Note

Cross-Intersecting Families of Finite Sets

Zoltán Füredi

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801-2917 and Mathematical Institute of the Hungarian Academy, 1364 Budapest, POB 127, Hungary

Communicated by the Managing Editors

Received March 3, 1994

It is proved that if \mathscr{A} is a family of a-element sets and \mathscr{B} is a family of b-element sets on the common undelying set [n], and $A \cap B \neq \emptyset$ for all $A \in \mathscr{A}$, $B \in \mathscr{B}$ (i.e., cross-intersecting), and $n \geqslant a+b$, $|\mathscr{A}| \geqslant \binom{n-1}{a-1} - \binom{n-b-1}{a-1} + 1$, and $|\mathscr{B}| > \binom{n-1}{b-1} - \binom{n-b-1}{b-1} + 1$, then there exists an element $x \in [n]$ such that it belongs to all members of \mathscr{A} and \mathscr{B} . This is an extension of a result of Hilton and Milner who generalized the Erdös-Ko-Rado theorem for non-trivial intersecting families. Several problems remain open. \mathbb{C} 1995 Academic Press, Inc.

1. Non-Trivial Cross-Intersecting Familes

For a positive integer n, let $[n] = \{1, 2, ..., n\}$, for integers $1 \le a \le b$ let $[a, b] = \{a, a+1, ..., b\}$. For a set S let $\binom{S}{k}$ denote the collection of k-element subsets of S and let 2^{S} denote the collection of all subsets of S. A family of sets \mathscr{F} is called *intersecting* if $A \cap B \ne \emptyset$ hold for all $A, B \in \mathscr{F}$. Let $\mathscr{F} \subset \binom{[n]}{k}$ be an intersecting family. Erdős, Ko, and Rado [3] proved that $|\mathscr{F}| \le \binom{[n-1]}{k-1}$ holds for $n \ge 2k$. Moreover, in case of equality $\bigcap \mathscr{F} \ne \emptyset$ (for n > 2k). An intersecting family \mathscr{G} is called *non-trivial* if $\bigcap \mathscr{G} = \emptyset$. Define the following non-trivial families. $\mathscr{G}^1 = \{G \in \binom{[n]}{k} : 1 \in G, G \cap [2, k+1] \ne \emptyset\} \cup \{[2, k+1]\}$ and $\mathscr{G}^2 = \{G \in \binom{[n]}{k} : [3] \cap G | \ge 2\}$. For k = 2, $\mathscr{G}^1 \equiv \mathscr{G}^2$; for k = 3, $|\mathscr{G}^1| = |\mathscr{G}^2|$; while for $k \ge 4$, n > 2k, $|\mathscr{G}^1| > |\mathscr{G}^2|$. Hilton and Milner [10] proved the following generalization of the Erdős–Ko–Rado theorem. If n > 2k and $\mathscr{G} \subseteq \binom{[n]}{k}$ is a non-trivial intersecting family then

$$|\mathcal{G}| \leq |\mathcal{G}^1| = {n-1 \choose k-1} - {n-k-1 \choose k-1} + 1, \tag{1}$$

Moreover, equality is possible only for $\mathcal{G} = \mathcal{G}^1$ or \mathcal{G}^2 . A short proof was given in [6].

Two families \mathscr{A} an \mathscr{B} are called *cross-intersecting* if $A \cap B \neq \emptyset$ hold for all $A \in \mathscr{A}$, $B \in \mathscr{B}$. Here we extend (1) for two families.

THEOREM. If $\mathcal{A} \subset \binom{[n]}{a}$, $\mathcal{B} \subset \binom{[n]}{b}$, $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}$, $B \in \mathcal{B}$ (i.e., cross-intersecting), and $n \geqslant a+b$, $|\mathcal{A}| > \binom{n-1}{a-1} - \binom{n-b-1}{a-1}$, and $|\mathcal{B}| > \binom{n-1}{b-1} - \binom{n-q-1}{b-1}$, then one of the following two cases holds:

(i) there exists an element $x \in [n]$ such that x belongs to all members of $\mathcal A$ and $\mathcal B$; or

(ii)
$$|\mathcal{A}| = \binom{n-1}{a-1} - \binom{n-b-1}{a-1} + 1$$
 and $|\mathcal{B}| = \binom{n-1}{b-1} - \binom{n-a-1}{b-1} + 1$.

