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1. INTRODUCTION

All graphs in this paper are assumed to be simple and bipartite. A bipar-
tite graph I'(V, w V,, E) is said to be biregular if there exist integers r, s
such that deg(x)=r for all xe V| and deg(y)=s for all ye V,. In this case,
the pair r, s is called the bi-degree of I'. By an (r, s, t)-graph we shall mean
any biregular graph with bi-degree r, s and girth (ie., length of smallest
cycle) exactly 2¢.

Trivially, (r,s, 2)-graphs exist for all r,s>2 (e.g., complete bipartite
graphs). For all r,7>2, Erdés and Sachs (see [3,10]) constructed
r-regular graphs with girth ¢; from such graphs I, (r, 2, t}-graphs can be
obtained by inserting a new vertex on each edge of I. For r,s, 1= 3, the
problem of existence of (r, s, f)-graphs was motivated by a question in [11]
regarding semi-Moore graphs. These are (r, s, ¢)-graphs for which r>s>3
and > 3. Biregular graphs with girth at least 6 were studied extensively in
the last 150 years, in the context of geometric configurations (see, e.g., a
survey [2]). Calling the two classes of vertices of the graph points and
lines, respectively, we obtain an incidence structure of a geometry with
each line containing s points and each point contained in r lines. The girth
condition means that no two points lie on two common lines. Steiner
systems are a special case. From the known constructions, it can be
deduced that (r,s, 3) graphs exist for all r,s>3. However, apart from
certain isolated examples such as even cycles, generalized polygons, and
cages, very little is known for 7> 3.

The purpose of this paper is to show that (r,s, r)-graphs exist in
abundance. In fact, we prove the following.

THEOREM A. There exists (r, s, t)-graphs for all r, s, 1 =2

We give two constructions: an algebraic one and a recursive one. Using
the algebraic method, we can prove only that (r, s, t)-graphs exist in the
case r,s>1t; however, the graphs obtained by this method have nicer
structure. For example, we prove the following result, which shows
that an (r, s, t)-graph can be chosen to possess the following interesting

property.

THEOREM B. Let t=23 and r,s>=1t. Then there exists an (r, s, t)-graph
I' such that for all rzrizt and szs,=t, I' contains an induced
(ry, s, t)-subgraph.

From a geometric point of view, (r, s, t)-graphs are most interesting if
the number of vertices is relatively small. A trivial lower bound on the
number of vertices is N(r, s, t) :=[(r—1)(s —1)]""~"?; the number of ver-
tices in (r, s, t)-graphs constructed by the algebraic method is at most (cr)
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(r=s2t, ¢ is an absolute constant). The recursive method gives (r, s, 1)-
graphs of much larger order. However, we shall describe a procedure
which, given any (r,s, t)-graph, constructs an (r,s, ¢)-graph with the
number of vertices bounded by a polynomial of N(r, s, ¢t).

The paper is organized as follows. In Section2 we introduce the
graphs D(k, q) which are the central objects of our algebraic cons-
truction. A method of producing girth cycles (of size k+35, kodd) is
described in Section 3, and the algebraic construction and proof of
Theorem B are given in Section 4. In Section 5 we give explicit examples
of girth cycles constructed by the method of Section 3, and state some
conjectures. Finally, in Section 6, we describe the recursive con-
struction (proving Theorem A) and explain in detail the procedure
for reducing the number of vertices as discussed in the previous
paragraph.

2. THE FaMmiLY D(k, q)

The graphs D(k, g) which we define below were introduced in [6] in
the context of extremal graph theory. Their relevance in that paper stems
from the fact that they have girth at least kK + 5 when & is odd and satisfy
e=0(v' %), v » oo, where v is number of vertices and e is number of
edges. Later in [8], it was shown that for k=6 graphs D(k, ¢g) are dis-
connected, and, for an infinite sequence of values of v, each of its compo-
nent has size e=Q(v' *¥3*+3+2)) where ¢=0 if (kK +3)/2 is odd, and
e=1if (k+3)/2 is even. To our knowledge, this is the best known
asymptotic lower bound for the size of a graph of order ¢ containing
no (k+3)cycle for all odd k, k=19 (In fact, it is known that
e=0(v' *2¥* +3 v oo, for any family of (k+ 3)-cycle free graphs
[1,4])

From our current perspective, what makes the graphs D(k, ¢) so criti-
cally important is their increasing girth and the ease with which one can
obtain biregular graphs with prescribed bi-degree as induced subgraphs.
This latter property was explored in an earlier paper with the graphs B(q)
(see [7]), whose definition, like that of D(k, ¢), was motivated by certain
properties of affine root systems (see [12]).

