On the Number of Edges of Quadrilateral-Free Graphs

Zoltán Füredi*

Department of Mathematics, University of Illinois, Urbana, Illinois 61801; and Mathematical Institute of the Hungarian Academy of Sciences, POB 127, 1364 Budapest, Hungary

Received August 3, 1994

If a graph has q^2+q+1 vertices (q>13), e edges and no 4-cycles then $e \le \frac{1}{2}q(q+1)^2$. Equality holds for graphs obtained from finite projective planes with polarities. This partly answers a question of Erdős from the 1930's. © 1996 Academic Press. Inc.

1. RESULTS

Let f(n) denote the maximum number of edges in a (simple) graph on n vertices without four-cycles, (i.e., quadrilateral-free). Erdős [6] proposed the problem of determining f(n) more than 50 years ago, and still no formula appears to be known. McCuaig [15] calculated f(n) for $n \le 21$. Clapham, Flockart and Sheehan [4] determined all the extremal graphs for $n \le 21$. This analysis was extended to $n \le 31$ by Yuansheng and Rowlinson [18] by an extensive computer search. Asymptotically $f(n) \sim \frac{1}{2}n^{3/2}$ (see Brown [2] and Erdős, Rényi and T. Sós [10]).

If q is a prime power and $n = q^2 + q + 1$, then a graph with n vertices and $\frac{1}{2}q(q+1)^2$ edges and no 4-cycles can be constructed from a projective plane of order q (the polarity graph, defined first by Erdős and Rényi [9], see below in Section 2). Erdős [7], [8] conjectured that the polarity graph is optimal for large q. In [11] it was proved that

$$f(q^2 + q + 1) \le \frac{1}{2}q(q + 1)^2 \tag{1}$$

for all even q. It follows that equality holds in (1) for $q = 2^{\alpha}(\alpha \ge 1)$.

In a previous version of this paper [12] it was shown that for large enough q, not only is Erdős' conjecture valid but also the only extremal graphs are the polarity graphs. For q=2 there are 5, and for q=3 there are 2 graphs with the maximum number of edges and so the lower bound on q is essential. (The obvious condition, $q \ge q_0$, was left out from the first announcement of the result in [11]). It seems there are no further

^{*} E-mail: z-furedi@math.uiuc.edu; furedi@math-inst.hu.

exceptional cases for q > 5. That proof in [12] is rather involved and lengthy and uses the machinery of the theory of finite linear spaces and quasi-designs. The aim of this note is to give a short, simplified proof that (1) is valid for all $q \ne 1, 7, 9, 11, 13$. The description of the extremal graphs will appear in [12]

THEOREM 1. Let G be a quadrilateral-free graph with e edges on $q^2 + q + 1$ vertices, and suppose that $q \ge 15$. Then $e \le \frac{1}{2}q(q+1)^2$.

COROLLARY 1. Let q be a prime power greater than 13, $n = q^2 + q + 1$. Then $f(n) = \frac{1}{2}q(q+1)^2$.

2. QUASI-DESIGNS AND FINITE LINEAR SPACES

In this section we recall a few results we use in the proof. There is a deep connection between 0-1 intersecting families, (i.e., any two sets have at most one common element), linear spaces (definition below), and quadrilateral-free graphs. First of all, the family of neighborhoods, $\{N(x): x \in V\}$, of a C_4 -free graph, $G = (V, \mathcal{E})$, is 0-1 intersecting.

Consider a 0-1 intersecting family, \mathscr{F} , of (q+1)-element sets on q^2+q+1 elements and suppose that \mathscr{F} has two disjoint members. Metsch [16] proved that for $q \geqslant 15$

$$|\mathscr{F}| \leqslant q^2 + 1. \tag{2}$$

Consider a family of (q+1)-element sets, \mathscr{R} , on q^2+q+1 elements and suppose that $|\mathscr{R}| \geqslant q^2$ and it is 1-intersecting (i.e., $|R \cap R'| = 1$ holds for each pair of distinct $R, R' \in \mathscr{R}$). Vanstone [17] proved that \mathscr{R} is actually a partial projective plane, i.e., one can find a family \mathscr{P} such that

$$\mathcal{R} \cup \mathcal{P}$$
 (3)

forms (the line system of) a projective plane of order q. Dow [5] proved that for such an extension

$$\mathscr{P}$$
 is unique. (4)

