The expected size of a random sphere-of-influence graph
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Abstract

We determine the expected number of edges of
a sphere-of-influence graph with vertices selected
independently with even distribution from an
open bounded region in an arbitrary finite dimen-
sional normed space. The result is independent
of the region and of the space itself; it depends
only on its dimension.

1 Bounds on the mini-
mum degree

Let N = (X, ||||) be a d-dimensional normed
vector space, d > 2. B(a,r) denotes the open
ball with center a and radius » > 0. The
volume of this ball is yr¢, where v = y(N)
depends only on the space, e.g., y(EY) =
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7¥2/T(d/2 +1). Let A C X be a finite set
of at least two points. For each point a € A
let r(a) be the closest distance to any other
point in the set, i.e., B(a,r(a)) is the largest
empty ball centered at a. The sphere of influ-
ence graph of A, written as SIG(A), is the in-
tersection graph L({B(a,r(a)):a € A}), i.e.,
its vertex set is A with x and y in A adjacent
if and only if their open balls have nonempty
intersection, r(x) + r(y) > ||x — ¥

The definition of SIG’s is due to Toussaint
[14]; these graphs have been widely investi-
gated recently. It is known that on the Eu-
clidean plane a SIG always has a vertex of
degree at at most 18 (Fiiredi and Loeb [6],
Sullivan [13]). (For related results see Avis
and Horton [1], Edelsbrunner, Rote and Welzl
[5]). So such a SIG on n vertices has at most
18n edges. It is conjectured that for the Eu-
clidean plane a SIG cannot have more than 9n
edges.

For a graph G = (V,€) let 6(G) denote its
minimum degree, n = n(G) the number of
vertices, e(G) the number of its edges. In
[6] it was proved, that there exists a small-
est integer, 0(N'), depending only on the



normed space, such that for every SIG one has
§(SIG) < §(N). Moreover, §(N) < 54 — 1.
Using induction on n, this implies e(G) <
(54 — 1)n, which was slightly improved by
Michael and Quint [10] to

e(G) < (5% — 1.5)n. (1)

We also have (in [6] and in [13]) 6(E¢) <
(2.691 ...+ o(1))%.

To get a lower bound on the number of
edges, one can consider the maximum cliques
in the SIG’s. Let x(N) denote the maxi-
mum m for which the complete graph K,, is a
SIG in V. It is easy to see, that x((%) =
29 It is known that Kg is a SIG on the
plane and Kézdy and Kubicki [9] proved that
k(E?) < 11. Bourgain (see in [6]) observed
that x(N) > 1.001¢ for every d-dimensional
normed space, implying

§(N) > 1.001¢. (2)

We have [6] that 1.25% < k(E%) < (1.887...+
0(1))¢. So one cannot obtain a lower bound
for 6 better than 1.89% using only x(N).

2 Random SIGs

Let R be an open, bounded, convex region in
the d-dimensional normed space A. Choose
the points {a;, as,...,a,} = A randomly and
independently from R with even distribution.
Form the corresponding SIG, G(A), and let
E(n,N) denote the expected number of its
edges. Dwyer [4] showed that

E(n, B¢
(0.32)2¢ < Tim 2 E)

n—o n

< (0.72)2¢  (3)

To generalize and improve on this result define
the constants

d—1%/d—9 1
Cld) = 1+m—; Z<j—1>m

=1

(4)
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As the sum of the binomial coefficients is ex-
actly 2972 we get that the C(d) is at least
(/8)24(1 — 1/d). With a little more careful
calculations (using, e.g., the Taylor series of
1/sin(7j/d) for j ~ d/2) one gets

C(d) = zdg (1 + (”2/8% + 0(%)) . (5)

One can also see that (7/8)2¢ < C(d) < (1 +
1/(2d))(w/8)2¢ holds for all d > 2.

Theorem 1

E(n,N) = C(d)n + o(n).

Actually, one can show
le(G) — C(d)n| < O(n'~2%)

holds with very high probability (at least 1 —
1/n4), but we omit the details.

Corollary 1 In every N there exists a SIG
with minimum degree at least C(d), implying
S(N) > (m/8)2% for every normed space.

3 Proof

Consider the sphere-of-influence graph G gen-
erated by the set A. We say that the points
a; and ay form an ordered pair of type I if the
(open) ball B(ay, ||ag — a;||) contains only a;
from the elements of A, i.e., a; is the nearest
neighbour. As with probability 1 no distance
occurs twice among the points of A we get
that the number of type I pairs is exactly n.

We say that the points a; and a, form an
ordered pair of type II if for some point a; €
A, i > 2, the ball B(ay,||a; — a;||) contains
only a; from the elements of A, (i.e., a; is the
nearest neighbour), and the ball B(ay, ||as —
a;||—||a;—ay||) also contains only one point of
A, (namely its center ay). In this case we also
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say that the ordered triple a;, a; and a; form
a type II triangle. Let t := ||a; — a;||/||az —
a;||. The above balls touch each other on the
segment connecting a; and ay at the point (1—
t)a; + tag. So the largest empty ball around
a, necessarily meets the ball around a;, i.e., a
type II pair forms an edge of GG, too.

On the other hand, for each edge {a,,a,} €
E(Q), each ordered pair (a,,a,) has either
type I or II. So the number of type I and II
pairs is exactly 2e(G).