The main obstacle which confronts us in the pursuit of the algebraically
constructed (r, s, t)-graphs is that of determining the exact girth of D(k, q).
As this girth was shown to be at least K+ 5 for & odd (see [6]), we now
assume the task of constructing, whenever possible, a (k +5)-cycle in
D(k, q). Although we conjecture that such cycles exist for all & odd and ¢
at least 4, our methods are amenable only to the case k=2¢—35, 1> 3, and
g any prime power of the form | +m¢t, m>1.
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We now give the definition of graphs D(k, g). The reader is referred
to [6] for additional information on these graphs, although only the
definition is required for our development.

Let ¢ be a prime power, and let P and L be two copies of the countably
infinite dimensional vector space V over GF(q). Elements of P will be called
points and those of L lines. In order to distinguish points from lines we
introduce the use of parentheses and brackets: If xe V, then (x)€ P and
[x]eL. It will also be advantageous to adopt the notation for coordinates
of points and lines introduced in [6]:

(P)=(P1sPi1s P12s P21+ P22 P2 P2as oo Pits Diis Pii v 15 Pia 1.0 = s
[1] = [llv Illi 112’ 121’ ]221 1529 123a ey lii’ l;i’ 11,i+1* li+l,is )

We now define an incidence structure (P, L, I} as follows. We say point
(p) 1s incident to line [/], and we write (p) I[/], if the following relations
on their coordinates hold:

hi—=pu=hLp

ha=—pi=lip

Iy =pa=1ipn
Li=pa=hpi1i
Li—pu=1li 1P

Livi—=pPiiv1=1lap
Livi,i=Pivri=lPi

(The last four relations are defined for i > 2.) These relations, which we call
the incidence relations of (P, L, I'), actually become adjacency relations for
a related bipartite graph. We speak now of the incidence graph of (P, L, I),
which has vertex set P U L and edge set consisting of all pairs {(p), [/]}
for which (p) IT1].

For each positive integer k>2 we obtain an incidence structure
(P,, L,, 1) as follows. First, P, and L, are obtained from P and L, respec-
tively, by simply projecting each vector onto its k initial coordinates.
Incidence I, is then defined by imposing the first £ — 1 incidence relations
and ignoring all others. The incidence graph corresponding to the structure
(P, Ly, I} 1s denote by D(k, ¢). Finally, we define D(1, ¢) to coincide with
D(2, g) as this will allow us to state the results of Section 3 in a unified
manner.
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3. GirTH CYCLES IN D(k, q)

The main purpose of this section is to prove the following result.

THEOREM C. Let k be odd, k=1, and let q be any prime power in the
arithmetic progression {1+ n((k +5)/2)},.,. Then the girth of D(k,q) is
k+5.

The proof will be based on the existence of a special automorphism of
D(k, g), where k and g are related as in the theorem statement. Before
proceeding, we make several observations which help to clarify our
methods.

Suppose u# and v are adjacent vertices of a graph I, and ¢ is an
automorphism of I” of order m. Then the edge {u, v} is mapped by o to the
edge {u”, v”}, which in turn is mapped to {u”, v":}, and so on. Clearly,
{u”", v”"} ={u, v}, although this equality may hold for smaller powers of
o. Assume now that that " is bipartite with bipartition F; u V5, that each
of ¥y and V, is g-invariant, that vertex v is adjacent to «“, and that u # u”,
v#v°. Then we claim that the girth of I is at most 2m. Indeed, as v and
u” are adjacent, so are v” and u”"' for all i; similarly, #” is adjacent to v”"
But then

2 2 -1 m — |
7=uouv’u"v” - u” "

uv
must contain a 2j-cycle for some j, 2 <j<m. (Indeed, the assumption that
u u” and v # v” precludes the possibility that any edge of 7 be transversed
twice in succession.) This proves that the girth is at most 2j, so at most 2m
as claimed.

Applying this reasoning to the graphs D(k, g), we seek point (p)e P,,
line [/] e L,, and automorphism o, such that

(1) o has order (k+5)/2,
(2) o preserves points and lines (i.e., each of the sets P, and L, are
o-invariant),
(3) (p)#(p)” and [1]1#[1]",
(4) [{] is adjacent to each of (p) and (p)°.
By the argument above, this will establish that the girth of D(k, g) is at

most k+ 5. As this girth is known to be at least k+ 5 (for k=3 see [6];
case k=1 is left to the reader), the theorem will follow.

