NEW ASYMPTOTICS FOR BIPARTITE TURAN NUMBERS

ZOLTAN FUREDI

ABSTRACT. Let ex(n, K2,t+1) denote the maximum number of edges of a graph with n vertices if
it has no copy of K2 ¢+1 as a subgraph. Using an algebraic construction we prove that for ¢ fixed
limy 0o ex(n, Kz,t+1)’n73/2 = \/5/2

1. THE TURAN PROBLEM

Given a graph F, what is ex(n, F), the maximum number of edges of a graph with n vertices
not containing F' as a subgraph? This is one of the basic problems of extremal graph theory,
the so called Turén problem. The most well-known case, ex(n, K3) = |n?/4], is due to Turdn
and Mantel (for a survey see Bollobas’ book [Bo]). The Erdés-Stone-Simonovits theorem ([ESI,
ES2]) says that the order of magnitude of ex(n,F) depends on the chromatic number of F,
namely lim,,_,; ex(n, F)/(5) =1 — (x(F) — 1)~1. This theorem gives a sharp estimate, except
for bipartite graphs.

The bipartite case seems to be more difficult. Only a very few graphs F' are known where
the right order of magnitude of the Turdn number ex(n, F') was determined (Brown [B] for K3 3,
Fiiredi [F] a few more). For every bipartite F' which is not a forest there is a positive constant
¢ (not depending on n) such that Q(n'*¢) < ex(n,F) < O(n?>~°) (Erdés [unpublished] and
Kévari, T. Sés, and Turdn [KST)). The only asymptotic, ex(n,Ca) = (1 + o(1))n%/2, is due to
Erdés, Rényi and T. Sés [ERS] and (simultaneously and independently) to Brown [B]. Our aim
here is to extend their result for all complete bipartite graphs K ;41 (¢ > 1).

1
Theorem. For any fized t > 1 ex(n, Koii1) = =/tn?2 4+ O(n*/3).
t+1) = 3

Let G be a graph on n vertices with e edges such that any two vertices have at most ¢ common
neighbors. Then

(1) t(;) > the number of paths of length 2 in G = Z (d(x)) > n(ze/T")_
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This inequality gives e < 1v/tn3/2 + (n/4), the upper bound from [KST]. So for the proof of
the Theorem we need an appropriate lower bound, a construction. Our example is inspired by a
construction of Hyltén-Cavallius [H] and Mérs [M] given for Zarankiewicz’s problem z(n, n,2,t+
1) (see later in Section 3), but it gives more although it is much simpler. In the case t =1 it is
also closely related to the examples from [ERS] and [B]. The topic is so short of constructions
that about 20 years ago, as a first step, P. Erdés [E67, E75] even proposed the problem whether
lim; (lim inf,, ex(n, Ka,411)n"%/2) goes to oo as t — oo.

2. A LARGE GRAPH WITH NO K341

Let ¢ be a prime power such that (¢ — 1)/t is an integer. We will construct a Kp t41-free
graph G on n = (¢? — 1)/t vertices such that every vertex has degree q or ¢ — 1. Then G has
more than (1/2)v/tn*? — (n/2) edges. The lower bound for the Turdn number for all n then
follows from the fact that such prime powers form a dense subsequence among the integers. This
means that for every sufficiently large n there exists a prime ¢ satisfying ¢ = 1 (mod t) and

Vnt —nt/? < g < \/nt (see [HI]).

Let F be the g-element finite field, and let A be an element of order ¢. This means, that
ht = 1 and the set H = {1,h,h?,... h*~!} form a t-element subgroup of F \ {0}. For ¢ = 1
(mod t) such an element h € F always exists.

We say that (a,b) € F x F, (a,b) # (0,0) is equivalent to (a’, '), in notation (a,b) ~ (a’,b'),
if there exists some h* € H such that ¢’ = h®a and ¥ = h®b. The elements of the vertex
set V of G are the t-element equivalence classes of F x F \ (0,0). The class represented by
(a,b) is denoted by (a,b). Two (distinct) classes (a,b) and (z,y) are joined by an edge in G if
ar + by € H. This relation is symmetric, and az + by € H, (a,b) ~ (a’,b'), and (z,y) ~ (z',y')
imply a’z’ 4+ b'y’ € H, so this definition is compatible to the equivalence classes.