We can describe the extremal families in case (ii). Namely, either

- (ii/1) n = a + b, $|\mathcal{A}| = \binom{a+b-1}{a-1}$, $|\mathcal{B}| = \binom{a+b-1}{b-1}$, and for every partition of $X \cup Y = [n]$ with |X| = a, |Y| = b, either $X \in \mathcal{A}$ or $Y \in \mathcal{B}$; or
 - (ii/2) a = b = k, $\mathcal{A} = \mathcal{B} \cong \mathcal{G}^i$ for some $i \in \{1, 2\}$ (see (1)); or
- (ii/3) $a, b \ge 2$ and for some a-set A_0 and b-set B_0 with $A_0 \cap B_0 \ne \emptyset$, and for some element $x \notin A_0 \cup B_0$, we have $\mathscr{A} = \{A : x \in A \in \binom{[n]}{a}\}$, $A \cap B_0 \ne \emptyset\} \cup \{A_0\}$ and $\mathscr{B} = \{B : x \in B \in \binom{[n]}{b}\}$, $B \cap A_0 \ne \emptyset\} \cup \{B_0\}$.

An easy corollary of the theorem was used to answer a problem of Trotter about the order dimension of two levels of the Boolean lattice; see [9].

2. Proof

We prove the theorem by induction on a + b. The cases a = 1 or b = 1 are trivial.

The case n=a+b is easy. Indeed, consider all the $\binom{a+b}{a}$ (ordered) partitions of [n] into $X \cup Y = [n]$, with |X| = a, |Y| = b. For each such partition either $X \notin \mathscr{A}$ or $Y \notin \mathscr{B}$, implying $|\mathscr{A}| + |\mathscr{B}| \leq \binom{a+b}{a}$. (The case a=b requires a little more care). The lower bounds for $|\mathscr{A}|$ and $|\mathscr{B}|$ give $|\mathscr{A}| \geq \binom{n-1}{a-1} - \binom{n-b-1}{a-1} + 1 = \binom{a+b-1}{a-1}$, and $|\mathscr{B}| \geq \binom{a+b-1}{a}$. So both inequalities hold with equality and we get case (ii/1). From now on, we suppose that n > a + b, $b \ge a \ge 2$.

Consider the case when for some $x \in [n]$ we have $x \in \bigcap \mathscr{A}$. If there exists a $B \in \mathscr{B}$ with $x \notin B$, then $\mathscr{A} \subset \{F \in \binom{[n]}{a}: x \in F, F \cap B \neq \varnothing\}$, implying $|\mathscr{A}| \leq \binom{n-1}{a-1} - \binom{n-b-1}{a-1}$, a contradiction. We obtain that $x \in \bigcap \mathscr{B}$, leading to case (i). From now on, we suppose that $\bigcap \mathscr{A} = \varnothing$. By a similar argument this implies that $\bigcap \mathscr{B} = \varnothing$ holds, too.

Consider the case when \mathscr{A} itself is an intersecting family. Then (1) implies that $|\mathscr{A}| \leq \binom{n-1}{a-1} - \binom{n-a-1}{a-1} + 1$, which is not more than $\binom{n-1}{a-1} - \binom{n-b-1}{a-1}$

for $b > a \ge 2$, a contradiction. We obtain that a = b and $|\mathcal{A}| = \binom{n-1}{a-1} - \binom{n-a-1}{a-1} + 1$. If there exists a set $B \in \mathcal{B} \setminus \mathcal{A}$, then $\mathcal{A} \cup \{B\}$ is a non-trivial intersecting family of size larger than the bound given by the Hilton-Milner theorem (1), a contradiction. So $\mathcal{B} \subset \mathcal{A}$, imlying $\mathcal{A} = \mathcal{B}$; we obtain case (ii/2).

From now on, we suppose that there are two members $A_1, A_2 \in \mathcal{A}$ disjoint to each other, $A_1 \cap A_2 = \emptyset$. Without loss of generality we may suppose that $A_1 = [a]$, $A_2 = [a+1, 2a]$. We are going to obtain the sharp upper bounds of (ii) for the sizes of $|\mathcal{A}|$ and $|\mathcal{B}|$.

