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If a graph has q2+q+1 vertices (q>13), e edges and no 4-cycles then e�
1
2q(q+1)2. Equality holds for graphs obtained from finite projective planes with
polarities. This partly answers a question of Erdo� s from the 1930's. � 1996 Academic

Press, Inc.

1. RESULTS

Let f (n) denote the maximum number of edges in a (simple) graph on
n vertices without four-cycles, (i.e., quadrilateral-free). Erdo� s [6] proposed
the problem of determining f (n) more than 50 years ago, and still no
formula appears to be known. McCuaig [15] calculated f (n) for n�21.
Clapham, Flockart and Sheehan [4] determined all the extremal graphs
for n�21. This analysis was extended to n�31 by Yuansheng and Rowlin-
son [18] by an extensive computer search. Asymptotically f (n)t

1
2n3�2 (see

Brown [2] and Erdo� s, Re� nyi and T. So� s [10]).
If q is a prime power and n=q2+q+1, then a graph with n vertices and

1
2q(q+1)2 edges and no 4-cycles can be constructed from a projective plane
of order q (the polarity graph, defined first by Erdo� s and Re� nyi [9], see
below in Section 2). Erdo� s [7], [8] conjectured that the polarity graph is
optimal for large q. In [11] it was proved that

f (q2+q+1)� 1
2q(q+1)2 (1)

for all even q. It follows that equality holds in (1) for q=2:(:�1).
In a previous version of this paper [12] it was shown that for large

enough q, not only is Erdo� s' conjecture valid but also the only extremal
graphs are the polarity graphs. For q=2 there are 5, and for q=3 there
are 2 graphs with the maximum number of edges and so the lower bound
on q is essential. (The obvious condition, q�q0 , was left out from the
first announcement of the result in [11]). It seems there are no further
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exceptional cases for q>5. That proof in [12] is rather involved and
lengthy and uses the machinery of the theory of finite linear spaces and
quasi-designs. The aim of this note is to give a short, simplified proof that
(1) is valid for all q{1, 7, 9, 11, 13. The description of the extremal graphs
will appear in [12]

Theorem 1. Let G be a quadrilateral-free graph with e edges on q2+
q+1 vertices, and suppose that q�15. Then e� 1

2q(q+1)2.

Corollary 1. Let q be a prime power greater than 13, n=q2+q+1.
Then f (n)= 1

2q(q+1)2.

2. QUASI-DESIGNS AND FINITE LINEAR SPACES

In this section we recall a few results we use in the proof. There is a deep con-
nection between 0&1 intersecting families, (i.e., any two sets have at most
one common element), linear spaces (definition below), and quadrilateral-
free graphs. First of all, the family of neighborhoods, [N(x): x # V], of a
C4-free graph, G=(V, E), is 0&1 intersecting.

Consider a 0&1 intersecting family, F, of (q+1)-element sets on q2+
q+1 elements and suppose that F has two disjoint members. Metsch [16]
proved that for q�15

|F|�q2+1. (2)

Consider a family of (q+1)-element sets, R, on q2+q+1 elements and
suppose that |R|�q2 and it is 1-intersecting (i.e., |R & R$|=1 holds for
each pair of distinct R, R$ # R). Vanstone [17] proved that R is actually
a partial projective plane, i.e., one can find a family P such that

R _ P (3)

forms (the line system of) a projective plane of order q. Dow [5] proved
that for such an extension

P is unique. (4)

A linear space is a pair (P, L) consisting of a set P of points and a family
of subsets of P, L, called lines, such that any two distinct points x and y
are contained in a unique line and each line has at least 2 points. The linear
space is called trivial if it has only one line, L=[P]. deBruijn and Erdo� s
[3] proved that for every nontrivial linear space

|L|�|P|. (5)
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A polarity ? of a projective plane (P, L) is a bijection ?: P W L which
preserves incidences. A point x is called absolute with respect to ? if
x # ?(x). The number of absolute points is denoted by a(?). A bijection
xi W Li is a polarity if and only if the corresponding incidence matrix, M,
of the projective plane is symmetric. Moreover, a(?)=trace(M). A theorem
of Baer [1] states that for every polarity ?

a(?)�q+1. (6)

The polarity graph. Consider a projective plane, H, of order q, with
polarity ?. Let M be a symmetric incidence matrix of H defined by ?.
Replace the 1's on the main diagonal by 0's. The matrix A obtained in this
way is an adjacency matrix of a graph G, called the polarity graph; G is
quadrilateral free. More properties of this and other symmetric graphs can
be found in [13].

