,
V=WUu...UV, |Vi| = [(n+i—1)/r], and the edge set of T, consists of all edges connecting
distinct parts (n > r > 1). This graph is called the r-partite Turdn graph. Let t"(n) denote
the number of edges of 7). Turdn’s [48] theorem says that

ex(n, K,) = 7 1(n) = 2 (”) +0(n) 1)

r—1\2

for all r > 2. Moreover, 77! is the only graph of order n and size " *(n) that does not
contain a K,.

The Erdés-Stone-Simonovits theorem ([22], [18]) says that the order of magnitude of



ex(n, F') depends only on the chromatic number,

n

nlg{)lo ex(n,F)/<2> =1—(x(F)-1)"".

This gives a sharp estimate, except for bipartite graphs. Turdn type problems are often
difficult and very little is known even about simple cases when F' is a fixed even cycle
Cyy, or a fixed complete bipartite graph Kj, ;. For a survey of extremal graph problems, see
Bollobés’ book [5], and for Turdn problems for hypergraphs see [26]. In general, hypergraph
problems are even more difficult.

3 Minimum graphs of given girth

Erdés proved in 1959 [12] that for any x > 2 and g > 3 there exist a graph of chromatic
number x and girth g. (The girth is the length of the shortest cycle.) Known elementary
constructions yield graphs with an enormous number of vertices. Recently, very deep results
in number theory combined with the eigenvalue methods in graph theory have been invoked
with success to explicitly construct relatively small graphs (called Ramanugjan graphs) with
large chromatic number and girth (Imrich [32], Margulis [39], and Lubotzky, Phillips and
Sarnak [36]).

Replacing the chromatic number by the weaker edge density one gets a familiar Turan-
type problem, the question of ex(n, Cy), proposed by Erd8s decades ago. The Ramanujan
graphs give the lower bound in the following inequality

Q(n1+(4/(3k+21))) < ex(n,Cgk) < 90kn<k+1)/k. (2)

The first nontrivial lower bound, Q(n'*(1/2%)) was given by Erd8s [12] using probabilistic
methods. The upper bound is due to the Bondy and Simonovits [6] and believed to give the
correct order of magnitude. Actually they proved more: If G is a graph of order n and size
at least 90kn(**+1/k then it contains cycles of length 2¢ for every integer £, k < £ < kn'/k.

Constructions giving Q(n't1/#) are known only for k& = 2,3, and 5, see Benson [4].
Wenger [51] gave simplified constructions but his method works only for these cases. Re-
cently Lazebnik, Ustimenko and Woldar gave new algebraic constructions [35] for all k.

4 More bipartite graphs

The case of general bipartite graphs seems to be more difficult, and only a very few values
ex(n, F') are known. For every bipartite graph F' which is not a forest there is a positive
constant ¢ (not depending on n) such that

Q(n'*¢) < ex(n, F) < O(n?7°). (3)



The lower bound follows from (2). The upper bound is provided by the following result of
Kévéri, T. Sés, and Turdn [33] concerning the complete bipartite graph Ky ;.

ex(n, Ky ) < %(t —D)tp2 V4 (4 — 1)n/2 = O(n? /). (4)

This bound gives the right order of magnitude of ex(n, K; ;) for t = 2 and ¢ = 3 and probably
for all £. Erdds, Rényi and T. Sés [17] and Brown [7] obtained ex(n, C4) = (1 + o(1))n*/2.
Brown also gave an algebraic construction to show ex(n, K33) > (1/2 — o(1))n®3. Very

recently in [28] it was shown that Brown’s construction is asymptotically optimal:

(140(1))n>~ Yt implying that lim,_eo ex(n,Kg,g)n_E’/?’ =1/2.

N —

Theorem 1 ex(n, K;;) <

For t > 3 the best lower bound is ex(n, K; ;) > (1/2)n?~%/(#1) due to Erdés and Spencer
[21]. Simonovits suggested that to give a lower bound for K} 5+ might be much simpler.

The study of Turdn numbers of other bipartite graphs is an intriguing field. The first
problem is to determine the correct exponent of n.

Conjecture 1 (Erdds [14], see also in [20], [46]) Let F' be a bipartite graph such that each
induced subgraph has a vertez of degree at most 2. Then ex(n, F) = O(n*/?).

