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1. Preliminaries 

For a positive integer n, let [n] = { 1 , 2 , . . . , n } ,  let 2 s denote the collection of 
subsets of 5', and let ~,~ = (2lrq, _C) denote the Boolean lattice, the subsets of [n] 
ordered by inclusion. For a set 5', let (k s) denote the collection of k-element subsets 

of S. For 0 ~< s < t ~< n let ~ , ( s , t )  denote the restriction of ~n to (['~1) U (I,~1). 
Finally, let dim(n; s, t) denote the (order) dimension of ~,~(s, t). The dimension of 
a partially ordered set P is the minimum d such that P can be embedded into ~d 
in an order preserving way. In other words, it is the minimum nunlber of linear 
extensions 7rl, . . .  , 7rd such that for all z, Y E P there exists an ~ri with z <i Y (x 
precedes Y in 7ri) except, of course, if V <P z. In the latter case y precedes z in 
all linear extensions. Additional background material on dimension theory can be 
found in the monograph [20]. 

The function dim(n; s,t) was first studied by Dushnik [5] in 1950. It is easy to 
see that dim ~B,~ = dim(n; 1, n - 1) = n. This is the so-called standard example, 
the smallest poset of dimension n. The estimates in general are surprisingly poor, 
except, in the case s = 1. Dushnik determined the exact value for dim(n; 1, t) when 
2v,'-ff - 2 ~< t < n - 1. Namely, he proved that dim(n; 1, t) = n - j + 1, where j is 
the unique integer with 2 ~< j ~< v/'ff for which 

[n- ~ + J2J <~ t < ln-  2(j-1)+(J-1)2 J 
- ) : - f  . 
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It follows that for all t 2 <<. n, t2/4 < dim(n; 1,t). On the other hand, in [111 it 
was established that dim(n; 1, t) ~< [(t + 1) 2 log nq for all t < n. The proof is simply 
a matter of taking d linear orderings of [n], uniformly at random from the set of all 
possible linear orderings, and noting that the probability that these do not form a 
family ofpreorders tends to 0. 

For fixed t, Spencer [19] proved dim(n;1, 0 = ®(log log n) establishing the 
asymptotic behavior. The following asymptotic formula is proved in [10] 

dim(n; 1, 2) = log log n + (1/2 + o(1)) log log log n. 

Determining dim(n; 1,t) for t a small growing function of n remains an intriguing 
open problem. 

Until recently, very little was known for the case s > 1. Brightwell, Kier- 
stead, Kostochka, and Trotter [4] gave a beautiful recursive construction for esti- 
mating dim(n; s , t)  if t - s is relatively small. They showed that dim(n; s, s + k) ~< 
dim(n; 1, 3k) + 18k log n, for every positive integer s, with s + k ~< n. It follows 
that dim(n; s, s + k) = O(k 2 log n). In the most interesting case, for the middle two 
levels of the Boolean lattice, they gave a better constant factor 

log log n +  (1 /2+o(1) ) log  log log n < d i m ( 2 s + l ; s , s +  1) ~< (6/ log 3) log n. 

(Here n = 2s + 1 and all log's are of base 2.) These inequalities are far from tight. 
Hurlbert [13] showed that for fixed k there is all integer no(k) such that for all 

n > n0(k) 

dim(n; k, n - k)/> n - [(k + 1)2/2J + 2. 

He also showed that dim(n; k, n - k) >1 m/k]  for all n > 2k. Hurlbert, Kostochka, 
and Talysheva in [t4] showed that for n/> 5, dim(n; 2, n - 2 )  = n -  I and dim(n; 2, n -  
3) = n - 2. In fact, they proved that if 2V"ff < t < n - 2 and t is not an integer of the 
form j -  2 +  ( n -  1) / j  for some positive integer j ,  then dim(n; 2, t) = dim(n; 1, t ) -  1. 

2. Results 

PROPOSITION 2.1. For n ~ 3k + 2 one has dim(n; k, n - k) ~> n - k. 
Proof. We have dim(n; k, n - k) 1> dim(n - k + 1; 1, n - 2k + 1), because ~B,~_r(s - 

r , t  - r) can be considered as a subposet of ~,~(s,t) (here r ~ s ~< t ~< n). For 
n ~> 3k + 2 the value of the right hand side is n - k by (1). [] 

Our next aim is a very short proof for a simple lower bound for all n and k. The 
proof is based on Lowisz-Kneser graph theorem and is postponed to Section 3. As 
far as the author knows, this is the first applicatiou of the Lov,-lsz-I~leser theorem 
besides the chromatic theory of graphs. 



DIMENSION OF TWO LEVELS OF THE BOOLEAN LATTICE 17 

PROPOSITION 2.2. For all n > 2k one has dim(n; k, n - k)/> n - 2k + 2. 

