
JOURNAL OF COMBINATORIAL THEORY, Series A 72, 332 339 (1995) 

Note 

Cross-Intersecting Families of Finite Sets 

ZOLTAN FOREDI 

Department of Mathematics, University of illinois at Urbana-Champaign, 
1409 West Green Street, Urbana, Illinois 61801-2917 and 

Mathematical Institute of the Hungarian Academy, 1364 Budapest, POB 127, Hungary 

Communicated by the Managing Editors 

Received March 3, 1994 

It is proved that if d is a family of a-element sets and ~ is a family of b-element 
sets on the common undelying set In], and A nB#~5  for all A E J ,  B~N (i.e., 
cross-intersecting), and n>~a+b, 1~¢ I ~>(]511)-("~b~1)+ 1, and INI > ( ~ - l ) -  
(";-~ya)+ 1, then there exists an element x~ [n] such that it belongs to all 
members of s¢ and N. This is an extension of a result of Hilton and Milner who 
generalized the Erd6s-Ko-Rado theorem for non-trivial intersecting families. 
Several problems remain open. © 1995 Academic Press, Inc. 

1. NON-TRIVIAL CROSS-INTERSECTING FAMILES 

For  a positive integer n, let [ n ]  = { 1, 2, ..., n}, for integers 1 ~<a ~<b let 
[a,b]={a,a+l, . . . ,b}.  For  a set S let (s) denote the collection of  
k-element subsets of  S and let 2 s denote the collection of  all subsets of  S. 
A family of  sets J~ is called intersecting if A n B ~ ~ hold for all A, B e ~-. 

~1,~]~ be an intersecting family. Erd6s, Ko,  and Rado  [ 3 ]  Let Y c t  k J 
n-1 ~> 2k. Moreover ,  in case of  equality proved that  I~1 ~< (k_ 1) holds for n 

n ~ - ~  ~ (for n > 2k). An intersecting family f# is called non-trivial if 
N f¢ = ~ .  Define the following non-trivial families, f # l =  { G e  ([2]) :  1 e G, 
G n [ 2 ,  k + l ] : ~ } w { [ Z , k + l ] }  and N 2 = { G e ( [ ~ ] ) ' I [ 3 ] c ~ G I > ~ 2 } .  
Fo r  k = 2 ,  ~¢1_N2;  for k = 3 ,  I~a1=1(¢21, while for k />4 ,  n>2k, 
I~11 > 1~¢21. Hilton and Milner [10 ]  proved the following generalization 
of  the E r d 6 s - K o - R a d o  theorem. If  n > 2k and ~ _~ (1~]) is a non-trivial 
intersecting family then 

n - 1  
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- k - l )  
k - 1  + 1 ,  (1) 
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Moreover ,  equali ty is possible only for f~ = . ~  or fqa. A short  p roo f  was 
given in [ 6 ]. 

Two  families s¢ an N are called cross-intersecting if A n B ¢ ~ hold for 
all A e s¢, B 6 N. Here  we extend (1) for two families. 

THEOREM. I f  S ¢ ~ ( [ ~ ] ) ,  # ) ~ ( t ; ] ) ,  A ~ B C ( 2 5  for all A ~ J ,  B ~  
(i.e., cross-intersecting), and n >1 a + b, [~4] , ,-  1 n - - b  > ( ~ - 1 ) - - ( a - 1 1 ) ,  and I N ] >  

n - - ]  (b 1) - (n~q]~l), then one of the following two cases holds: 

(i) there exists an element x ~ I n ]  such that x belongs to all members 
of sJ and ~ ;  or 

( i i )  1~¢l  = ~ - 1  ~,, b - l ~  (a--l) - - k  a - - 1  / "nt- 1 and I~l = ( Z 2 1 ) -  ('~Z~_~ 1) + 1. 

We can describe the extremal  families in case (ii). Namely ,  either 

(ii/1) n = a + b ,  IsSl ---,~+b-la~_l ,, [~[_,_t-+b-l~b_l ~, and for every part i-  
t ion o f X w  Y = [ n ]  with IX[ = a ,  [Y[ = b ,  either X E ~ ¢  or Y e N ;  or 

(ii/2) a = b = k ,  s ~ c = ~ f q  ~ for some i e { 1 , 2 }  (see (1)); or  

(ii/3) a, b >~ 2 and for some a-set Ao and b-set B0 with A0 n B0 v a ~ ,  
and for some element  x(~AowBo,  we have N = { A ' x s A e ( [ ~ ] ) ,  
A n B o # ~ } w { A o }  a n d N = { B : x e B e ( ~ ? ) , B ~ A o C f 2 5 } w { B o } .  