Note. We could not see from the incidence relations how to construct
a graph automorphism whose order depends only on k, the number of
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coordinates of the vertices. In contrast, it is easy to construct
automorphisms whose order (as well as many other important properties)
depends on the underlying field GF(q). This explains to somewhat unusual
dependence between & and g which appears in the statement of the
theorem.

Proof of Theorem C. Let k and ¢ be as in the statement of the theorem,
with g=1+mt, t=(k+5)/2. Let a be a primitive element of GF(g), i.e., a
generator of the multiplicative group GF(g)*. Set f=a". Assuming k=1
(mod 4) (the argument is similar for A =3 (mod 4)), define the mapping o
on points and lines as

(p)”=(Bp, ﬂlpn > ﬁ3p12» ,83P21 » .341722’ /}417’22‘ ﬂspza’ “s ﬁZJP,;/)
(117 =B, Bl B, By, By, B, BPla, s B,

where j = (k + 3)/4. It is immediate from the incidence relations that ¢ is an
automorphism of D(k, g). It has order ¢ because this is the order of § in
GF(g)*. Thus we have found o which satisfied (1) and (2).

Note. There is an easy way to remember the definition of ¢ by its action
on point and line coordinates. Namely, the effect of & on any coordinate
is to multiply the entry of that coordinate by ", where / is the sum of
subscripts which identify that coordinate position.

We now seek (p) and [/] which satisfy (3) and (4). Since f#1, (3) 1s
trivially ensured if we insist that both of p, and /, is nonzero. For
convenience, we set p, =1 and /, =1, although any choice of nonzero
values will work.

As [/] is to be adjacent to both (p) and (p)’, we get two sets of
equations which must be simnultaneously satisfied, namely,

lhh—pn=1 hh—=Fpn=F8
ha—pi=1 Ly =B°pr2= Bl
Ly —pa=pu Li =By =8Py,
Li—=pu=pi 1 Li—=B*pi=pB"""p. 1.
Li=pi=1 Li—= B pi=pl
Liivi—Piis=lu lLiivi =B 'piivr =Bl
Livvi=Picr =Py L= B¥ " 'piy =P

S82b 64 2.9
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Solving, we obtain

pnziﬁ_—ﬂlz 1“_1+1ﬁ_”ﬁ12

(e et

=t w=(1+ 755 )
po=(gmm)h h=(1+ 5 )

ﬁZi_l , ﬂZi—l ,
Pi+1,i:<1—:ﬂT+| Pii Ligr,i= l+l_‘—ﬂ-m Pii

(Note that all denominators are nonzero since #°# 1 for all 1 <s<1t.) The
resulting point (p) and line [/] satisfy (3) and (4). Thus (p), [/] and &
satisfy (1)—(4), and the girth of D(k,q) is k+5. |

4. THE ALGEBRAIC CONSTRUCTION AND PROOF OF THEOREM B

We are now ready to describe our first construction, which provides
(r, s, t)-graphs for r,s =1

Let r>3 and r, s >t We choose a prime ¢ such that g>r, s, and q is
of the form 1 +mt, for some m > 1. The existence of ¢ follows from the
well-known result of Dirichlet, asserting the existence of infinitely many
primes in arithmetic progressions. Moreover, the smallest such ¢ is
O((r +5)°), for any constant ¢> 5.5 (see [5,9]).

Set k=2t —35. Let C be a cycle of length 27 in D(k, q), constructed by the
method of the previous section. The first coordinates of points (respec-
tively, lines) on C comprise a r-element subset T, (respectively, T,) of
GF(q)*; let R=GF(q) (respectively, S=GF(q)) be an r-element subset
containing 7', (respectively, an s-clement subset containing T,). The vertex
set Fpu Vg of our (r, s, t)-graph D(k, R, S) is defined as

Ve={(p)eP,lp, € R},
Ve={[l1e L, €S}.



GRAPHS OF SET GIRTH AND BI-DEGREE 235

Note that |Vzu Fg| = O((r + 5)*"). Finally, let D(k, R, S) be the subgraph
of D(k,q) induced on ViU V. D(k, R, S) contains C, so the girth of
D(k, R, S) is 21.

It remains to show that D(k, R, S) has bi-degree s, r. For fixed (p)e V,
and arbitrary x € S, there exists a unique neighbor [/] of (p) in D(k, R, S)
whose first coordinate /, equals to x. Since there are precisely s choices
for x, the degree of (p) in D(k, R, S) is s. Similarly, one shows that the
degree of any [/]e Vsin D(k, R, S) is r.