In the rest of this chapter we calculate the
expected number of type II pairs, f(n) =
f(n, R,N). This is nothing else then n(n —
1)(n—2) times the probability that a;, a; and
a3 form a type II triangle. Let p,7,¢ > 0 be
reals with ¢ < r < p —e. We choose first
a;, then a, and a3 so that for their distances
from a; we have r < ||lag — a;|| < r + € and
p < |lag —ai|| < p+e. After fixing a;, the
probability of this distance distribution is ex-
actly

Vol((B(ai,r +¢) — B(ai, 7)) N R)

Vol(R)
" Vol((B(ai, p+¢) — B(ai, p)) N R)
Vol(R) '

The probability that this given triple form a
type II triangle is exactly

| _ Vol(Bi N R) + Vol(B, N R) no3
< - Vol(R) ) ’

where Bj is the ball B(a;, ||ag—a;||) and By =
B(ay, ||la; — ai|| — [|ag — ai]]).

A pair with large distance is unlikely to form
a type II pair, and most of the points of A are
not close to the boundary of the region R. So
we make little error if we restrict our attention
to the case when both of the above balls are
completely contained in R. To make these last
statements precise, we suppose that (maybe

after an affine transformation) R contains a
unit ball of radius s, but diam(R) < 2ds.
From now on, we suppose that the distance
of a; from OR is at least 2dsn /%4, and that
the distance ||a; — ap|| is at most half of that.
Also we may suppose that Vol(R) = 1.

Letting n — oo the product of the above
two probabilities can be very well approxi-
mated as

(ydr"e) (vdp" e) exp (—yr'n =y (p = 1)n) .

We obtain that apart from a o(n) error term
f(n) equals to

n(n —1)(n —2) /aleR /:o /rio

exp (—r'n = y(p — r)"n)
x (ydr®=t) (ydp*™t) Or 0p Oa; .

Here we use the notation 0z instead of the
usual dz to distinguish from the dimension d
appearing all over in the formulas.

Since the above integral is now independent
from ay, replacing n —1 and n— 2 by n we get

L(f(m) + o(n)) = (6)

n
0 rp
/p , / _,oxp (=yr'n = v(p = r)"n)
x (ydr®='n) (vdp*n) dr dp .

Denote the right-hand side of (6) by I. Sub-
stitute first ay = yrin, a = v(p — r)%n (ie.,
r = (ay/yn)""4, p = (a/yn)"/*(1 + y/%) and
the Jacobian is (yn)~2/4d—2q~'+%/dy=1+1/d)
we obtain

— <[ —ay—a 1/d\d—1
I /y:o/a:oe a(l+y7/4)* " 0a0y. (7)

As the antiderivative of ze=“ is (—1/c)ze™“" —
(1/c*)e® we get

/oo re” dr = 1/c?, (8)
0



Apply (8) to

I:/
y=0

Observing that z%/(z + 1)? is meromorphic
over the region C\R, with apoleat z = —1, a
standard application of residue theory enables
us to calculate, that

/ooo (1 iEi-aac)Q

holds for —1 < a < 1 (for @ = 1 the right-
hand side is 1). (See, e.g., Exercise 6.6.3. in
[12] on p.280.)

Applying (10) to (9) we obtain that

(7) with ¢ = 1+ y. We obtain

(1+4y)? %-

(9)

TO
or =

sin(mar)

(10)

7j/d

1_1+Z< .1>m.

Using the identity (j/d)(%;') = ((d —

1)/d) (‘;:f) we obtain that [ + 1 = 2C, as it

was claimed. O

4 Conclusions

We get the same result about the expected
number of edges even if the points of A
are chosen from R according some continu-
ous (and bounded) density function as far as
they are selected independently. Similarly, A
should not necessarily be convex.

The main difference between the proof pre-
sented above and in [4] that we have classified
the edges of a SIG only into two classes in-
stead of four. To calculate the expected sizes
of the four classes of [4] seems to me more
difficult, except the case of the expected num-
ber of edges of the random nearest-neighbor
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graph (our edges of type I without the multi-
plicities). It is (c¢(d) + o(1))n (see [3]), where

3y/ml((d+1)/2) — 4JT((d + 2)/2)

= R+ 1)/2) ~ 4T+ 2)2)

and J = [/ %(sin®)? 8Y. Fortunately, we did
not need these.

The results of Devroye [3] can be easily ex-
tended to general normed spaces. For exam-
ple, the Gabriel graph, GAB(V), of the (fi-
nite) point set V in the normed space N is
defined as follows. The points of V' form the
vertex set of the graph and two points x; and
x; are joined by an edge when the (open) ball
B centered at 3(x;+x;) and radius 3|[x; — ;]|
does not contain any other point from V. In
the same way as we did above (even with
a simpler proof) one can show that the ex-
pected number of edges of an n-vertex Gabriel
graph (where the vertices are chosen indepen-
dently and with identical continuous distribu-
tion from a region R) is

E(E(GAB(V))) = 2% +o(1)n. (11

It would be interesting to determine the de-
gree distribution of a SIG. It seems to me,
that it is not Poisson (as one should promptly
answer).

A standard calculation shows, that C (2) =
L4 7/4, C(3) = 1+ m(4/9)V3, C(4) = 1+
7(3/4)(14+v/2), C(6) = 1+7(5/18)(15+8+/3).

We also enclose a few numerical values.

For more results on SIG’s of higher di-
mensions see Guibas, Pach and Sharir [7], or
the recent survey by Michael and Quint [11].
The surveys of Jaromczyk and Toussaint [8]
and Di Battista, Lenhart, and Liotta [2] are
good sources of additional properties of re-
lated proximity graphs.
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d 2 3 4 ) 6 7 8 9 10 11 12
C(d) | 1.785 | 3.418 | 6.688 | 13.203 | 26.182 | 52.047 | 103.62 | 206.53 | 411.93 | 822.01 | 1640.9
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