Our main result is the determination of the exact value of dim(n; k, n - k) for n large. 
The basic tool of the proof is an application of a new cross-intersecting version of 
the Erd6s-Ko-Rado theorem (Lemma 4 below). 

THEOREM 2.3. For k >/3 and n > 250k 3 we have dim(n; k, n - k) = n - 2. 

3. Linear Extensions and Kneser Graphs 

Suppose that 1 ~< s < t < n are integers, and let 

A bijection lr: P ~ [m] is a linear extension of ~n(s , t )  if X C Y implies ~r(X) ~< 
7r(Y). We may call a sequence {~r- l (1) , . . . ,~r- l ( rn)} monotone, because (roughly 

speaking) the small sets come first, and the larger sets come later. We call a pair 
(S, T) a reversed pair in ~ (and denote the set of reversed pairs from 7r by 9~(~')) if 
S C [n], IS[ = s, T C [n], IT[ = t, and 7r(T) < 7r(S). In that case, S is not a subset 
of T. Let :~(s, t) be the set of all possible reversed pairs, i.e., 

We have 

The dimension of the poset is the minimum d such that one can find linear extensions 
~rl . . . .  ,7rd with 

[,] = (3)  
l<~i<~d 

Indeed, by definition, the poset (P,  <p)  = ~'1 N . . .  n ~a has the underlying set P 
equipped with the relation: 

X , Y  E P,  X <p  Y if and only if 7ri(X) < 7ri(Y) for all i. 

Obviously, X C Y implies X < p  Y. We have to show that X ¢ Y implies X g p  Y, 
i.e., there exists some i with 7ri(X) > 7ri(Y). By (3) this holds for all (X, Y) E 9~(s, t). 
If ( X , Y )  E ([~l) × ([~1), then consider a set Y'  E (I'll) such that Y C Y' but X ¢ Y', 
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and let lri be a permutation reversing the pair (X, Y'). Then ~ri(X) > ~ri(Y') > 7ri(Y), 
as desired. The remaining cases i.e., 

(X ,Y)  E ( [ 7 ] ) ×  ( [7  ] ) and (X,Y)  E ( [ 7 ] ) ×  ( [ : ] )  

can be handled in a similar way. [] 

For n ~> 2k the vertex set of the Kneser graph K(n, k) is ([~]) and two vertices 
A,B E ([~]) are joined by an edge if A M B = 0.  A family of sets 9" is called 
intersecting if A M B 5~ O hold for all A, B E Y. Consider the families 

5 r i = { A E  ( [nk] ) :minA=i}  for l<~i<<.n-2k+a 

and let 

5"0 = ( X ) ,  w h e r e X = { n - 2 k + 2 , . . . , n } .  

Each Yi is intersecting, so this partition of ([~]) shows that the chromatic number of 
the Kneser graph satisfies x(K(n, k)) ~< n - 2k + 2. Kneser conjectured and Lov,'isz 
[18] proved that here equality holds. B~ir~iny [1] gave a simple proof. 

Proof of Proposition 2.2. Let ~rl,. •., 7ra be linear extensions generating ~3,~(k, n - 
k). Define 5"i as the family of k-sets A E ([~1) such that (A, [nl \ A) form a reversed 
pair in ~r = 7ri. We claim that Yi is intersecting. Indeed, AMB = o and 7r([n] \ A ) <  
7r(A), ~r([n] \ B) < 7r(B) imply 7r(B) < ~'([n] \ A) < r(A), and 7r(A) < 7r([n I \ B) < 
~r(B), a contradiction. Thus the families 9"/ form a coloring of the Kmeser graph 
g(n, k) implying d >>. x(K(n, k)) = n - 2k + 2. [] 

4. Cross-Intersecting Families 

Let Y C ([~l) be an intersecting family. Erd6s, Ko, and Rado [6] proved that 
n--1 lYl ~< (~-1) holds for n/> 2k. Moreover, in case of equality ['19" ~- o (for n > 2k). 

An intersecting family 9 is called nontrivial if ['1 9 = O. Hilton and Milner [12] 
determined the maximum size of a nontrivial intersecting family ~ C ([~1) (for a 
short proof see [8]). Here we recall their result in a weaker form 

Two families A and ~ are called cross-intersecting if A M B ¢ o hold for all 
A E A, B E ~.  A pair of cross-intersecting families (./t, ~)  is called maximal 
(n; a, b)-family if A C ([2]), ~ C ([~1) and A C A' C ([•]), ~ C ~ '  C (I'll), A' and 
~ cross-intersecting imply that A' = ./t, ~ '  = ~3. 
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LEMMA 4. I f  A C (lna]), ~ C ([i 1) are cross-intersecting, n is large, n >/ ba 2, 
b>>.a>~2, 

then there exists an element x E [n] belonging to all members o f  A and ~.  If, in 
addition, (A, ~3) is a pair o f  maximal cross-intersecting (n; a, b)-family, then 