Proof of Theorem B. Given t>=3 and r,s>1t, let the (r,s, ¢)-graph
D(k, R, S) be defined as above. For any r,,s, with r=2r, 21, 525,21,
choose sets R, < R, §, €S, |R,|=r,, |S,| =s, such that R,, S, contain the
first coordinates of points and lines of C (ie., the sets T, and T), respec-
tively. Then D(k, R,,S,) is an (r,,s;,¢)-graph which is an induced
subgraph of D(k, R, S). |

5. ExaMpLES OF GIRTH CYCLES IN D(k, q)

In this section we construct girth cycles for the graph D(k, q,),
k=1,3,5, where ¢, is the smallest prime power of the form
1+ ((k+5)/2)m. We use the procedure which is implicit in the proof of
Theorem C (with p, =/, =1).

ExaMmPLE. k= 1. Here g,=4 and m=1 (so f=a). We choose a to be a
primitive element of GF(4), ie., « is a root of x>+ x+ 1 over GF(2). The
resulting 6-cycle is

(La)[L,a+17(e, Do, J(oe+ 1, o+ 1)[a + 1, TT(1, a).

ExaMmPLE. k =3. Here g,=5 and m=1 (so f=a). We choose a =2 as
primitive element of GF(5). The resulting 8-cycle is

(1,3, )[1,4,212,2,4)2, 1, 1 (4, 3,2){4,4,3](3,2, D[3, 1,4](1, 3, 3).

ExaMPLE. k=5. Here gq,=11 and m=2. We choose a =2 as primitive
element of GF(11), so that =a?=4. The resulting 10-cycle is

(1,2,3,10,10)[ 1, 3,6, 1,2](4, 10, 5, 2, 8)[4, 4, 10,9, 6]
(5,6,1,7,2)[5,9,2,4,71(9,8,9,8,6)[9, 1,7, 3, 10]
(3,7,4,6,7)[3,5,8,5,8](1,2,3, 10, 10).

Naturally, we would like to remove the restriction r, s = ¢ in the algebraic
construction and in Theorem B. We conjecture the following.
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ConIECTURE 1. For all r,s22 and t23, an (r,s,t)-graph can be
obtained as a subgraph of a graph D(k, q), with k, q chosen appropriately.

Almost all cases of Conjecture 1, namely those for which r, s > 4, would
follow immediately from a proof of the following.

CONJECTURE 2. D(k, ¢) has girth k +5 for all odd k and all ¢ = 4.

Remark. The graphs D(k, 3) appear to have girth greater than k + 5 for
small values of k. For example, D(5, 3) has girth 12.

6. THE RECURSIVE CONSTRUCTION

Our first goal in this section is to prove Theorem A. We prove the
existence of (r, s, 1)-graphs by induction. The base cases are the existence of
(r,s,2), (r,2,1), and (2, s, t)-graphs; as mentioned in the Introduction,
such graphs exist.

Let I''(A, v B,,E|)and I',(4,UB,, E,)be (r—1,s,¢) and (r, s — 1, 1)-
graphs, respectively, |4,|=a, |B,| =5b. Moreover, let I';(Uu V, E,) be an
(a, b, t — 1)-graph. Then we can construct an (r, s, t)-graph I” the following
way.

The graph [I” consists of |U| copies of I, and | V| copies of [ (all
[U|l 4+ | V| copies are pairwise disjoint), with some additional edges. So far,
I has |U| |B,| vertices of degree s, |V||A,]| vertices of degree r, |U| «a
vertices of degree r — 1, and | V] b vertices of degree s — 1. Let us denote the
set of vertices of degree r—1 by A={a, ,:1<i<|U|, 1<j<a}. The
vertices a;,,4, 5, ... a,, belong to the ith copy of I',. Similarly, let
B=1{b, ;1 1<i<|V], 1 <j<b} be the set of vertices of degree s — 1. Note
that | 4| = |B|. We shall add a matching M between 4 and B to I, resulting
in a biregular graph with bi-degree r, s.

We now describe how the edges in the matching M are defined. Let U=
{uy, uy, .y uyy} and V={v,, v,, .., v;,} be the two classes of I';. For each
u,e U, we list in a sequence (v, Uy, ... v,) all the neighbors of u; in I'y;
similarly, for v,e V, we list in a sequence (u,, ..., u;,) all the neighbors of v,.
For a, ;e A and b, ,€ B, let {a,,, by ;} € M if and only if {u,, v;} € Ex, v,
1s the jth neighbor of u;, and u; is the /th neighbor of v, . It is ¢lear that M
1s a matching, covering the sets 4, B; note that for any copies of I}, /', in
I, there is at most one edge of M connecting them. Moreover, contracting
each copy of I';, I',, only the edges of M remain and we obtain a graph
isomorphic to ;.

