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DISCREPANCY OF TREES

P. ERDOS, Z. FUREDI, M. LOEBL and V. T. SOS

Abstract

We consider the question how large monochromatic part of a tree is present in any
coloring of edges of a complete graph by two colors. It is proved that there exists a constant
¢ >0 such that for any given tree 7, on n vertices with maximum degree A the following
holds. An arbitrary coloring of the edges of Kpn with 2 colors contains a copy of Tn such
that at least (n —1)/2+¢(n—1— A) edges of Ty get the same color.

1. Introduction, results

Discrepancy theory has originated from number theory. In the last two
decades this subject has developed into an elaborate theory related also to ge-
ometry, probability theory, ergodic theory, computer science, combinatorics.
The combinatorial setting of these problems proved to be a succesful ap-
proach. See the book of Beck and Chen [2], the chapter from the Handbook
of Combinatorics [3], or [8].

One of the basic problems in combinatorial discrepancy theory is the
following: Let S={z1,%3,...,2:} be a finite set and H={A;,...,An} be
a family of subsets of S. The goal is

(*) to find a partition Sy US2 =5, §1 NS, =0 which splits each of the

set in the family H as equally as possible.

A partition of S can be given by a function ¢ :§ — {1,2}. The discrep-
ancy of H is defined by

. g 1Al
D(H) = min max le~™ (1) N A| 7|

This measures, in supremum norm, how well the set § can be partitioned in
the sense of (*).

For a given (S,7) we want to determine or estimate D(#). A large
number of classical theorems in number theory, in geometry, in combinatorics
can be formulated in this language. Here we consider the special case when
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the underlying set S is the edge set, E(K,), of a complete graph and the
family % is given by isomorphic copies of a given graph.

Let L be an arbitrary fixed graph. Our goal is to two-color the edges of
K, so that in each subgraph L* isomorphic to L the edge-set E(L*) is two-
colored as equally as possible. Let the two-coloring be given by ¢ : E(K,) —
—{1,2}. The discrepancy of L is defined by

Lll
Du(E,0)= max [l ()0 B - EEA)
L*~L

D, (L) :=min D, (L, ).
@

While Ramsey theory asks how large n should be so that any two-coloring of
edges of K, contains a monochromatic copy of a gwen graph L, discrepancy
measures how large part of a graph L is present in any two- coIormg The
case L = K; was investigated by Erdés and Spencer [5].

In this paper we consider the case when L is a tree T, on n vertices. Put
D(T,) = Dn(Ty,)-

Let S, and P, denote the star and the path on n vertices, respectively.
It is obvious, that

0 forn=4k+1,
(1) D(S,)=<¢ 1/2 forn=2k,
1 forn=4k+3.

It is also easy to see that

DB 1= %n +0(1).

This follows from a theorem of Gerencsér and Gyarfas [6] statiﬁg
(2) R(P)=|(3k+1)/2],

where R(L) denotes the Ramsey number of the graph L.

In general, R(Lq, L2) denotes the minimum integer n 5uch that the fol-
lowing holds: for each coloring of the edge-set of E(K,) with the colors {1, 2}
one can find either a copy of L; of color 1 or a copy of L; consisting of edges
of color 2; finally R(L):=R(L,L).

Which are the basic relevant properties of T}, determining whether D(T%,)
is small or large?

Let A(L) denote the maximal degree in L. A set C S V(L) is called a
vertez cover if each edge e € E(L) has at least one endpoint in C. Let 7(L,)
denote the minimum size of a vertex cover.

Here we prove that the order of magnitude of D(T},) depends on A(T7)
and 7(T,).
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THEOREM 1.1. Suppose that A(T,) 20.8n. Then D(T,) 2 (n—1-A)/6.

For even n considering a two-coloring of E(K,) such that every color
induces an n/2-regular graph, one sees that D(T,,) Sn—1- A.

THEOREM 1.2. Suppose n > mg and A(T,) < 0.8n. Then D(T}) >
>nl0~3.

Here the value of mg comes from Corollary 2.8.

The next theorem describes a class of trees having discrepancies as large
as possible, n/2 — o(n) (if max(A(T}), 7(Tn)) = o(n)).

THEOREM 1.3. IfA(T,),(T,) Sk <n/8, then D(Ty) = (n/2) — 4k.

Color red a complete subgraph of size n — (k/2) and blue the rest of the
edges of K,. Then the largest monochromatic part of a tree with 7{T) =k
does not have more than n — (k/2) edges. Hence D(T,,) Sn/2—k/2.