If H is Desarguesian then a polarity ? can be defined by (x, y, z) W
[x, y, z]. Two distinct points (x, y, z) and (x$, y$, z$) are joined in G if and
only if xx$+yy$+zz$=0. A point not on the conic x2+y2+x2=0 is
joined to exactly q+1 points and each of the q+1 points on this conic is
joined to exactly q points, so G has 1

2 q(q+1)2 edges.

3. THE PROOF OF THEOREM 1

Let G=(V, E) be a four-cycle free graph on n vertices with e edges. The
set of vertices adjacent to the vertex x # V is called the neighborhood, and
it is denoted by N(x) :=[ y # V"[x]: xy # E]. The size of N(x) is called the
degree of G at x, and it is denoted by deg(x). Suppose that n=q2+q+1,
where q>1 is an integer.

Lemma 1. Let G be a quadrilateral-free graph on n=q2+q+1 vertices,
with q>1. Suppose that the maximum degree, 2(G), satisfies 2(G)�q+2.
Then e� 1

2 q(q+1)2.

This Lemma 1 comes from [11]. Its proof is based on the following
inequalities where x0 is any vertex of degree 2:

\n&2
2 +�the number of paths of length 2 in G with endpoints in V"N(x0)

� :
x{x0

\deg(x)&1
2 +�(n&1) \(2e&2&n+1)�(n&1)

2 + .

3QUADRILATERAL-FREE GRAPHS
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From now on, we suppose that the maximum degree of G is at most
q+1. We may also suppose that e� 1

2q(q+1)2. This implies that the
number of vertices of degree q+1 is at least q2. Let R=[N(x): x # V,
|N(x)|=q+1], R=[x # V: |N(x)|=q+1].

We may suppose that each vertex has degree at least 2. Indeed, deg(x)�1
implies 2e=�v # V deg(v)�1+(n&1)(q+1)=q(q+1)2+1. Since 2e is
even, we get the desired upper bound. (Let us note, that in [4] it was
proved that each vertex has degree at least 2 for every extremal graph for
all n�7.)

We may even suppose that |N(x) & R|�2 for each x # V. Suppose, on
the contrary, that for some vertex x0 the neighborhood N0=N(x0) con-
tains at least |N0 |&1 vertices of G of degree less than q+1. The degree of
x0 is exactly |N0 |. We obtain

:
x # V(G)

(q+1&deg(x))�(q+1&|N0 | )+( |N0 |&1)=q. (7)

This implies e�w 1
2 (nq+n&q)x, the desired upper bound.

Case 1. Suppose that R contains two disjoint sets. Then, by (2),
|R|�q2+1, so G contains at least q vertices of degree at most q. Therefore
2e�n(q+1)&q=q(q+1)2+1 and we get the desired upper bound.

Case 2. Suppose R contains no disjoint sets, i.e., R is a 1-intersecting
family of size at least q2. Then (3) implies that there exists a family P
such that R _ P form a projective plane. For every N=N(x), N � R, the
restricted hypergraph N :=P|N is a linear space (not considering the
hyperedges of size less than 2), i.e., N :=[N & P: P # P, |P & N|�2].

Suppose that there exists a neighborhood N0=N(x0) such that N0=
N(x0) is not a trivial space. The inequality (5) gives that |N0 |�|N0 |,
which implies |V"R|=|P|�|N0 |�|N0 |. Hence there are at least |N0 |&1
vertices of G of degree less than q+1 distinct from x0 . The degree of x0 is
exactly |N0 |. Then (7) holds, implying the desired upper bound for e.

From now on, we may suppose that for each neighborhood N with
|N|�q there exists a unique P=P(N) # P, such that N/P. Then the
incidence matrix, M, of R _ P majorizes the adjacency matrix, A, of G. i.e.,
M is obtained from A by changing a few 0's to 1. Here we suppose that the
ordering of the vertex sets and R in both matrices are the same, and for
the row N � R we associate the row P(N) in M. We also suppose that the
first |R| rows (and columns) of A correspond to the vertices of R. The extra
entries of M must be in the rows corresponding to P, and in the columns
corresponding to V"R. i.e., M and A coincide outside the lower right
corner.
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The matrix A is symmetric, and we claim that the matrix M is symmetric,
too. If not, then M and its transpose MT give two different extensions of
the partial projective plane R. However, by (4) these two extensions must
be the same, apart from the ordering of the rows. But every row contains
at least two 1's from the first |R| columns, so the ordering of the rows is
also determined.

Finally, (6) implies, that M has at least q+1 nonzero elements on its
main diagonal. However, trace(A)=0, so M was obtained by adding q+1
new elements to the main diagonal of A, i.e., G is the polarity graph. K
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