Following Erdős, Ko, and Rado [3] we define a compression operation P_{ij} for all $1 \le i < j \le n$. However, here we will apply it to two families simultaneously, as it was first done for a similar problem in [8] (also see [5]). Then the rest of the proof is an extension of the ideas of the short proof for the Hilton–Milner theorem given in [6]. For a family $\mathscr{G} \subset 2^{[n]}$ let $P_{ij}: \mathscr{G} \to 2^{[n]}$ as

$$P_{ij}(G) = \begin{cases} (G \setminus \{j\}) \cup \{i\}, & \text{if} \quad i \notin G, j \in G, (G \setminus \{j\}) \cup \{i\} \notin \mathcal{G}, \\ G, & \text{otherwise.} \end{cases}$$

Let us set $P_{ij}(\mathscr{G}) = \{P_{ij}(G) : G \in \mathscr{G}\}$. Obviously, $|P_{ij}(\mathscr{G})| = |\mathscr{G}|$.

We claim that if \mathscr{F} and \mathscr{G} are cross-intersecting, then $P_{ij}(\mathscr{F})$ and $P_{ij}(\mathscr{G})$ are cross-intersecting, too. Suppose, on the contrary, that $P_{ij}(F) \cap P_{ij}(G) = \varnothing$ for some $F \in \mathscr{F}$, $G \in \mathscr{G}$. As $F \cap G \neq \varnothing$ the only possibility is that one of these sets, say F, is unchanged, $P_{ij}(F) = F$, but the other one is new, $P_{ij}(G) = (G \setminus \{j\}) \cup \{i\}$. As F and G are unchanged outside $\{i, j\}$, we get that $F \cap G = \{j\}$, $i \notin P_{ij}(F) = F$. Then the only reason that F is unchanged is that $F' = (F \setminus \{j\}) \cup \{i\} \in \mathscr{F}$. This leads to $F' \cap G = \varnothing$, a contradiction.

Apply repeatedly P_{ij} for $\mathscr A$ and $\mathscr B$ simultaneously for all pairs (i,j) with $1 \le i \le a+b < j \le n$ until we get two families $\mathscr A^*$ and $\mathscr B^*$ having the property $P_{ij}(\mathscr A^*) = \mathscr A^*$ and $P_{ij}(\mathscr B^*) = \mathscr B^*$ for every such pair (i,j). This can be reformulated as

If
$$A \in \mathcal{A}^*$$
, $i \notin A$, $j \in A$, $i \leqslant a + b < j$ then $(A \setminus \{j\}) \cup \{i\} \in \mathcal{A}^*$ as well.
If $B \in \mathcal{B}^*$, $i \notin B$, $j \in B$, $i \leqslant a + b < j$ then $(B \setminus \{j\}) \cup \{i\} \in \mathcal{B}^*$ as well. (2)

We claim that \mathscr{A}^* and \mathscr{B}^* are not simply cross-intersecting, but that they are cross-intersecting even on the first a+b elements; i.e., for all $A \in \mathscr{A}^*$ and $B \in \mathscr{B}^*$ we have

$$A \cap B \cap [a+b] \neq \emptyset. \tag{3}$$

Proof of (3). Suppose, on the contrary, that $A \in \mathcal{A}^*$, $B \in \mathcal{B}^*$ with $A \cap B \cap [a+b] = \emptyset$, and suppose (A, B) is such that $|A \cap B|$ is minimal.

Thus there exist a $j \in A \cap B$ (hence, j > a + b) and an $i \in [a + b]$ such that $i \notin A \cup B$. Then (2) implies that $A \setminus \{j\} \cup \{i\} = A' \in \mathscr{A}^*$. However, $|A' \cap B| < |A \cap B|$, a contradiction.

As $A_1 = [a]$ and $A_2 \subset [a+b]$ are unchanged during the above compressions, we have that $\bigcap \mathscr{A}^* = \emptyset$. This implies that $\bigcap \mathscr{B}^* = \emptyset$, too. Indeed, suppose, on the contrary, that $x \in B$ for all $B \in \mathscr{B}^*$. There exists an $A \in \mathscr{A}^*$ avoiding x, so $\mathscr{B}^* \subset \{F \in \binom{[n]}{b}, x \in F, F \cap A \neq \emptyset\}$, implying $|\mathscr{B}^*| \leq \binom{n-1}{b-1} - \binom{n-a-1}{b-1}$. This contradicts the lower bound condition on $|\mathscr{B}|$. So from now on we may suppose that $\bigcap \mathscr{A}^* = \bigcap \mathscr{B}^* = \emptyset$.