2. Conjectures, problems, lemmata

The proofs of the theorems above are closely related to extremal and
Ramsey problems on trees. Here a new type of extremal problems arose,
where the lower bound on the number of edges (in Turdn type problems) is
replaced by a lower bound on the number of vertices with high degrees.

CONJECTURE 2.1 (n/2-n/2-n/2 conjecture). Let G be a graph with n
vertices and let at least n/2 of them have degree at least n/2. Then G contains
any tree on at most n/2 vertices.

M. Ajtai, J. Komlés and E. Szemerédi [1] proved the following approxi-
mate version.

THEOREM 2.2 (Ajtai, Komlés and Szemerédi [1]). For every >0 there
is a threshold ng = ng(n) such that the following statement holds for all n >
2 no: if G is a graph on n wvertices, and at least (1+ )% vertices have
degrees at least (14 n)%, then G contains, as subgraphs, all trees with at
most 5 edges.

J. Komlés and V. T. Sés extended Conjecture 2.1 for trees of any size.

CoONIECTURE 2.3. If G is a graph on n vertices and more than n/2 ver-
tices have degrees greater than or equal to k, then G contains, as subgraphs,
all trees with k edges.

J. Komlés announced proving an approximate version of Conjecture 2.3,
too.
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THEOREM 2.4 (Komlds [7]). For every >0 there is a threshold ng
=ng(n) such that the following statement holds for all n > ng: if G is a gra
on n vertices and at least (14-1)5 vertices have degrees at least (1+41)k th
G contains all trees with at most k edges.

A weaker form of Theorem 2.4 which we will need follows analogously
the proof of Theorem 2.2 [1].

THEOREM 2.5. For every 1> 0 there is a threshold ng = ng(n) such t/
the following statement holds for all € 2 0 and n 2 ng: if G is a graph on
vertices and at least (1+n)% vertices have degrees at least (1—¢+n)% th
G contains all trees with at most (1 — 3¢)5 edges.

SKETCH OF PROOF OF THEOREM 2.5. The proof goes in the same w
as the proof of Theorem 2.2 in [1], with only one change: a combinator
Lemma 6 of [1] is replaced by a lemma below proving a weaker proper
(from weaker assumptions) than the original Lemma 6.

LEMMA 2.6. Let H be a graph on N vertices, and let U be the set
vertices of degree greater than (1 — n)% If|U| 2 % + 1 then there are t
vertices ¢, y€ U and a (partial) matching M in H such that

¢ and y are adjacent,

M covers at least (1 — 31;)%1 — 1 neighbors of both z and y.

Proor oF LEMMA 2.6. First observe that at least two vertices of
are joined by an edge of H. We will use the Gallai-Edmonds decompositi
(GED). Let A be the set of vertices of H omitted by at least one maximu
matching of H, let B the set of vertices of H — A which have neighbors
A and let C be the set of remaining vertices of H. GED Theorem asser
that the connectivity components of H — A are hypomatchable (a graph
is called hypomatchable if G — v has a perfect matching for each vertex
of G), the connectivity components of H — C have a perfect matching a
any maximum matching of H covers completely B from A.

If a component of H — B has two adjacent vertices of U then Lemma 2
follows. Hence U forms an independent set in each component of H — .

Let a denote the size of a maximum independent set. However, a(C) < l
for any hypomatchable C' with more than one vertex and a(C) £ J% for ai

C with a perfect matching. Since |U| > lﬂzﬂll‘ there is a hypomatchak
component C of H — B consisting of exactly one vertex which moreov
belongs to U. Hence |B| 2 (1—7)% and by GED Theorem H has a matchi
which covers at least n — ‘I}n vertlces

Hence the Lemma 2.6 is proved and Theorem 2.5 then follows analogous
as Theorem 2.2 in [1].

Using Theorem 2.5, it is not difficult to prove a Ramsey type resu
which will provide a basic tool in further considerations.
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THEOREM 2.7. For every e > 0 there is a threshold mo = mq(€) such that
the following statement holds for all n > mg: if G is a graph on n vertices
and T is a tree on at most (1 — €)% wvertices, then G or complement of G
contains T'.

ProoOF. Let mg = (1 - %5)"1 ng (%), where ng(-) comes from Theo-
rem 2.5. Let n=§ and ¢/ = §. If G satisfies the assumptions of Theorem 2.5
for ¢ and 7 then Theorem 2.7 follows, otherwise complement of G has at
least (1—7)% vertices of degree at least n— (1 —¢'+n)3=53(1+¢ —n).
Denote by S the set of these vertices. Let G’ be a graph obtained from G by
deleting 2nn vertices from V(G) — S. |V(G')| =n'= (1 -2n)n. Now, at least
IS|12(1-n)%2(1+ n)—’%i vertices of G’ have degree at least (1+¢'—57)% 2
211 —£’+n)%’-. Since n’ > ng(n) we may apply Theorem 2.5 to G’ and get
that G’ and hence also G has all trees on (1 — €)% vertices. a

We will use only the following weaker version.