An easy corol lary  of  the theorem was used to answer a p rob l em of 
Tro t t e r  abou t  the order  d imension of two levels of  the Boolean lattice; 
see [9 ] .  

2. PROOF 

We prove  the theorem by induct ion on a + b. The cases a = 1 or b = 1 are 
trivial. 

The  case n = a + b is easy. Indeed,  consider all the (a+b) (ordered)  parti-  
t ions of  I n ]  into X u  Y =  [n ] ,  with [XI = a ,  [Y] = b .  Fo r  each such part i-  
t ion either X C d  or Y ¢ ~ ,  implying [su¢ I + I~l  ~<(a+b). (The case a = b  
requires a little more  care). The lower bounds  for [sCl and I.~[ give 1~41 >/ 

a -1  - - ( n a b - Y 1 ) + l = ( ~ + b  1), and  [~[>~(a+b 1). So bo th  inequalities 
a 1 a 

hold with equali ty and we get case (ii/1). F r o m  now on, we suppose that  
n>a+b,b>~a>~2.  

Consider  the case when for some x ~ [ n ] we have x e N ~4. I f  there exists 
a B ~  with x 6 B ,  then s C ~ { F ~ ( [ ~ ] ) ' x ~ F ,  F n B # ( ~ J } ,  implying 

~ [ n - - l ~  {n--b 1 [se'[ --~ t ,  _ lJ - ~ a -  1 ), a contradict ion.  We obta in  that  x e N -~, leading to 
case (i). F r o m  now on, we suppose that  n ~ = ~25. By a similar a rgumen t  
this implies that  0 N = ~ holds, too. 

Consider  the case when  d itself is an intersecting family. Then  (1) implies 
tha t  I scl ~< ( ; -  I) - ( ~ ~ -T  1) + 1, which is not  more  than  (~_ I) - (" ~bT ~) 
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for b>a>~2, a contradiction. We obtain that a=b and [s¢l= 
n 1 ( ~ _ 1 ) - ( ~ 1 ) + 1 .  If there exists a set BeN\sO' ,  then ~ ¢ u { B }  is a 

non-trivial intersecting family of size larger than the bound given by the 
Hilton-Milner theorem (1), a contradiction. So M c sO, imlying s¢ = N; we 
obtain case (ii/2). 

From now on, we suppose that there are two members A~, A 2 e s ¢  
disjoint to each other, A~ c a A 2 = ~ .  Without loss of generality we may 
suppose that A~ = [a ] ,  A2 = [a + 1, 2a]. We are going to obtain the sharp 
upper bounds of (ii) for the sizes of I~1 and I~1. 

Following Erd6s, Ko, and Rado [ 3 ] we define a compression operation 
Pu for all 1 ~< i < j ~  n. However, here we will apply it to two families 
simultaneously, as it was first done for a similar problem in [8]  (also see 
[5]) .  Then the rest of the proof  is an extension of the ideas of the short 
proof  for the Hil ton-Milner theorem given in [6] .  For  a family f ¢ c  2 ~3 let 
Pu : ~ ~ 2E'] as 

Pu(G)=(( \¢~ ~ 4,G_tj, u {i}, if i~G, jeG,(G\{j})u{i}(~f#, 
otherwise. 

Let us set Pu( f#)=  {Po.(G): Gef~}. Obviously, IPu.(ff)[ = [ffl- 
We claim that if ~ and N are cross-intersecting, then Pu(~) and 

Pu(f#) are cross-intersecting, too. Suppose, on the contrary, that 
Pu(F)nPu(G)=S2~ for some F c ~ ,  Gef#. As F n G ¢ ~  the only 
possibility is that one of these sets, say F, is unchanged, Pu(F) = F, but the 
other one is new, Pu(G)=(G\{j})u{i}.  As F and G are unchanged 
outside {i,j}, we get that F ~ G = { j } ,  iCPo(F)=F. Then the only 
reason that F is unchanged is that F ' =  ( F \ { j } ) u  {i} e~- .  This leads to 
F '  n G = ~ ,  a contradiction. 