Define the families of traces $\mathscr{A}_u = \{A \cap [a+b] : A \in \mathscr{A}^*, |A \cap [a+b]| = u\}, \mathscr{B}_v = \{B \cap [a+b] : B \in \mathscr{B}^*, |B \cap [a+b]| = v\}.$ If $|\mathscr{A}_u| \leq \binom{l-1}{u-1} - \binom{l-b-1}{u-1}$ holds for all u, where l = a + b, then we get

$$|\mathcal{A}| = |\mathcal{A}^*| \leqslant \sum_{u=1}^{a} |\mathcal{A}_u| \binom{n-l}{a-u}$$

$$\leqslant \sum_{u=1}^{a} \binom{l-1}{u-1} - \binom{l-b-1}{u-1} \binom{n-l}{a-u}$$

$$= \binom{n-1}{a-1} - \binom{n-b-1}{a-1},$$
(5)

a contradiction. So for some $1 \le u \le a$ we have $|\mathcal{A}_u| > \binom{l-1}{u-1} - \binom{l-b-1}{u-1}$. In the same way, we can prove that there exists a $1 \le v \le b$ such that $|\mathcal{B}_v| > \binom{l-1}{v-1} - \binom{l-a-1}{v-1}$. We may also suppose that both u and v are chosen to be minimal; i.e.,

$$|\mathscr{A}_i| \leqslant \binom{l-1}{i-1} - \binom{l-b-1}{i-1}, \qquad |\mathscr{B}_j| \leqslant \binom{l-1}{j-1} - \binom{l-a-1}{j-1} \tag{6}$$

hold for all $1 \le i < u$, $1 \le j < v$. By (3) $\mathscr{A}^* \cup \mathscr{A}_u$ and $\mathscr{B}^* \cup \mathscr{B}_v$ are cross-intersecting families.

If $\mathscr{A}_1 \neq \emptyset$, $\{x\} \in \mathscr{A}_1$, then $x \in B$ for all $B \in \mathscr{B}^*$, contradicting $\bigcap \mathscr{B}^* = \emptyset$. So from now on we may suppose that $\mathscr{A}_1 = \emptyset$ and, similarly, $\mathscr{B}_1 = \emptyset$. If $x \in \bigcap \mathscr{A}_u$, then in the same way as above, we get $x \in \bigcap \mathscr{B}^*$, a contradiction. So from now on, we may suppose that $\bigcap \mathscr{A}^* = \bigcap \mathscr{A}_u = \emptyset$ and, similarly, $\bigcap \mathscr{B}^* = \bigcap \mathscr{B}_v = \emptyset$. Moreover, $u, v \geqslant 2$.

Apply the induction hypothesis for the cross-intersecting families \mathcal{A}_u and \mathcal{B}_v with values l, u, v in place of n, a, b. Only case (ii) can occur, so we get $|\mathcal{A}_u| = \binom{l-1}{u-1} - \binom{l-v-1}{u-1} + 1$. But $|\mathcal{A}_u| \ge \binom{l-1}{u-1} - \binom{l-b-1}{u-1} + 1$, which implies v = b (because $u - 1 \ge 1$). Similarly, we get u = a. Now use (6) and the

upper bound $|\mathcal{A}_a| \leq \binom{l-1}{a-1} - \binom{l-b-1}{a-1} + 1$ in (4). Instead of (5) we get $|\mathcal{A}| \leq \binom{n-1}{a-1} - \binom{n-b-1}{a-1} + 1$, as desired. Analogously, we get $|\mathcal{B}| \leq \binom{n-1}{b-1} - \binom{n-a-1}{b-1} + 1$, finishing the case (ii).