For any given (a,b) € F x F\ (0,0) (say, b # 0) and for any given z and h®, the equation
az + by = h* has a unique solution for y. This implies that there are exactly tq solutions (z,y)
with az+by € H. The solutions come in equivalence classes, so there are exactly ¢ classes (z,y).
One of these classes might coincide with (a, b) so the degree of the vertex (a,b) in G is either ¢

or g — 1.
We claim that G is Ks;ii-free. First we show, that for (a,b),(d’,b’) € F x F\ (0,0),
(a,b) # (a’,V') the equation system
azx + by = h®

2
() alx_l_bly:hﬁ

has at most one solution (z,y) € F x F\ (0,0). Indeed, the solution is unique if the determinant
det <;’ 5,) is not 0. Otherwise, there exists a ¢ such that a = a’c and b = b'c. If there exists

a solution of (2) at all, then multiplying the second equation by ¢ and subtracting it from the
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first one we get on the right hand side h* — ch? = 0. Thus ¢ € H, contradicting the fact that
(a,b) and (a’,b") are not equivalent.

Finally, there are 2 possibilities for 0 < o, 8 < t in (2). The set of solutions again form #-
element equivalence classes, so there are at most ¢ equivalence classes (x,y) joint simultaneously
to (a,b) and (a’,b'). O

The sets N{(a,b) = {(z,y) : ax + by € H} form a g + l-uniform, ¢ + 1-regular hypergraph.
It is almost a ¢ + 1-uniform, symmetric {-design. This means that, they mutually intersect in
exactly ¢ elements except if (a,b) = (ca’, cb’) holds for some ¢ when they are disjoint. It seems
to me that this structure, unfortunately, cannot be extended to a proper t-design.

3. COROLLARIES FOR ZARANKIEWICZ’'S PROBLEM

Given m,n, s and t, what is the maximum number, z = z(m,n, s, t), such that there exists a
0—1 matrix with m rows and n columns containing z 1’s without a submatrix with s rows and ¢
columns consisting of entirely of 1’s. In 1951 Zarankiewicz [Z] posed the problem of determining
z(n,mn,3,3) for n < 6, and the general problem has also become known as the problem of
Zarankiewicz. For a bipartite graph F' define the bipartite Turdn number, ex(m,n, F'), as the
maximum number of edges in an F'-free bipartite graph with m and n vertices in its color classes.

We have
(3) 2ex(n, K, 1) < ex(n,n, K1) < z(n,n,s,t).

To see the first inequality (cf. [Bo] page 310) start with a K ;-free graph on n vertices (|]V| = n),
and take two copies of V, say V5 and Vs, and join vertices z1 € Vi, y» € Vb only if their
corresponding vertices in G form an edge (z,y) € E(G). We get a K ;-free bipartite graph
with 2|E(G)| edges. The second inequality is trivial, and due to [KST], who first observed the
connection of the matrix and graph theoretic problems. One might think that equality must
hold, however, in the adjacency matrix of a bipartite K, ;-free graph not only the s x ¢ full
1’s matrix is forbidden but a ¢ x s full 1’s matrix, too. The determination of z(m,n,s,t) is
equivalent to a so-called unidirectional Turdn problem, when we label the two color classes of F'
and only those copies of F' are forbidden in which the entire first color class is contained in the
m~element set and the second color class lies in the n-element set.

An argument similar to (1) gives z(n,n,2,t + 1) < ny/tn —t +1/4 4+ (n/2), and it is known
that this bound is asymptotically correct, i.e., lim,_, o z(n,n,2,t + 1)n=3/2 = \/t (Kovéri et al.
[KST] for ¢t = 1, Hyltén-Cavallius [H] for ¢ = 2 and Mérs [M] for all ¢). Our Theorem and the
lower bound in (3) gives that

Corollary. For any fitedt > 1 ex(n,n, Ko ¢y1) = Vin3/2 + O(n*/3).

Thus we have a new near optimal construction for z(n,n,2,t+1). The gap between the lower
and upper bounds in the case n = (¢% — 1)/t is only O(y/n).
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