Apply repeatedly Pu for s# and N simultaneously for all pairs (i, j) with 
l<~i~a+b<j<~n until we get two families s~e* and N* having the 
property Po.(a~¢*) = s~¢* and P u ( ~ * )  = N* for every such pair (i, j). This 
can be reformulated as 

I fA e ~4", iq~A, jeA,  i<~a +b < j then (A \{ j} )  u {i} e d *  as well. 

I fBff  ~ * ,  i(~B, jeB,  i<~a+b <j then ( B \ { j } ) u  {i} e ~ *  as well. 
(2) 

We claim that ~ *  and ~ *  are not simply cross-intersecting, but that 
they are cross-intersecting even on the first a + b  elements; i.e., for all 
A ~ d *  and B e ~ *  we have 

A n B ~ [ a + b ] ¢ ~ .  (3) 

Proof of (3). Suppose, on the contrary, that A e d * ,  B e N *  with 
A c~ B c~ [a  + b] = ~ ,  and suppose (A, B) is such that [A c~ B] is minimal. 
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Thus there exist a j ~ A n B  (hence, j>a+b)  and an i~[a+b] such 
that  i(~A w B. Then ( 2 ) i m p l i e s  that  A k{j} u {i} = A ' ~ ' * .  However,  
[A' n B[ < [A c~ B[, a contradiction.  | 

As A s = [ a ]  and A 2 ~ [ a  + b]  are unchanged  during the above compres- 
sions, we have that  N sJ*  = ~ .  This implies that  n -~* = ~ ,  too. Indeed, 
suppose, on  the contrary,  that  x ~ B for all B e ~* .  There exists an A ~ sJ*  
avoiding x, so ~ * ~ { F ~ ( [ ~ ] ) ,  x~F, Fc~A¢;25}, implying I~*I~< 

n-- l"  I __[n a--1 ( b - l J  t b 1 )- This contradicts the lower bound  condit ion on I~l. So 
from now on we m a y  suppose that  n s~* = n N* = ~ .  

Define the families of  traces s J , =  {A c~ [ a + b ]  :A e d * ,  [A c~ [ a + b ] [  =u} ,  
l 1 .~={Bc~[a+b] 'B~N*,  1Bc~[a+b][=v}. I f  ] ~ u l ~ - ~ ( u _ l ) - - ( l u b l  1) 

holds for all u, where l = a + b, then we get 

(n- - l~  
I~1 = Id*l < ~ Id.I \ a - u /  

u = l  
(4) 

l - 1  l - b -  
~=~ / ~ \ a - u ~  

n--1 n - b -  1), 
(5) 

a contradiction.  So for some l ~ u ~ a  we have I~¢'~l > (  l-1 ) u  1 - -  (l--b--lu 1 )" 
In  the same way, we can prove that  there exists a 1 ~< v ~< b such that  
I~l  > (~211)- (zU_11). We may also suppose that  bo th  u and v are chosen 
to be minimal; i.e., 

' ~ l ~ < ( l - 1 ) - ( / ~ . _ b l l ) , .  1 l--1 l - - a -  
(6) 

hold for all l<~i<u, l<<.j<v. By (3) ~ ' *  use ' ,  and N * u ~  are cross- 
intersecting families. 

I f  s~ va ~ ,  {x} E d~, then x ~ B for all B ~ .~*, contradict ing n N* = ~ .  
So from now on we m a y  suppose that  ~ = ~ and, similarly, N~ = ~;f. I f  
x e N sJu, then in the same way as above, we get x e N N*, a contradiction. 
So f rom now on, we m a y  suppose that  N d *  = n du = ~ and, similarly, 
N N* = N ~ = ~ .  Moreover ,  u, v ~> 2. 