3. The Case of Equality

For brevity, we characterize the extremal families only if $b \ge 4$ and $a \ge 3$, the cases a = b = 3 and a = 2 are left to the reader. From Section 2 the only unsettled case is the relation of \mathscr{A} , \mathscr{B} and \mathscr{A}^* , \mathscr{B}^* at the very end of the proof of case (ii). Equalities must hold in (4) and in (6) for all i and j for which $\binom{n-l}{a-i}$ and $\binom{n-l}{b-j}$ are positive, in particular, for i = a - 1 and j = b - 1. We get $|\mathscr{A}_{a-1}| \ge \binom{l-1}{a-2} - \binom{l-(b-1)-1}{a-2} + 1$ and $|\mathscr{B}_{b-1}| > \binom{l-1}{b-2} - \binom{l-(a-1)-1}{b-2} + 1$. Apply the induction hypothesis for \mathscr{A}_{a-1} and \mathscr{B}_{b-1} . We get that there exists an element x belonging to all members of \mathscr{A}_{a-1} and \mathscr{B}_{b-1} . Suppose that $x \notin A_2$; then the cross-intersecting property (and the size of \mathscr{B}_{b-1}) imply that \mathscr{B}_{b-1} consists of all (b-1) element subsets of [a+b] containing x and meeting A_2 . It is easy to see that A_2 is the only member of \mathscr{A}^* avoiding x. Then, necessarily, \mathscr{A}^* and \mathscr{B}^* have the structure described in (ii/3).

We claim that \mathscr{A} and \mathscr{B} must have had the same property before the compressions. Consider the way we got \mathscr{A}^* from \mathscr{A} by compressions, $\mathscr{A} = \mathscr{A}^0 \to \mathscr{A}^1 \to \cdots \to \mathscr{A}^s = \mathscr{A}^*$. During the compressions for each family $\bigcap \mathscr{A}^\alpha = \emptyset$ holds, because A_1 and A_2 remained unchanged. This implies, in the familiar way, that at each step $\bigcap \mathscr{B}^\alpha = \emptyset$.

It is easy to prove that if there is a vertex v contained in all but one of the sets of \mathscr{A}^{α} , then the pair $(\mathscr{A}^{\alpha}, \mathscr{B}^{\alpha})$ has the structure described in (ii/3). We claim that $\max_{v \leq n} \deg(v, \mathscr{A}^{\alpha}) = |\mathscr{A}| - 1$ is true for all $0 \leq \alpha \leq s$.

Suppose that $\max_{v \leq n} \deg(v, \mathscr{A}^{\alpha+1}) = |\mathscr{A}| - 1$. Then the pair $\mathscr{A}^{\alpha+1}$, $\mathscr{B}^{\alpha+1}$ has the structure of (ii/3) with special element c and special sets A' and B'. If for the compression P_{ij} for which $P_{ij}(\mathscr{A}^{\alpha}) = \mathscr{A}^{\alpha+1}$, we have $c \notin \{i, j\}$, then the degree of c is unchanged, $\deg(c, \mathscr{A}^{\alpha}) = \deg(c, \mathscr{A}^{\alpha+1}) = |\mathscr{A}| - 1$. Suppose that i = c (the case j = c is impossible). We claim that either $\deg(c, \mathscr{A}^{\alpha}) = |\mathscr{A}| - 1$ or $\deg(j, \mathscr{A}^{\alpha}) = |\mathscr{A}| - 1$. For brevity we discuss only the case $c, j \notin A' \cup B'$.

Let $\mathscr{X} = \{X \subset [n] : |X| = a - 1, X \cap B' \neq \emptyset, c, j \notin X\}$ and similarly $\mathscr{Y} = \{Y \subset [n] : |Y| = b - 1, Y \cap A' \neq \emptyset, c, j \notin Y\}$. Define four families, $\mathscr{X}^c = \{X \in \mathscr{X} : X \cup \{c\} \in \mathscr{A}^{\alpha}\}, \mathscr{X}^j = \{X \in \mathscr{X} : X \cup \{j\} \in \mathscr{A}^{\alpha}\}$ and $\mathscr{Y}^c = \{Y \in Y : Y \cup \{c\} \in \mathscr{B}^{\alpha}\}, \mathscr{Y}^j = \{Y \in Y : Y \cup \{j\} \in \mathscr{B}^{\alpha}\}$. The families \mathscr{X}^c and \mathscr{X}^j form a partition of \mathscr{X} . A similar statement holds for the \mathscr{Y} 's.

We claim that if $X_1, X_2 \in \mathcal{X}$ and they differ only in one element (and $X_1 \cup X_2 \neq A'$), then they both belong to the same part of \mathcal{X} , implying that \mathcal{X} is equal to either \mathcal{X}^c or \mathcal{X}^j ; the other part is empty. Indeed, find a $Y \in \mathcal{Y}$

with $Y \cap (X_1 \cup X_2) = \emptyset$. Then Y belongs to some of the \mathscr{Y}^z 's and then both of the X_i 's must belong to the same \mathscr{X}^z .