A *linear space* is a pair (P, \mathcal{L}) consisting of a set P of *points* and a family of subsets of P, \mathcal{L} , called lines, such that any two distinct points x and y are contained in a unique line and each line has at least 2 points. The linear space is called *trivial* if it has only one line, $\mathcal{L} = \{P\}$. deBruijn and Erdős [3] proved that for every nontrivial linear space

$$|\mathcal{L}| \geqslant |P|. \tag{5}$$

A polarity π of a projective plane (P, \mathcal{L}) is a bijection $\pi: P \leftrightarrow \mathcal{L}$ which preserves incidences. A point x is called *absolute* with respect to π if $x \in \pi(x)$. The number of absolute points is denoted by $a(\pi)$. A bijection $x_i \leftrightarrow L_i$ is a polarity if and only if the corresponding incidence matrix, M, of the projective plane is symmetric. Moreover, $a(\pi) = \operatorname{trace}(M)$. A theorem of Baer [1] states that for every polarity π

$$a(\pi) \geqslant q + 1. \tag{6}$$

The polarity graph. Consider a projective plane, H, of order q, with polarity π . Let M be a symmetric incidence matrix of H defined by π . Replace the 1's on the main diagonal by 0's. The matrix A obtained in this way is an adjacency matrix of a graph G, called the *polarity graph*; G is quadrilateral free. More properties of this and other symmetric graphs can be found in $\lceil 13 \rceil$.

If *H* is Desarguesian then a polarity π can be defined by $(x, y, z) \leftrightarrow [x, y, z]$. Two distinct points (x, y, z) and (x', y', z') are joined in *G* if and only if xx' + yy' + zz' = 0. A point not on the conic $x^2 + y^2 + x^2 = 0$ is joined to exactly q + 1 points and each of the q + 1 points on this conic is joined to exactly q points, so *G* has $\frac{1}{2}q(q+1)^2$ edges.

3. THE PROOF OF THEOREM 1

Let $G = (V, \mathcal{E})$ be a four-cycle free graph on n vertices with e edges. The set of vertices adjacent to the vertex $x \in V$ is called the *neighborhood*, and it is denoted by $N(x) := \{y \in V \setminus \{x\} : xy \in \mathcal{E}\}$. The size of N(x) is called the *degree* of G at x, and it is denoted by deg(x). Suppose that $n = q^2 + q + 1$, where q > 1 is an integer.

LEMMA 1. Let G be a quadrilateral-free graph on $n = q^2 + q + 1$ vertices, with q > 1. Suppose that the maximum degree, $\Delta(G)$, satisfies $\Delta(G) \geqslant q + 2$. Then $e \leqslant \frac{1}{2}q(q+1)^2$.

This Lemma 1 comes from [11]. Its proof is based on the following inequalities where x_0 is any vertex of degree Δ :

$$\binom{n-\Delta}{2} \geqslant \text{ the number of paths of length 2 in } G \text{ with endpoints in } V \backslash N(x_0)$$

$$\geqslant \sum_{x \neq x_0} \binom{\deg(x)-1}{2} \geqslant (n-1) \binom{(2e-\Delta-n+1)/(n-1)}{2}.$$

From now on, we suppose that the maximum degree of G is at most q+1. We may also suppose that $e \ge \frac{1}{2}q(q+1)^2$. This implies that the number of vertices of degree q+1 is at least q^2 . Let $\mathcal{R} = \{N(x): x \in V, |N(x)| = q+1\}$, $R = \{x \in V: |N(x)| = q+1\}$.

We may suppose that each vertex has degree at least 2. Indeed, $\deg(x) \le 1$ implies $2e = \sum_{v \in V} \deg(v) \le 1 + (n-1)(q+1) = q(q+1)^2 + 1$. Since 2e is even, we get the desired upper bound. (Let us note, that in [4] it was proved that each vertex has degree at least 2 for every extremal graph for all $n \ge 7$.)

We may even suppose that $|N(x) \cap R| \ge 2$ for each $x \in V$. Suppose, on the contrary, that for some vertex x_0 the neighborhood $N_0 = N(x_0)$ contains at least $|N_0| - 1$ vertices of G of degree less than q + 1. The degree of x_0 is exactly $|N_0|$. We obtain

$$\sum_{x \in V(G)} (q+1-\deg(x)) \geqslant (q+1-|N_0|) + (|N_0|-1) = q. \tag{7}$$

This implies $e \leq \lfloor \frac{1}{2}(nq+n-q) \rfloor$, the desired upper bound.

Case 1. Suppose that \mathcal{R} contains two disjoint sets. Then, by (2), $|\mathcal{R}| \le q^2 + 1$, so G contains at least q vertices of degree at most q. Therefore $2e \le n(q+1) - q = q(q+1)^2 + 1$ and we get the desired upper bound.

Case 2. Suppose \mathscr{R} contains no disjoint sets, i.e., \mathscr{R} is a 1-intersecting family of size at least q^2 . Then (3) implies that there exists a family \mathscr{P} such that $\mathscr{R} \cup \mathscr{P}$ form a projective plane. For every N = N(x), $N \notin \mathscr{R}$, the restricted hypergraph $\mathscr{N} := \mathscr{P}|N$ is a linear space (not considering the hyperedges of size less than 2), i.e., $\mathscr{N} := \{N \cap P: P \in \mathscr{P}, |P \cap N| \ge 2\}$.

