JOURNAL OF COMBINATORIAL THEORY, Series B 68, 1-6 (1996)
ARTICLE NO. 0052

On the Number of Edges of Quadrilateral-Free Graphs
Zoltan Furedi*

Department of Mathematics, University of Illinois, Urbana, Illinois 61801 ; and
Mathematical Institute of the Hungarian Academy of Sciences,
POB 127, 1364 Budapest, Hungary

Received August 3, 1994

If a graph has ¢®>+4 ¢+ 1 vertices (¢ >13), e edges and no 4-cycles then e <
$q(q +1)% Equality holds for graphs obtained from finite projective planes with
polarities. This partly answers a question of Erdés from the 1930’s.  © 1996 Academic

Press, Inc.

1. RESULTS

Let f(n) denote the maximum number of edges in a (simple) graph on
n vertices without four-cycles, (i.e., quadrilateral-free). Erdés [ 6] proposed
the problem of determining f(n) more than 50 years ago, and still no
formula appears to be known. McCuaig [15] calculated f(n) for n<2I.
Clapham, Flockart and Sheehan [4] determined all the extremal graphs
for n <21. This analysis was extended to n <31 by Yuansheng and Rowlin-
son [ 18] by an extensive computer search. Asymptotically f(n) ~ 1n¥? (see
Brown [2] and Erdds, Rényi and T. Sos [10]).

If ¢ is a prime power and n=¢>+ ¢ + 1, then a graph with n vertices and
1q(g+1)* edges and no 4-cycles can be constructed from a projective plane
of order ¢ (the polarity graph, defined first by Erdés and Rényi [9], see
below in Section 2). Erdés [ 7], [ 8] conjectured that the polarity graph is
optimal for large ¢. In [11] it was proved that

@ +q+1)<3q(g+1) (1)

for all even ¢. It follows that equality holds in (1) for ¢ =2%a>1).

In a previous version of this paper [12] it was shown that for large
enough ¢, not only is Erdés’ conjecture valid but also the only extremal
graphs are the polarity graphs. For ¢ =2 there are 5, and for ¢ =3 there
are 2 graphs with the maximum number of edges and so the lower bound
on ¢ is essential. (The obvious condition, ¢>¢,, was left out from the
first announcement of the result in [11]). It seems there are no further
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exceptional cases for ¢>5. That proof in [12] is rather involved and
lengthy and uses the machinery of the theory of finite linear spaces and
quasi-designs. The aim of this note is to give a short, simplified proof that
(1) is valid for all ¢ #1, 7,9, 11, 13. The description of the extremal graphs
will appear in [12]

THEOREM 1. Let G be a quadrilateral-free graph with e edges on ¢° +
q+ 1 vertices, and suppose that q = 15. Then e <iq(q+1)>

COROLLARY 1. Let g be a prime power greater than 13, n=q> +q+ 1.
Then f(n)=1q(q+ 1)~

2. QUASI-DESIGNS AND FINITE LINEAR SPACES

In this section we recall a few results we use in the proof. There is a deep con-
nection between 0 — 1 intersecting families, (i.e., any two sets have at most
one common element), linear spaces (definition below), and quadrilateral-
free graphs. First of all, the family of neighborhoods, {N(x): xe V'}, of a
C,-free graph, G=(V, &), is 0 — 1 intersecting.

Consider a 0 — 1 intersecting family, %, of (¢ + 1)-element sets on ¢*+
g+ 1 elements and suppose that & has two disjoint members. Metsch [ 16]
proved that for ¢ > 15

|7 1<q¢’+1. (2)

Consider a family of (¢ + 1)-element sets, %, on ¢°+ g + 1 elements and
suppose that |#|>¢* and it is l-intersecting (ie., |[RNR'| =1 holds for
each pair of distinct R, R' € #). Vanstone [ 17] proved that Z is actually
a partial projective plane, i.e., one can find a family 2 such that

RUP (3)

forms (the line system of) a projective plane of order ¢. Dow [5] proved
that for such an extension

2 is unique. (4)

A linear space is a pair (P, &) consisting of a set P of points and a family
of subsets of P, #, called lines, such that any two distinct points x and y
are contained in a unique line and each line has at least 2 points. The linear
space is called trivial if it has only one line, ¥ = { P}. deBruijn and Erdds
[3] proved that for every nontrivial linear space

|Z|=1P]. (5)
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A polarity n of a projective plane (P, £) is a bijection 7: P < ¢ which
preserves incidences. A point x is called absolute with respect to = if
x en(x). The number of absolute points is denoted by a(m). A bijection
x; <> L, is a polarity if and only if the corresponding incidence matrix, M,
of the projective plane is symmetric. Moreover, a(r) = trace(M). A theorem
of Baer [ 1] states that for every polarity =

a(n)=q+1. (6)

The polarity graph. Consider a projective plane, H, of order ¢, with
polarity n. Let M be a symmetric incidence matrix of H defined by =.
Replace the 1’s on the main diagonal by 0’s. The matrix 4 obtained in this
way is an adjacency matrix of a graph G, called the polarity graph; G is
quadrilateral free. More properties of this and other symmetric graphs can
be found in [13].