Proof. First, consider the case that for some element x, x E N •. If one can find 
a B E ~ with x ~ B, then each A E A contains x and meets B, so we get that 

n- -2  ]Af <~ b(~_2), a contradiction. In the same way, z E A ~  leads to z E (AA)M(N~) .  
From now on we suppose that ['1A = ~ ~ = O. This implies that 

deg~t(x)~< \ a - 2 ]  and deg$(x )<~a(b  2 )  

hold for all x. 
Suppose that there exists a two element set T = {x, y} such that T M A ~ o holds 

for every A E A. Then we have that 

IA1 <~ degA(x ) -I- degA(y ) ~< 2b 

a contradiction. So from now on we suppose that for every pair T there exists an 
A E A (and similarly, a B E ~)  such that T f'l A = 0 (T M B = 0).  Then the 

b (n-3~ (and similarly number of sets from A containing T, deg~t(T), is at most ~-3J  
r~--3 

dogs(T) ~< a(b_3)). 
Finally, we may suppose that there are two disjoint sets AI, A2 E .A. Indeed, if 

itself is intersecting, then (4) gives the upper bound 

a contradiction. Considering all possible pairs meeting both A1 and A2 we have 

I~1~< ~ deg~(xl,  x2)~<a a b -  " 
xiEAi  

Here the right hand side is less than ,~-2 2a(b_2 ) for n > a2b, a fmat contradiction. [] 

We remark that using much more extremal hypergraph theory we can determine 
the best bound in Lemma 4 (see [9]), but that has no significant effect on the bound 
250k 3 in Theorem 2.3. 
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5. Cross-Intersecting Sequences 

Let A, ~ be two families of finite sets. A bijection 7r: AtU~B -~ [IAtl + ]~l] is called 
cross-intersecting if 7r(A) > 7r(B), A E At, B E ~, imply A f'l B ¢ O. If At = ([~1), 
~B = (['~l), then the triple (At, ~ ,  7r) is called a cross-intersecting (n; a, b)-sequence. 
There is a 1-1 correspondence between cross-intersecting (n; a, b)-sequences and 
linear extensions of ~,~(a, n - b) (here a + b < n). Namely, replacing each B E 
in the sequence by its complement [n] \ B we get a linear extension, and vice 
versa. We frequently use the same letter, ~r, denoting the linear extension, and the 
corresponding intersecting sequence. For a set F C In] we denote the complement 
by F c. For the family Y C 2['q, however, y c  means the family of complements, 
y c  = {[n] \ F:  F E Y}. The notion of reversed pair corresponds to the crossed pair, 
i.e., let 

e ( r r ) : :  {(A,B): r ( A ) >  r ( B ) } C  ( ' : ] ) x  ( [ b ' ) "  

A linear extension r is called maximal, if :2(r) is maximal, i.e., 5~(r) C 2 ( r ' )  implies 
2 ( r )  : 2(7r~). A cross-intersecting sequence is maximal if the corresponding linear 
extension is maximal. Define ~(Tr, < A) (and At(r, < A)) as the set of all members of 

(or At, respectively) preceding A in the sequence rr. Let At(r, A ~<) denote the set 
of those members of At which follow all members of ~(Tr, < A). This set obviously 
contains all members of At after A (i.e., the family At(r, A <)), but it could be larger. 
The above definitions naturally extend to linear extensions as well. 

It is easy to see that r is a maximal linear extension of the poser 5g,~(a, n - b), if 
and only if, ~ c ( r ,  < A) and A(r ,  A ~<) form a maximal cross-intersecting pair for 
all A E At. 

Define the colex order of the members of ~,~, as usual, by the relation X < Y for 
X, Y C [n] if the maximum element of the symmetric difference (X \ Y) U (Y \ X) 
belongs to Y. Let Lk(rn) denote the first rn members of (N) in the colex order. For 
example, for rn = (~) (with an integer p ) k) we have L ~ ( m ) =  (~1). 

For a family 3" and integer h, let 0h(Y) denote its h-shadow, i.e., 

Oh(g:) = {H: IHI = h, and for some F E Y we have H C F}. 

Kruskal [17] and Katona [16] proved (see [3]), that for any family 3: of k-element 
sets one has 

10h( =)l lah(  (VI))l. 
From now on, we suppose that a + b < n and :r is a maximal linear extension of 

~,~(a, n-b).  This implies, that for any B E (~-]b) the set of A's preceding B consists 
of the a-subsets of B and the a-subsets of  all B p E ~B with 7r(B') < 7r(B). Using our 
notation AQr, < B) = 0,~(~(7r, < B) U {B}). We maximize the number of reversed 
pairs when minimize the number of A's preceding B. The Kruskal-Katona theorem, 
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(5.1), implies that Oa(~3(Tr, < B)U  {B}) is minimal when ~ is in colex order. So the 
number of reversed pairs is minimized if ~B is in colex order, consequently A is in 
colex order, too. Denote this linear extension by rz .  Note that in this order every 
(n - b)-element subset avoiding the element n precedes every a-subset containing 
n. Even more, there is a natural partition of the sequence 7rz, all sets avoiding n 
precede all sets containing n. 