COROLLARY 2.8. For n>myg the following holds. Every tree on at most
(% —1073)n vertices is contained in either G, or in G,.

Theorem 2.7 states that R(T}) £ 2k + o(k) as k — co. Here we formulate
the

CONJECTURE 2.9. Let T, and T}, be trees on a and b vertices, respec-
tively, and let G be a graph on a+b—2 vertices. Then either G contains T,

or G contains Ty. Especially, R(Ty) < 2k — 2.

We think that even more is true.

CONJECTURE 2.10. There is a ¢ > 0 such that R(Tk) < (2 — ¢)k + cA.

We conclude this section by an easy observation.

LEMMA 2.11. Let M, be a star-forest on a > 2 vertices and consider an
arbitrary two-coloring of the complete graph, E(K,) = E(G1)U E(G32). If
G does not contain a monochromatic copy of M, then there is a subset A S

CV(K,) such that every vertez in A has more than n—a G3-neighbors in A.
Consequently, R(M,,Ty) Sa+b—2.

ProoFr. If M consists of only one star, then the statement is trivial with
A=V(Kp,). Otherwise, one can use induction on the number of stars in M.
If the degree of each vertex of the subgraph of G induced on A is at
least n — a + 1, then G3 has every tree on n — a + 2 vertices. a

3. The case of large maximum degree

In this section we prove Theorem 1.1. Consider an arbitrary two coloring,
¢, of the edge-set of the complete graph using the colors {1,2}. Let T be
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an n vertex tree with A(T') 2 0.8n. Suppose, on the contrary, that Dy (T') =
=tz<(n—1-A)/6. Then z < (n—1)/30. Let §; be a monochromatic
star of K, of maximum number of vertices. Denote its vertex set by A,
let Ay :=V(K,)— A1, and |[4;]|—-1=(n—1)/2+m. Here m <z. We may
suppose that the edges of S are colored by the color 1.

Let M be the forest having (n—1— A) edges obtained from T by deleting
the edges adjacent to a vertex of maximum degree. M has a subforest
consisting of vertex disjoint stars and containing at least half of its edges.
Let M;, M, be star-forests contained in M of sizes |E(M;)| =z —m+1 and
|E(M3)| =3z — m+ 1. As the vertex of maximum degree of T is adjacent
to at least 0.6(n — 1) vertices of degree 1, T contains a vertex-disjoint copy
of a star T; and the star-forest M; such that their total number of edges is
(n—1)/2+ 2+ 1. (This is, indeed, a special case of Lemma 4.1.)

There is no monochromatic copy of M; in A; in color 1, otherwise to-
gether with §; it would form a too large monochromatic part of a copy of T'.
Hence Lemma 2.11 implies that there exists an A} € A, such that every de-
gree in color 2 in Aj is at least |Ag| — 2(z —m+ 1)+ 1. As the maximum
degree in color 2 is at most |A;| — 1 we obtain that every vertex of Aj is
joined to at most 2z + 1 vertices from A; using edges of color 2.

We also obtain that there is a star S, of at least |43 —2(z —m)+ 1 edges
of color 2 contained in A,. Thus, repeating the previous argument, A; does
not contain a copy of Mj of color 2. Hence Lemma 2.11 implies that there
exists an A} C A; such that every vertex in A} has degree in color 1 at least
|A;| —2(3z —m+1) +1. We obtain that every vertex of A] is joined to at
most (6z — 2m) vertices of A) using edges of color 1.

Altogether, considering the complete bipartite graph with parts A} and
Al we get that

2z 4+ 1+ (6z —2m) 2 min(|A}[,|43)) 2 (n—1)/2+14+m— (62 —2m+1)+1.

This yields z > (n — 1)/28, a contradiction. )

4. How to cut a tree

In this section we collect some technical lemmata about tree decomposi-
tions we are going to use in the next section for the proof of our main result,
Theorem 1.2. As we are providing an asymptotic only, for simplicity, from
now on in this and the next sections, we suppose that n is even.

LEMMA 4.1. Let T be a tree on n vertices and let A(T) < 0.8n. Then
there is a subtree T’ on n/2 vertices and a subgraph M of T such that the
following properties hold.