If H is Desarguesian then a polarity # can be defined by (x, y, z) <
[x, v, z]. Two distinct points (x, y, z) and (x’, ', z') are joined in G if and
only if xx'+yy' +zz'=0. A point not on the conic x*+p*+x?=0 is
joined to exactly ¢ + 1 points and each of the ¢ + 1 points on this conic is
joined to exactly ¢ points, so G has 1¢g(q+ 1)* edges.

3. THE PROOF OF THEOREM 1

Let G=(V, &) be a four-cycle free graph on n vertices with e edges. The
set of vertices adjacent to the vertex x € V is called the neighborhood, and
it is denoted by N(x) := {ye V\{x}: xye&}. The size of N(x) is called the
degree of G at x, and it is denoted by deg(x). Suppose that n=¢*+ g+ 1,
where ¢ > 1 is an integer.

LemMA 1. Let G be a quadrilateral-free graph on n=q*>+ q + 1 vertices,
with ¢ > 1. Suppose that the maximum degree, A(G), satisfies A(G) = q + 2.
Then e <%q(q+ 1)~

This Lemma 1 comes from [11]. Its proof is based on the following
inequalities where x, is any vertex of degree A:

—4
<n 5 > > the number of paths of length 2 in G with endpoints in V'\N(x,)

- <deg(x >>(n_l)<(2e—4—n2+1)/(n—1)>

X # X0
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From now on, we suppose that the maximum degree of G is at most
g+ 1. We may also suppose that e>1g(g+1)%. This implies that the
number of vertices of degree g+ 1 is at least ¢°. Let Z={N(x):xeV,
IN(x)|=¢g+1}, R={xeV:|N(x)|=q+1}.

We may suppose that each vertex has degree at least 2. Indeed, deg(x) <1
implies 2e=3Y,., deg(v)<1+(n—1)(g+1)=¢g(g+1)>+1. Since 2e is
even, we get the desired upper bound. (Let us note, that in [4] it was
proved that each vertex has degree at least 2 for every extremal graph for
all n=7.)

We may even suppose that |N(x) n R| =2 for each xe€ V. Suppose, on
the contrary, that for some vertex x, the neighborhood N,= N(x,) con-
tains at least |[N,| — 1 vertices of G of degree less than g + 1. The degree of
X, 1s exactly |N,|. We obtain

Y (g+1—deg(x)=(g+1—|No|)+ (INo| = 1)=4¢. (7)

xeV(G)
This implies e <| 1(ng +n—q)_, the desired upper bound.

Case 1. Suppose that # contains two disjoint sets. Then, by (2),
|2| <q* + 1, so G contains at least g vertices of degree at most ¢. Therefore
2e<n(qg+1)—qg=q(g+1)*+1 and we get the desired upper bound.

Case 2. Suppose # contains no disjoint sets, i.e., #Z is a l-intersecting
family of size at least ¢>. Then (3) implies that there exists a family 2
such that 2 U Z form a projective plane. For every N = N(x), N ¢ %, the
restricted hypergraph A" :=2|N is a linear space (not considering the
hyperedges of size less than 2), i.e., A/ :={NnP: Pe?,|PnN|>2}.

Suppose that there exists a neighborhood N,= N(x,) such that ;=
N(x4) is not a trivial space. The inequality (5) gives that |G| =Ny,
which implies | V\R| = |2| = | /5| = | N, |. Hence there are at least |N,| — 1
vertices of G of degree less than ¢ + 1 distinct from x,. The degree of x,, is
exactly |Ny|. Then (7) holds, implying the desired upper bound for e.

From now on, we may suppose that for each neighborhood N with
|N| < g there exists a unique P=P(N)e?, such that N P. Then the
incidence matrix, M, of # U £ majorizes the adjacency matrix, 4, of G. i.e.,
M is obtained from A by changing a few 0’s to 1. Here we suppose that the
ordering of the vertex sets and % in both matrices are the same, and for
the row N ¢ # we associate the row P(N) in M. We also suppose that the
first |R| rows (and columns) of A4 correspond to the vertices of R. The extra
entries of M must be in the rows corresponding to £, and in the columns
corresponding to V\R. ie., M and A coincide outside the lower right
corner.
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The matrix A4 is symmetric, and we claim that the matrix M is symmetric,
too. If not, then M and its transpose M7 give two different extensions of
the partial projective plane #. However, by (4) these two extensions must
be the same, apart from the ordering of the rows. But every row contains
at least two 1’s from the first |R| columns, so the ordering of the rows is
also determined.

Finally, (6) implies, that M has at least ¢ + 1 nonzero elements on its
main diagonal. However, trace(4) =0, so M was obtained by adding ¢ + 1
new elements to the main diagonal of 4, i.e., G is the polarity graph. |
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