Apply the induct ion hypothesis for the cross-intersecting families ~ ' ,  and 
~ with values l, u, v in place of  n, a, b. Only  case (ii) can occur, so we get 
[~u l  = l 1 [ l - - v - - l~  / u b l  1 ) ( u - - l ) - - '  u--1 / ' J r l .  But I~ul~>(' 1 _ ~) -- ( + 1, which implies 
v=b (because u - l ~ > l ) .  Similarly, we get u=a. N o w  use (6) and the 
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.~( [ l--l ~__[l--ab_ll ) upper bound I~'~1-.~,~_1, t +1  in (4). Instead of (5) we get 
~ [ n - - l ]  (n--b 1) n--1 I ~ l - * , .  1 , -  a - -~  +1,  as desired. Analogously, we get I~1~<(~_~)-  

( , ; ~ ; 1 )  + 1, finishing the case (ii). | 

3. THE CASE OF EQUALITY 

For  brevity, we characterize the extremal families only if b ~> 4 and a ~> 3, 
the cases a = b -- 3 and a = 2 are left to the reader. From Section 2 the only 
unsettled case is the relation of d ,  N and d * ,  N* at the very end of the 
proof of case (ii). Equalities must hold in (4) and in (6) for all i and j 
for which ( . -z )  and n l ~-i  (b- j )  are positive, in particular, for i = a - 1  and 

l--1 >_tl-1~ / (b 1 ) - i ) +  1 and [~b__l[>(b__2)-- j = b - 1 .  We get [ d a - l [ ~ ' t a - - 2 , - - (  a--2 
/ - - ( a - - I ) - -  1~ b-2 j + 1. Apply the induction hypothesis for da 1 and ~b 1. We 

get that there exists an element x belonging to all members of sJ a 1 and 
Nb 1. Suppose that x6A2;  then the cross-intersecting property (and the 
size of Nb-1) imply that ~b 1 consists of all ( b - 1 )  element subsets of 
[a  + b] containing x and meeting A2. It is easy to see that A 2 is the only 
member of d *  avoiding x. Then, necessarily, N *  and ~ *  have the 
structure described in (ii/3). 

We claim that ~ and N must have had the same property before the 
compressions. Consider the way we got d *  from d by compressions, 
s~ = d ° ~ ~ 1  ~ ... ~ d ~  = d * .  During the compressions for each family 
0 st~ -- JZ~ holds, because A 1 and A2 remained unchanged. This implies, in 
the familiar way, that at each step (~ N~ = Z .  

It is easy to prove that if there is a vertex v contained in all but one of 
the sets of s t  ~, then the pair (sJ ~, N~) has the structure described in (ii/3). 
We claim that max,~<, deg(v, s~ ~) = [~4[-  1 is true for all 0 ~< ~ ~<s. 

Suppose that m a x ~ , d e g ( v , d ~ + l ) = [ s J [ - 1 .  Then the pair s~ ~+1, 
~ + i  has the structure of (ii/3) with special element c and special 
sets A' and B'. If for the compression Po for which P u ( ~ ) = s ¢  ~+1, 
we have c6{i,j}, then the degree of c is unchanged, d e g ( c , ~ ) =  
deg(c, ~ + ~ ) =  [s¢ '[-  1. Suppose that i =  c (the case j=c  is impossible). 
We claim that either deg(c, d ~) = [d[  - 1 or deg(j, s t  ~) = ]~] - 1. For  
brevity we discuss only the case c, j ~ A' u B'. 

Let W = { X c [ n ] ' [ X [ = a - 1 ,  X c ~ B ' ¢ ~ ,  c, jCX} and similarly 
Y/= { Y c  [n ] :  [Y] = b  - 1, Y~A'  ~ ~,  c, j¢ Y}. Define four families, y-c = 
{ X e W ' X ~ { c } + d ~ } ,  XJ={X+W'Xw{j}e~ f f  ~} and ~ = { Y e Y :  
Y u  {c} e ~ } ,  Y#= { Ye Y: Y u  {j} ~ } .  The families W~ and WJ form a 
partition of X. A similar statement holds for the Y/'s. 

We claim that if X 1, X~ e W and they differ only in one element (and 
X1 ~ )(2 # A'), then they both belong to the same part .of W, implying that 

is equal to either W~ or ~r~; the other part is empty. Indeed, find a Y~ 
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with Yn(XI u X 2 ) =  ~ .  Then Y belongs to some of the qg-"s and then 
both of the X/s must belong to the same f L  

Note that in the above argument about the extremal families we 
corrected a small error in [6] (the families d2 and -~2 could be empty for 
small n,a+b<n<2a+b-2).  