Suppose that there exists a neighborhood $N_0=N(x_0)$ such that $\mathcal{N}_0=\mathcal{N}(x_0)$ is not a trivial space. The inequality (5) gives that $|\mathcal{N}_0|\geqslant |N_0|$, which implies $|V\backslash R|=|\mathcal{P}|\geqslant |\mathcal{N}_0|\geqslant |N_0|$. Hence there are at least $|N_0|-1$ vertices of G of degree less than q+1 distinct from x_0 . The degree of x_0 is exactly $|N_0|$. Then (7) holds, implying the desired upper bound for e.

From now on, we may suppose that for each neighborhood N with $|N| \leq q$ there exists a unique $P = P(N) \in \mathcal{P}$, such that $N \subset P$. Then the incidence matrix, M, of $\mathcal{R} \cup \mathcal{P}$ majorizes the adjacency matrix, A, of G. i.e., M is obtained from A by changing a few 0's to 1. Here we suppose that the ordering of the vertex sets and \mathcal{R} in both matrices are the same, and for the row $N \notin \mathcal{R}$ we associate the row P(N) in M. We also suppose that the first |R| rows (and columns) of A correspond to the vertices of R. The extra entries of M must be in the rows corresponding to \mathcal{P} , and in the columns corresponding to $V \setminus R$. i.e., M and A coincide outside the lower right corner.

The matrix A is symmetric, and we claim that the matrix M is symmetric, too. If not, then M and its transpose M^T give two different extensions of the partial projective plane \mathcal{R} . However, by (4) these two extensions must be the same, apart from the ordering of the rows. But every row contains at least two 1's from the first |R| columns, so the ordering of the rows is also determined.

Finally, (6) implies, that M has at least q+1 nonzero elements on its main diagonal. However, $\operatorname{trace}(A) = 0$, so M was obtained by adding q+1 new elements to the main diagonal of A, i.e., G is the polarity graph.

ACKNOWLEDGMENTS

This research was supported in part by the Hungarian National Science Foundation under Grants OTKA 4269 and OTKA 016389, and by National Security Agency Grant MDA904-95-H-1045. The author is greatly indebted to the referees for helpful comments.

REFERENCES

- 1. R. Baer, Polarities in finite projective planes, Bull. Amer. Math. Soc. 52 (1946), 77-93.
- 2. W. G. Brown, On graphs that do not contain a Thomsen graph, *Canada Math. Bull.* **9** (1966), 281–289.
- 3. N. G. deBruijn and P. Erdős, On a combinatorial problem, *Indag. Math.* 10 (1948), 421–423.
- C. R. J. Clapham, A. Flockart, and J. Sheehan, Graphs without four-cycles, J. Graph Theory 13 (1989), 29–47.
- 5. S. Dow, An improved bound for extending partial projective planes, *Discrete Math.* **45** (1983), 199–207.
- P. Erdős, On sequences of integers no one of which divides the product of two others and some related problems, *Izv. Naustno-Issl. Inst. Mat. i Meh. Tomsk* 2 (1938), 74–82. (Zbl 20, 5.)
- P. Erdős, Some recent results on extremal problems in graph theory, in "Theory of Graphs" (Internat. Sympos., Rome, 1966), pp. 117–130, Gordon & Breach, New York, 1967.
- 8. P. Erdős, Problems and results in combinatorial analysis, *in* "Colloq. International Sulle Theorie Combinatorie, Rome, 1975," Vol. 2., pp. 3–17, Acad. Naz. Lincei, Rome, 1976.
- 9. P. Erdős and A. Rényi, On a problem in the theory of graphs, *Publ. Math. Inst. Hungar. Acad. Sci.* 7A (1962), 623–641. [Hungarian with English and Russian summaries]
- P. Erdős, A. Rényi, and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215–235.
- 11. Z. Füredi, Graphs without quadrilaterals, J. Combin. Theory Ser. B 34 (1983), 187-190.
- Z. Füredi, Quadrilateral-free graphs with maximum number of edges, submitted for publication.
- 13. W. M. Kantor, Moore geometries and rank 3 groups having $\mu = 1$, Quart. J. Math. Oxford (2) 28 (1977), 309–328.
- T. Kővári, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Collog. Math. 3 (1954), 50–57.

- 15. W. McCuaig, unpublished letter, 1985.
- 16. K. Metsch, On the maximum size of a maximal partial plane, *Rend. Mat. Appl.* (7) 12 (1992), 345–355.
- 17. S. A. Vanstone, The extendability of (r, 1)-designs, in "Proc. Third Manitoba Conf. on Numerical Math., Winnipeg, 1973," 409–418.
- Yang Yuansheng and P. Rowlinson, On extremal graphs without four-cycles, *Utilitas Math.* 41 (1992), 204–220.