(1) M 1s star-forest of at least (n —1)/16 edges;

(2) M is vertez-disjoint to T'.
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Proor. If there is a cut edge, e, of T such that the deletion of e results
two trees on n/2-n/2 vertices, then we are done. Otherwise, T has 2 (unique)
vertex, v with the following property: considering the edges vvy, vvy, ..., vv;
adjacent to v and the subtrees T7, ..., T}, obtained after deleting all of these
edges (v¢ Ty, v; €T;), si =|V(T;)|, we get that s; Ss3<...< s, <n/2, (and,
of course, > s; =n—1). We have that ¢ > 3. Let j be defined by

I+s1+...4s_1<n/28 1481 4+...+s;.

Here j <t (because s; <n/2). Then I” can be any subtree of v+ T +...+T;
on n/2 vertices. Define M’ as the forest Tj41 +...+T;. We claim that M’
has at least (n —1)/8 edges. Indeed, if s; =1, then 7" is a star and M’ has
at least n — 1 — A edges. Otherwise, for s; > 2 we have that

IE(M)| 2> (si-1)2 Y (s1/2).

1> i>]

Here }°.., si > (n —1)/4, because otherwise s; > (n — 1)/4 follows, and this
again implies (n—1)/4 < s; < sj41. Finally, every forest contains a star-forest
consisting of at least half of its edges, so there is an M C M’ of size at least
(n—1)/16. a

Considering the decomposition, v +T; + -+ Tiaiy v+ 15, v+ T +
+ -+ Ty in the proof of Lemma 4.1 we obtain the following statement.

LEMMA 4.2. The edge set of an arbitrary tree T can be partitioned into
at most 3 trees each of sizes at most |V (T)|/2.

Let W be the set of all neighbors of leaves of T'. For each w € W choose
a neighboring vertex of degree 1, we get the set W', |W|=|W’|. Applying
Lemma 4.2 for the tree T — W' one gets the following

COROLLARY 4.3. T — W' has a subtree T' on 5 vertices, which contains
at least 1|W| vertices of W.

Let P be the set of pendant edges. Deleting deg(z) — 2 edges from each

vertex z of degree at least 3 one gets a subforest which is a path-forest, i.e.,
we obtain the following

LEMMA 4.4. T, has a subforest T' of at least n — | P| edges consisting of
vertez-disjoint paths, edges and isolated vertices.

5. Proof of Theorem 1.2

Let n > myg, and let T' be a tree on n vertices satisfying A(T) < 0.8n. Let
 be a two-coloring of the edges of K, and suppose, on the contrary, that
D,(T)<n/258=:1.
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CLAIM 5.1. The vertices of K, may be partitioned by V (K,) = AjUA,,
|A1| =|A2| =% so that both graphs

G;={eC A;:e has colori}, i=1,2

contain all trees on 5 — 81 vertices. Moreover, there are sets B; € A; such
that the minimum degree of the restriction of G; to B; is at least n — 81.

PrOOF. Let T| be a subtree on 7 —1[ vertices provided by Lemma 4.1.
Let T be a subtree of T| of n/2— 3l edges. Also let M; and M; be star-forest
contained in T vertex-disjoint to T} and T}, respectively, of sizes |E(M;)|=
=21, |E(M,)| =4l:

We use Corollary 2.8 to find a monochromatic copy of T7j, say color 1.
Let A} be formed by the vertices of this copy of T]. There is no copy of M;
of color 1 vertex disjoint to A), otherwise we obtain D,(T) 2!. By Lemma
2.11 we have that V(K,) — A} contains a copy of T} of color 2. Then define
the sets A;, Ay such that V(T}) C A;, |4i|=n/2, AiUA; =V (K,). The
set A; does not contain a copy of M3_; of color 3 —:. Hence Lemma 2.11
yields that A; contains a set B; satisfying the requirements and B; contains
all trees of color 7 of sizes at most n/2 — 8. O

To finish the proof of Theorem 1.2 we distinguish three cases.
1. |W| 2 54l, where W is the set of all neighbors of leaves of T. By
Corollary 4.3 there is a subtree 7' on % vertices and a matching M such

that each edge of M intersects T' in one vertex and |M| > 18l. In each A;,
i=1,2 take a copy of T with at least 7 — 8/ edges of color i. Between
(M NT{)NA;, :=1,2 there must be a monochromatic matching of at least
91 edges. This together with the corresponding copy of T” has at least %+
edges of the same color. This finishes Case 1.