Note that in the above argument about the extremal families we corrected a small error in [6] (the families \mathcal{A}_2 and \mathcal{B}_2 could be empty for small n, a+b < n < 2a+b-2).

The bounds in the theorem are best possible in the following sense. Let $\mathscr{A}_0 = \{A \in \binom{[n]}{a}: 1 \in A, [2, b+1] \cap A \neq \emptyset\}$, and let $\mathscr{B}_0 = \{B \in \binom{[n]}{b}: 1 \in B\} \cup \{[2, b+1]\}$. Then \mathscr{A}_0 and \mathscr{B}_0 are cross-intersecting, $\bigcap \mathscr{B}_0 = \emptyset$, $|\mathscr{A}_0| = \binom{n-1}{a-1} - \binom{n-b-1}{a-1}$, and $|\mathscr{B}_0| = \binom{n-1}{b-1} + 1$, which is much larger than $\binom{n-1}{b-1} - \binom{n-a-1}{b-1}$. Another analogous example is $\mathscr{A}_1 = \{A \in \binom{[n]}{a}: 1 \in A\} \cup \{[2, a+1]\}$ and $\mathscr{B}_1 = \{B \in \binom{[n]}{b}: 1 \in B, B \cap [2, a+1] \neq \emptyset\}$.

The above proof of the theorem can be easily modified in such a way that it includes the proof of the Hilton-Milner theorem, too. (Induction on n+a+b, and a more careful choice of the operations P_{ij}). Another short proof for the Hilton-Milner theorem, based on the Kruskal-Katona theorem [12, 11], was given by Alon [1]. Other powerful applications of compressions can be found in the survey of Frankl [4], and in the book of Bollobás [2].

4. Problems

In this section we always suppose that $\mathscr{A} \subset \binom{[n]}{a}$, $\mathscr{B} \subset \binom{[n]}{b}$ are cross-intersecting families with $b \geqslant a$, $n \geqslant a+b$. The maximum of $|\mathscr{A}| |\mathscr{B}|$ was studied earlier, Pyber [14] proved that for $n \geqslant 2b+2a$

$$|\mathcal{A}| |\mathcal{B}| \leqslant \binom{n-1}{a-1} \binom{n-1}{b-1}. \tag{7}$$

This result was extended by Matsumoto and Tokushige [13] for all $n \ge \max\{2a, 2b\}$.

Conjecture 1. The inequality (7) holds for all n > a + b.

In the case n=a+b one can construct cross-intersecting families \mathscr{A}_2 and \mathscr{B}_2 of sizes $|\mathscr{A}_2| = \lfloor \frac{1}{2} \binom{a+b}{a} \rfloor$ and $|\mathscr{B}_2| = \lceil \frac{1}{2} \binom{a+b}{a} \rceil$. Then $|\mathscr{A}_2| |\mathscr{B}_2|$ exceeds the right-hand side of (7) for b>a. Considering the example \mathscr{A}_1 , \mathscr{B}_1 given at the end of the previous section we propose the following stronger form of Conjecture 1.

Conjecture 2. If $|\mathcal{A}| |\mathcal{B}| > |\mathcal{A}_1| |\mathcal{B}_1|$ and n > a + b, then $\bigcap \mathcal{A} = \bigcap \mathcal{B} \neq \emptyset$.

If we have individual lower bounds, like in our theorem, then we might get more. Define the cross-intersecting families $\mathcal{A}_3 = \{A \in \binom{[n]}{a} : 1 \in A,$

 $[2, a+1] \cap A \neq \emptyset$ $\} \cup \{[2, a+1]\}$ and $\mathcal{B}_3 = \{B \in \binom{[n]}{b} : 1 \in B, [2, a+1] \cap B \neq \emptyset\} \cup \{B \in \binom{[n]}{b} : 1 \notin B, [2, a+1] \subset B\}.$

Conjecture 3. If $|\mathcal{A}| \geqslant |\mathcal{A}_3| = \binom{n-1}{a-1} - \binom{n-a-1}{a-1} + 1$ and $|\mathcal{B}| \geqslant |\mathcal{B}_3| = \binom{n-1}{b-1} - \binom{n-a-1}{b-1} + \binom{n-a-1}{b-a} + \binom{n-1-a}{b-a}$ and n > a+b, then either $\bigcap \mathcal{A} \neq \emptyset$, or $|\mathcal{A}| = |\mathcal{A}_3|$, $|\mathcal{B}| = |\mathcal{B}_3|$. Moreover, for a+b>6, $|\mathcal{A}| \cong \mathcal{A}_3$, $\mathcal{B} \cong \mathcal{B}_3$ are the only extrema.

