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An algebraic construction implies limn � � ex(n, K2, t+1) n&3�2=- t�2. � 1996

Academic Press, Inc.

1. The Tura� n Problem

Given a graph F, what is ex(n, F ), the maximum number of edges of
a graph with n vertices not containing F as a subgraph? Until now, the
only asymptotic for a bipartite graph which is not a forest,
ex(n, C4)= 1

2 (1+o(1)) n3�2, is due to Erdo� s, Re� nyi and T. So� s [ERS] and
(simultaneously and independently) to Brown [B].

Theorem. For any fixed t�1 ex(n, K2, t+1)= 1
2 - t n3�2+O(n4�3).

Let G be a graph on n vertices with e edges such that any two vertices
have at most t common neighbors. The inequality �x # V ( d(x)

2 )�t( n
2)

(Ko� va� ri, T. So� s, Tura� n [KST]) implies the upper bound e<
1
2 - t n3�2+(n�4). To prove the Theorem we obtain a matching lower
bound from a construction closely related to the examples from [ERS]
and [B], and inspired by an example of Hylte� n�Cavallius [H] and Mo� rs
[M] given for Zarankiewicz's problem z(n, n, 2, t+1) (see later in Sec-
tion 3). The topic is so short of constructions that about 20 years ago, as
a first step, Erdo� s [E67, E75] even proposed the problem whether limt (lim
infn ex(n, K2, t+1) n&3�2) goes to � as t � �. For a survey see Bolloba� s'
book [Bo].
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2. A Large Graph with no K2, t+1

Let q be a prime power such that (q&1)�t is an integer. We will con-
struct a If K2, t+1-free graph G on n=(q2&1)�t vertices such that every
vertex has degree q or q&1. Then G has more than (1�2) - t n3�2&(n�2)
edges. The lower bound for the Tura� n number for all n then follows from
the fact for every sufficiently large n there exists a prime q satisfying q#1
(mod t) and - nt&n1�3<q<- nt (see [HI]).

Let F be the q-element finite field, and let h be an element of order t, i.e.,
ht=1 and the set H=[1, h, h2, ..., ht&1] form a t-element subgroup of
F"[0]. We say that (a, b) # F_F, (a, b){(0, 0) is equivalent to (a$, b$), in
notation (a, b)t(a$, b$), if there exists some h: # H such that a$=h:a and
b$=h:b. The elements of the vertex set V of G are the t-element equivalence
classes of F_F"(0, 0). The class represented by (a, b) is denoted by (a, b).
Two (distinct) classes (a, b) and (x, y) are joined by an edge in G if
ax+by # H. This relation is symmetric, and compatible to the equivalence
classes, i.e., ax+by # H, (a, b)t(a$, b$), and (x, y)t(x$, y$) imply
a$x$+b$y$ # H.

For any given (a, b) # F_F"(0, 0) (say, b{0) and for any given x and
h:, the equation ax+by=h: has a unique solution for y. This implies that
there are exactly tq solutions (x, y) with ax+by # H. The solutions come
in equivalence classes, one of these might coincide with (a, b) so the
degree of the vertex (a, b) in G is either q or q&1.

We claim that G is K2, t+1 -free. First we show, that for
(a, b), (a$, b$) # F_F"(0, 0), (a, b)t% (a$, b$) the equation system

ax+by=h:

(1)
a$x+b$y=h;

has at most one solution (x, y) # F_F"(0, 0). Indeed, the solution is
unique if the determinant det ( a

a$
b
b$) is not 0. Otherwise, there exists a c

such that a=a$c and b=b$c. If there exists a solution of (1) at all, then
multiplying the second equation by c and subtracting it from the first one
we get on the right hand side h:&ch;=0. Thus c # H, contradicting the
fact that (a, b) and (a$, b$) are not equivalent.

Finally, there are t2 possibilities for 0�:, ;<t in (1). The set of solu-
tions again form t-element equivalence classes, so there are at most t classes
(x, y) joint simultaneously to (a, b) and (a$, b$).

The sets N(a, b)=[(x, y): ax+by # H] almost form a q+1-uniform,
symmetric t-design. This means that, they mutually intersect in exactly t
elements except if (a, b)=(ca$, cb$) holds for some c when they are disjoint.
It seems to me that this structure, unfortunately, cannot be extended to a
proper t-design.
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3. Corollaries for Zarankiewicz's Problem

Given m, n, s and t, what is the maximum number, z=z(m, n, s, t), such
that there exists a 0&1 matrix with m rows and n columns containing z 1's
without a submatrix with s rows and t columns consisting of entirely of 1's.
This question has become known as the problem of Zarankiewicz [Z]. For
a bipartite graph F define the bipartite Tura� n number, ex(m, n, F ), as the
maximum number of edges in an F-free bipartite graph with m and n ver-
tices in its color classes. Considering the adjacency matrix of a Ks, t -free
graph on n vertices as a matrix of a bipartite graph on n+n vertices (cf.
[Bo] p. 310) we get

2 ex(n, Ks, t)�ex(n, n, Ks, t)�z(n, n, s, t). (2)

The determination of z(m, n, s, t) is equivalent to a unidirectional Tura� n
problem, when we label the two color classes of F and only those copies
of F are forbidden in which the entire first color class is contained in the
m-element set and the second color class lies in the n-element set.

It is easy to see that z(n, n, 2, t+1)�n - tn&t+1�4+(n�2), and it is known
that this bound is asymptotically correct, i.e., limn � � z(n, n, 2, t+1)n�3�2=- t
([KST] for t=1, [H] for t=2 and [M] for all t). Our Theorem and the
lower bound in (2) gives

Corollary. For any fixed t�1 ex(n, n, K2, t+1)=- t n3�2+O(n4�3).

Thus we have a new near optimal construction for z(n, n, 2, t+1). The
gap between the lower and upper bounds in the case n=(q2&1)�t is only
O(- n).
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