Let L* be the graph formed by the lowest three levels of the Boolean lattice By, i.e.,
V(L¥) = {0,1,...k,12,13,...,(k — 1)k} and 0 is connected to i for all 1 <4 < k, and ij
is connected to i and j (1 < i < j <k, k > 2). L* is an (induced) subgraph of L¥*!
and L2 = Cy, so Q(n3/?) < ex(n,L*). Erdés [13] proved that ex(n,L%) = O(n®?), and
conjectured that this holds for all L*.

In [25] Erdés’ conjecture was proved: if a graph G over n vertices has at least k%/?n%/2
edges, then it contains a copy of L¥. A lower bound ex(n, L*) > (1 4+ o(1)) (V& — 1/2)n?/?
can be obtained from a Cjy-free graph on n/(k — 1) vertices and replacing each vertex by a
set of size (k — 1). This result is a first step in verifying the general Conjecture 1.

Let Q3 denote the graph formed by the 12 edges and 8 vertices of a 3-dimensional cube.
Erdés and Simonovits [19] proved ex(n, Q3) < O(n8/%).

They conjecture (see Simonovits [46]) that for all rationals 1 < p/q < 2 there exists
a bipartite graph G with ex(n,G) = ©(nP/?), and every bipartite graph has a rational
exponent r with ex(n,G) = ©(n"). Frankl [23] proved that every rational exponent occurs
in the order of magnitudes of generalized Turdn numbers of hypergraphs.

5 A large graph with no Ky,

The only prior asymptotic for a bipartite graph which is not a forest was the aforementioned
ex(n,Cy) = (1 + o(1))n?/2 [17, 7]. This has recently been generalized in [27]:



1
Theorem 2 For any fizedt > 1, ex(n,Koyi1) = Ex/in?’ﬂ + O(n*/?).

Let G be a graph on n vertices with e edges such that any two vertices have at most ¢
common neighbors. Then

t (;L) > the number of paths of length2in G = Z (d(m)) >n <2e/n). (5)

zeV 2 2

This inequality gives e < 2(1 + /1 4 4¢(n — 1)), the upper bound from [33].

The following algebraic construction is closely related to the examples for Cy-free graphs
and is inspired by an example of Hyltén-Cavallius [31] and Mors [42] given for Zarankiewicz’s
problem.

CONSTRUCTION. Let ¢ be a prime power such that (¢ — 1)/¢ is an integer. We construct
a Ky t1-free graph G on (q? — 1)/t vertices such that every vertex has degree q or q — 1.
Let F be the g-element field, » € F an element of order ¢, H := {1,h,h?,... hi='}. The
vertices of G are the t-element orbits of (F x F) \ (0,0) under the action of multiplication
by powers of h. Two classes (a,b) and (z,y) are joined by an edge in G if ax + by € H.

The sets N{a,b) = {(z,y) : ar + by € H} form a g-uniform, symmetric, solvable, group
divisible ¢-design (with ¢ + 1 groups).

6 Quadrilateral-free graphs and finite geometries

Let f(n) denote the maximum number of edges in a (simple) graph on n vertices without
a cycle of length 4, (i.e., quadrilateral-free), i.e., f(n) = ex(n,C4s). Erdés [11] proposed the
problem of determining f(n) more than 50 years ago, and still no formula appears to be
known. McCuaig [38] and independently Clapham, Flockart and Sheehan [10] determined
f(n) and all the extremal graphs for n < 21. This analysis was extended to n < 31 by
Yuansheng and Rowlinson [52] by an extensive computer search. Asymptotically f(n) ~
%n?’/Z and f(n) < in(l++4n —=3) for n > 4. (upper bound by Reiman [43] and also
from (5)). To determine the exact value of f seems to be hopeless, except in the case
n=¢>+q+1.

n (234|567 8|9 |10]|11 12|13 |14 |15 |16
fr) |13 4|6 |7]9|11 |13 |16 |18 |21 |24 |27 |30 33

n 17 |18 (19 |20 | 21 |22 |23 |24 | 25 |26 | 27 | 28 | 29 | 30 | 31
f(n) | 36 | 39 |42 | 46 | 50 | 52 | 56 | 59 | 63 | 67 | 71 | 76 | 80 | 85 | 90

If g is a prime power and n = ¢? + ¢ + 1, then a graph with n vertices and 3¢*(g + 1)
edges and no 4-cycles can be constructed from a projective plane of order ¢ (see below).
Together with the previous bound we get (for ¢ > 1)

%q2(q+1) <fl@*+q+1) <%(q2+q+1)(q+1)- (6)



Erdés [15] conjectured this graph is optimal for large g. His conjecture was proved in [24]
for g a power of 2. Here we sketch the proof of Erdds’ conjecture in the following stronger
form.