I can settle the last two conjectures for $n > n_0(a, b)$. The proof is a simple application of the delta-system method. However, it would be interesting to lower $n_0(a, b)$ to a + b (if it is true). The case a = b seems to be especially interesting.

The maximum of $|\mathcal{A}| + |\mathcal{B}|$ was determined by Hilton and Milner [10] (see also Simpson [15]). Their result was extended by Frankl and Tokushige [7] as follows. For $n \ge a+b$, $b \ge a$, one has $|\mathcal{A}| + |\mathcal{B}| \le \binom{n}{b} - \binom{n-a}{b} + 1$. They also proved a number of interesting inequalities; for example, if we also suppose that $|\mathcal{A}| \ge \binom{n-1}{a-1}$, then in the case b > a, one can get the stronger bound $|\mathcal{A}| + |\mathcal{B}| \le \binom{n-1}{a-1} + \binom{n-1}{b-1}$. The method of proof in [7] is completely different from ours, and those results and our theorem do not seem to imply one another. Let $\mathcal{A}_4 = \binom{\lceil a+1 \rceil}{a}$ and $\mathcal{B}_4 = \{B \in \binom{\lceil n \rceil}{b}\}$: $|\lceil 1, a+1 \rceil \cap B| \ge 2\}$.

Conjecture 4. Suppose that \mathscr{A} and \mathscr{B} are cross-intersecting and $\cap \mathscr{A} = \cap \mathscr{B} = \varnothing$. Then for $n \geqslant a + b$, $b \geqslant a$ one has $|\mathscr{A}| + |\mathscr{B}| \leqslant |\mathscr{A}_4| + |\mathscr{B}_4|$.

ACKNOWLEDGMENTS

The author is indebted to Janice Malouf for valuable remarks. The support of the Hungarian National Science Foundation (grant No. 1909 and T16389) and NSA grant No. MDA904-95-H-1045 are gratefully acknowledged.

Note added in proof. Very recently P. Frankl and N. Tokushige established Conjecture 3 and found counterexamples for the others.

REFERENCES

- 1. N. Alon, private communication, unpublished, 1984.
- 2. B. Bollobás, "Combinatorics," Cambridge Univ. Press, London, 1986.
- 3. P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math. Oxford* (2) 12 (1961), 313-320.
- 4. P. Frankl, The shifting technique in extremal set theory, in "Combinatorial Surveys 1987" (C. Whitehead, Ed.), pp. 81–110, Cambridge Univ. Press, London, 1987.
- P. FRANKL AND Z. FÜREDI, Extremal problems concerning Kneser graphs, J. Combin. Theory Ser. B 40 (1986), 270–284.
- P. FRANKL AND Z. FÜREDI, Non-trivial intersecting families, J. Combin. Theory Ser. A 41 (1986), 150–153.

- P. FRANKL AND N. TOKUSHIGE, Some best possible inequalities concerning cross-intersecting families, J. Combin. Theory Ser. A 61 (1992), 87–97.
- 8. Z. FÜREDI, An extremal problem concerning Kneser's conjecture, *Stud. Sci. Math. Hungar.* **18** (1983), 335–341.
- 9. Z. FÜREDI, The order dimension of two levels of the Boolean lattice, *Order* 11 (1994), 1-14.
- A. J. W. HILTON AND E. C. MILNER, Some intersection theorems for systems of finite sets, Quart. J. Mtah. Oxford (2) 18 (1967), 369-384.
- G. O. H. Katona, A theorem on finite sets, in "Theory of Graphs, Proceedings, Colloq., Tihany, Hungary, 1966" (P. Erdős et al., Eds.), pp. 187–207, Akadémiai Kiadó, Budapest/Academic Press, New York, 1968.
- J. B. KRUSKAL, The number of simplices in a complex, in "Mathematical Optimization Techniques" (R. Bellmann, Ed.), pp. 251–278, Univ. of California Press, Berkeley, 1963.
- M. Matsumoto and N. Tokushige, The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), 90-97.
- L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85-90.
- 15. J. E. Simpson, A bipartite Erdős-Ko-Rado theorem, Discrete Math. 113 (1993), 277-280.