The bounds in the theorem are best possible in the following sense. Let 
~o = { A e ( ~ a ) l  eA, [2, b + l ]  n A  # ~ } ,  and let No= { B e ( ~ ] ) :  l eB} u 
{[2, b + l ] } .  Then do and do are cross-intersecting, n No=~5, Idol= 
(~-l~)--("~b_T~), and [.~01=(~_11)+1, which is much larger than 
(,,-1~ ( n - ,  h Another analogous example is d l = { A e ( ~ l ) :  1 eA} u b - - l / - - \  b - - 1  /" 

{[2, a +  1]} and ~1 = { B ~ ( ~ l )  : 1 ~B, Bc~ [2, a +  1] # ~ } .  
The above proof of the theorem can be easily modified in such a way 

that it includes the proof of the Hilton-Milner theorem, too. (Induction on 
n + a + b, and a more careful choice of the operations PC). Another short 
proof for the Hilton-Milner theorem, based on the Kruskal-Katona 
theorem [ 12, 11 ], was given by Alon [ 1 ]. Other powerful applications of 
compressions can be found in the survey of Frankl [4], and in the book 
of Bollobfis [2]. 

4. PROBLEMS 

In this section we always suppose that sJc(E]] ) ,  N c([~])  are cross- 
intersecting families with b ~> a, n >~ a + b. The maximum of 1~41 I~1 was 
studied earlier, Pyber [14] proved that for n ~>2b +2a  

- 1  
(7) 

This result was extended by Matsumoto and Tokushige [13] for all 
n ~> max{2a, 2b}. 

Conjecture 1. The inequality (7) holds for all n > a + b. 

In the case n = a + b one can construct cross-intersecting families sd2 and 
~2 of sizes 1~21 i c,+~ - r l c o + h n  =[-5( a )J and 1 ~ 2 l - - / ~ \  a ] / -  Then I~421 1N21 exceeds 
the right-hand side of (7) for b > a. Considering the example s~,  ~1 given 
at the end of the previous section we propose the following stronger form 
of Conjecture 1. 

Conjecture 2. If [~dl [ ~ [ > l ~ [  [~1[ and n > a + b ,  then N ~ / =  
N ~ # ~ .  

If we have individual lower bounds, like in our theorem, then we might 
get more. Define the cross-intersecting families sJ3={A~([~])  - l e A ,  
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[2, a + l ] ~ A # ~ } w { [ 2 ,  a + l ] }  and N3={BE(E~1) : l eB ,  [2, a + l ] c ~  
B#SZS}u{Be(E~,I) "16B,  [2, a + l ] ~ B } .  

(n--l) Conjecture 3. If [ a d l ~ > l a d 3 [ = t a _ l - ( " ~ g 7 1 ) + 1  and 1~1>~1~31 
(~_11)--("b~_[1)+("b_lS~) and n>a+b, then either 0 a d ¢ ~ ,  or 
IsCl = 1s¢31, [Nl = [@3[. Moreover, for a + b > 6 ,  [d[---s¢3, N ~ N 3  are the 
only extrema. 

I can settle the last two conjectures for n > no(a, b). The proof is a simple 
application of the delta-system method. However, it would be interesting to 
lower no(a, b) to a + b (if it is true). The case a = b seems to be especially 
interesting. 

The maximum of Is# I + IN[ was determined by Hilton and Milner [ 10] 
(see also Simpson [15]). Their result was extended by Frankl and 
Tokushige [7] as follows. For n>>.a+b, b>~a, one has 1~¢1+1~1~< 
( ~ ) -  ("b a) + 1. They also proved a number of interesting inequalities; for 
example, if we also suppose that ]sJ[ " ( a  11), then in the case b>a, one 

n--l~_~_[n-- can get the stronger bound Id[  + I~l -~ (o lJ ~b-11)' The method of proof 
in [ 7 ] is completely different from ours, and those results and our theorem 
do not seem to imply one another. Let s¢4 = (E~a+ 1~) and N4 = {B e (E~J) " 
I[l ,  a +  1] ~B[ >~2}. 

Conjecture 4. Suppose that ~¢ and N are cross-intersecting and 
(~ ~ ' =  0 N = ~ .  Then for n>~a+b, b>>.a one has I~¢1 + I~1 ~< Id41 + 1~41. 
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