Finally, we have to check that the girth of I is 2t. I” contains copies of
I';, so the girth is at most 2¢. Let C be an arbitrary cycle in I If C contains
no edges from M, then |C}=2t. If C contains edges of M, then at the
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contraction of all copies of I7, I, the image of C is isomorphic to a cycle
in I'y. Hence C contains at least 27 —2 edges from M. Between two
consecutive edges from M, C must contain at least two edges from a copy
of I'y or I'y; hence |C| = 3(2r—2)> 2t

In (r, s, #)-graphs constructed by the recursive method, the number of
vertices 1s not bounded by a polynomial of the trivial lower bound N(r, s, t)
(we defined N(r,s, t) in the Introduction). Our final goal is to construct
(r, s, t)-graphs with order bounded by a polynomial of N(r, s, ?).

LEMMA D. Let INU UV, E) be a biregular graph with bi-degree r, s and
girth at least 2t, t = 3. Suppose that there exist xe U, ye V with distance
2t+3 in I Then there exists a biregular graph on |U|+|V|—(r+s)
vertices with bi-degree r, s and girth at least 2t.

Proof. Let N(x):={v,, .., v,} be the set of neighbors of x and N(y):=
{uy, .., u.} be the set of neighbors of y in I". Let I"' be the graph obtained
from I' by deleting x, v,, v5, .., U,, ¥, Us, U5, ..., 4,. Since the girth of I is at
least 6 and the I'-distance d,(x, y)=9, there are no vertices in I’ which
were adjacent to two deleted vertices in I'. Hence the degrees in I are
r—1,s—1,rand s

There are exactly 1+ (r — 1){(s— 1) vertices of degree r — 1 in I, namely,
u, and the I'-neighbors of v,, v4, .., 1,. Let 4 denote the set of these ver-
tices. Similarly, there are 1+ (r— 1)(s—1) vertices of degree s —1 and we
denote their set by B. For any ae A\{u,} and b€ B\{v,}, the I""-distance
d;-(a, b) =2t — 1, since adding four edges of I, any I'-path between a, b
can be augmented to a [-path between x and y. For the same reason,
dita,u)) 22t dy(b,v)22t, and d;(u,,v,)22t+1. Also, for any
a,a' € A\{u,}, d;-(a,a') =2t —4, since adding at most four edges of I, any
I''-path between «,a’ can be augmented to a cycle in 7. Similarly,
dy(a,vy)=22t—3 and, for all b, ' e B\{v\}, d,-(b,b") 22t -4, d, (b, u) >
2r—3.

Let I"” be the graph obtained by adding the edge (u«,,r,) and a
matching between A\{x,} and B\{r,} to I"". Clearly, I'" has bi-degree r, s
and we also claim that the girth of 7" is at least 2¢.

Let C be an arbitrary cycle of I"”. If C has no edges from I'"\I"’, then
|C|=2t. If C contains exactly one edge of I'"\I"', then, checking the
I''-distances listed above, we see that |C| =1+ (2¢t—1)=2r. Finally, if C
contains at least two edges from I'"\7I"”' then {C| =2+ 2(2r—4)=2t. |

THEOREM E. Let r,s,t=3 and let T be an (r, s, t)-graph of mininum
order. Then the number of vertices in I is bounded by a polynomial of
Nir, s, 1)
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Proof. Let C be a cycle of length 27 in I'(V, E). Then the distance of
any xe V from Cis at most 21 + 4. Indeed, otherwise we can choose xe V'
of distance 2¢ + 5 from C and y of distance 2t + 3 from x. Then none of the
neighbors of x, y belong to C, and, since d,-(x, y) =21+ 3 1s an odd integer,
x and y belong to distinct partitions of I. Applying the procedure
described in the proof of Lemma D for such x, y, we obtain an (r, s, ¢)-
graph, since the cycle C is contained in the new graph. However, this
contradicts the minimality of I". Therefore, counting the greatest possible
number of distinct vertices of I of distance <2t +4 from C, we get

IV <2t+tr—2)+Hs—2)+t{r—2}s—1)
+Hs—=2)r—D+.+tr=2)r—1)* (s—1)*?
+Hs—=2Ws—=1)*  (r—1)"*2

Clearly, the right hand side is bounded from above by a polynomial of
N, s, )y=[(r—D(s=1]" "2 |
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