2. |P|<n/4—(3/2)l, where P is the set of pendant edges. By Lemma
4.1, T contains a path-forest, T, of at least n — | P| edges. We apply (2) that
K, contains a monochromatic path, H, of at least (2/3)(n — 1) edges. We
can cover at least 2/3 of the edges of T/ by H and conclude that T has a
monochromatic part of at least n/2 + [ edges. This finishes Case 2.

3. If neither Case 1 nor Case 2 take place then let T’ be a subtree of
(n/2) — |W| — 81 edges on (n/2) — 8! vertices obtained from T by deleting
edges in the following 3 steps. Let P’ be a set of (n/4) — (3/2)l pendant
edges, delete these from T'. Second, delete |W|— 1 edges such that the rest
of the tree consists of [W| components each component having exactly one
vertex from W. Finally, trim leaves off these components to get the desired
size such that we never cut off a vertex of W.

Without loss of generality we may assume that A; has a set N of %
vertices such that each of them is incident with at least % edges of color 1
going to A,. Fix a copy of T’ in B, such that the vertices of W all come
from BN N. The edges of P’ can be added to T’ from the color 1 edges
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between A; and A;. We found a subgraph of T with at least 37"' —63.5] edges
of color 1. This finishes Case 3, thus Theorem 1.2 is proved.

6. Proof of Theorem 1.3

Let T be a tree on n vertices and consider an arbitrary two-coloring of the
edges of K, using colors red and blue. We claim that K, contains a subforest
of T of at least n — 4k edges of the same color, consisting of vertex-disjoint
stars.

Let T* be a maximum star-forest of T. T* has at least n — 7 edges. Let
T' be a maximum monochromatic subgraph of T*. If T has at least n — 4k
edges we are done. In the rest of the proof we assume that T” has less than
n — 3k vertices.

Let us assume that the color of T' is red. Let z be a vertex of T’ of
degree 1. There are less than k red edges going from z to vertices out of T”
in T', otherwise 7' may be improved by replacing the edge incident with z by
the red star of k edges rooted in z, whose leaves do not belong to 7”. This
new system of red stars contains a subgraph of T which is bigger than T".
Similar argument shows that red stars of K, — V(TI") have at most (k — 1)
edges. Let W =V (K,)—V(T') and let W = W; UW; be a partition of W
such that |W;| =3k. We will construct a big blue subgraph of T*. Its stars
will be rooted in Wy and leaves will be in V(K,) — W;. Let T” denote the
current part of this blue subgraph which we have already constructed. We
enlarge T" as follows. If there are at least 2k vertices of M =W, U {j; j is
a vertex of T of degree 1} uncovered by 7" then observe that at least one
vertex of Wi — T" is incident by blue edges with at least k vertices of M.
Thus we enlarge T” by adding this star to it. If less than 2k vertices of M
are uncovered by T" then we stop. In the end T" has at least n — 3k vertices
out of Wy, hence it has at least n — 4k edges. Hence Theorem 1.3 is proved.

7. Further problems and generalizations

Above the special case was considered when E(K,) was two-colored, and
we investigated how large monochromatic portion of a given tree T}, must
be contained in it. Here we give a list of some possible generalizations.

(1) Instead of K, we can consider other sequence of underlying graphs,
e.g., the complete bipartite K, ,, t-partite graphs K, , . .;

(2) Instead of copies of a T, some other family of graphs, even with
different sizes can be investigated;

(3) Two coloring can be replaced by r-coloring;

(4) Instead of the measuring the disrepancy in supremum norm it is
interesting to consider the average, e.g., the I3 norm;
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(5) Instead of considering the maximum distance from the evenly colored
subgraphs (when the goal was to approach a (1/2,1/2) coloring) to consider
for a given a € (0,1) the discrepancy from an (a,1 — a) coloring. Some
applications lead these kind of questions, eventually a depends on n, a =
=a(n);

Finally we mention two further problems.

1. A general method in discrepancy theory is to obtain an estimation
from the discrepancy of the random coloring. One of the first problems is
to decide when the random coloring yields the optimal or nearly optimal
solutions. It is easy to see that when |E(L)|=w(n)nlogn with w(n) — oo,
for n — 0o, then already the random coloring ¢ gives D, (L, ) =o(|E(L)|).

2. In our case (the case of spanning trees) the bounds on the discrepancy
are in terms of the maximum degree, A, and the covering number, 7. It would
be interesting to see what other graph parameters or structural properties
of the sample graphs (and the underlying graphs) influence the discrepancy.
For example, if the tree T,, has two vertices of degree n/2 (it is called a
broom), then D(T,) =n/4+ O(1). (This was also proved by Bondy [4].)
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