Theorem 3 Let G be a quadrilateral-free graph on ¢* + q + 1 vertices, (with ¢ > 4 for even
q or q > 25 for odd q). Then |E(G)| < 3q(q + 1)2. Here equality holds only for polarity
graphs.

For g = 2 there are 5, and for ¢ = 3 there are 2 graphs with the maximum number of
edges, so the constraint g > go cannot be omitted. It seems there are no other exceptional
cases even for 5 < g < 23.

The polarity graph. A polarity = of the projective plane H = (P, L) is a bijection
7 : P <+ £ which preserves incidences. A point z (line L) is called absolute with respect to
m if € n(z) (n(L) € L). The number of absolute points is denoted by a(7). A bijection
z; > L; is a polarity if and only if the incidence matrix, M, of the projective plane is
symmetric. Moreover, the number of absolute points equals the number of nonzero entries
on the main diagonal of M, i.e. a(w) =traceM.

The definition of the polarity graph is due to Erdds and Rényi [16]. Consider a projective
plane, H, of order g, with polarity w. Let M be a symmetric incidence matrix of H defined
by 7. Replace the 1’s on the main diagonal by 0’s. The matrix A obtained in this way is
an adjacency matrix of a graph G = G(w), called the polarity graph. G(w) is quadrilateral
free.

If H is Desarguesian, then a 7 can be defined as (z,v,2) <> [z,y,2]. Then two points
(z,y,2) and (z',y,2') are joined in G if and only if zz’' + yy' + 2z’ = 0. A point not on the
conic 22 + y? 4+ 22 = 0 is joined to exactly ¢ + 1 points and each of the g 4+ 1 points on this
conic is joined to exactly ¢ points. This is the reason we get only %q(q + 1) edges in the
lower bound.

A theorem of Baer [3] states that for every polarity one has at least g+ 1 absolute points,
a(m) > g+ 1. So the lower bound in (6) cannot be improved in this way, the polarity graph
cannot have more edges.

Quasi-designs and finite linear spaces. There is a deep connection between 0 — 1
intersecting families, linear spaces, and quadrilateral-free graphs. So the proof necessarily
contains a number of tools from the theory of finite geometries. First of all, the neighborhood
structure of a maximal Cy-free graph is very similar to a projective plane. After separating
the maximum degree D(G), and proving it is very close to ¢ + 1, (as in [24]), one can use
some recent results of Metsch [40, 41], who proved that every (g + 1)-uniform 1-intersecting
family of size at least ¢ — ¢/6 on ¢ + g + 1 points is actually a partial projective plane.
Metsch also proved that for odd ¢ > 25, a 0 — 1 intersecting (¢ + 1)-uniform family with
disjoint edges has only at most ¢? + 1 edges. (This was a conjecture of Stinson [47], and
the previous problem was proposed by Vanstone [50]). This latest result of Metsch implies
far reaching generalizations concerning the description of linear spaces with a few lines,
initiated by deBruijn and Erdés [8], also see Totten [49]. We also need some results of
Ryser [44], and negative results of Schellenberg [45] and Lamken, Mullin and Vanstone [34],



who characterized symmetric 0 — 1 intersecting families on g2 4 ¢ + 2 points. The even and
odd cases must be dealt with separately, as usual in the theory of finite geometries. For the
latest developments concerning finite linear spaces see the book of Batten and Beutelspacher
[2].

Note that the adjacency matrix of a Cy-free graph is symmetric. The classical result of
Hoffman, Newman, Strauss, Taussky [30] on the number of absolute points of a correlation
can be a great help in eliminating the non-existent cases.

Erdés conjectures that |f(n) — $n3/2| = O(y/n). This conjecture is out of reach at
present, even if one knew that the gap between two consecutive primes is only O(log2 p).

Another interesting, but still hopeless, conjecture is due to McCuaig: He conjectures
that each extremal graph is a subgraph of a polarity graph. It was proven only for n < 21.

Garnick, Kwong, and Lazebnik [29] derived bounds for ¢g(n), the maximum number of
edges in a graph on n vertices that contains neither three-cycles nor four-cycles. They gave
the exact value of g(n) for all n up to 24 and constructive lower bounds for n < 200. Erdés
and Simonovits conjecture that g(n) = (1 + o(1))(n/2)%/2.
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