Let r(n;a, n-b) denote max I9~(Tr)h where ~r is any linear extension of ~,~ (a, n - b ) .  
The above argument implies that r(n; a, n - b) = t: (Trz)l, and one can obtain the 
following recursion 

+ r ( n -  1 ; a , n -  b ) +  r ( n -  1 ; a -  1, n -  b -  1). 

(5.2)  

Using the easy identities 

r (n ;  0, n - x )  = x, = 0, 

r (n; l ,n -x )=r(n;z ,n - l )=  ( n ) 
x - - 1  ' 

one can easily prove by induction that 

,--,,-.,a-lb-l( _~ ) (  l - i - j ~ ( n -  ; ) i j . -  1 - i  j 
(5.3)  

• a - l - i  1 b - l -  " 
i = 0  j=O 

In the above argument we followed Hurlbert [13] who proved this upper bound for 
a = b. For our purposes the following estimate is more appropriate, which can be 
proved by induction using (5.2). 

LEMMA 5. For all n > a + b one has 

6. Understanding the Finer Structure of Linear Extensions 

Let ~" be a linear extension of  ~ ( a ,  n - b), n > a + b, a, b/> 2. A member A E A of 
the monotone sequence {rr-l(1), ~r-l(2), . . .} is called of  type I (with respect to 7r) if 

The permutation ~r is called of type I if A has a member of type I. A reversed pair 
(A, B) E 9~Qr) is called of type I if A is of type I. Any other member of A, reversed 
pair, or linear extension is called of type II. 
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LEMMA 6.1. In any linear extension 7r of ~ (a, n -  b) the number of reversed pairs 
of type II is at most 

- n - 1  

Proof. Split ~n(~r) into four parts. The pairs with 

<- (:-X) 

are put into ~1, the pairs with 

2b(:--X)>~lA(~r,g<~)t> ( : - X )  

are put into ~R 2, 

:~ = (A, B)  e :R(,O: 13(~,  < A)I < b - 2 ' 

and 

Every A E A is preceded by at most 

members of ~, which gives 

15~11 ~< a ( : -  2)  ( b S  : )  • 

Similarly we get 

If (A, B) E 2 2, then A is followed by at least ~-2 (a-2) more A's, so the Kruskal-Katona 
theorem (5.1) gives that it can be preceded by at most 
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members of ~B. This gives 

15~2t x< 2 ( 2 b -  1) ( n  - 22) ( b 5  ~ ) ,  

and similarly we get 

19~41 ~< 2 ( 2 a -  1) ( n  - ~) ( b  - 22). [] 

L E M M A  6.2. I f  r is a maximal linear extension of  ~3~(a, n - b) of  type I, and 
n > ab(a + b), then there exists an element c = eQr) E In] such that all sets from 
(l~l) t3 (~_1) avoiding e precede all sets containing e. 

We will call the element e the center of r .  Obviously, the center is unique (if it 
exists). 

Proof  of  Lemma 6.2. Let A E ~t be of type I. We can apply Lemma 4 for the 
cross-intersecting families ~ c ( r ,  < A) and A(r ,  A ~<). We obtain that there exists an 
element e which is contained in every member of these two families, i.e., 

and 

As ~r is maximal, we get that all B with c ¢ B E ~ precede AQr, A ~<). (Otherwise, 
we can put one before A0r  , A ~<) and create more reversed pairs.) Hence 

Similarly, maximality implies that all A E .A with e E A follow ~8(7r, < A), implying 

If ~r is of type I with center e, then there is a natural partition of it into two halves. 
The lower part can be considered as a linear extension of ~,~-l(a, (n - 1) - (b - 1)) 
with underlying set [n] \ {c). The upper part, after removing the element c from 
each set, can be considered as a linear extension of ~ , ~ - l ( a -  1, ( n -  1 ) -  b) with 
underlying set [n] \ {e). If ~r is maximal, then both halves are maximal, too (of their 
kind, of course). 

The following lemma is the key for the proof of the main Theorem 2.3. Some 
notation. F o r d  set Z C [n] , le t  9~(Z) = {(A,B) E 9~: A C Z , B  e C Z) .  For an 
element x E [n], let 9~(x) denote all pairs ( A , B )  E ([a ~l) x (n[n]b) with z E AV1B c, 
and let 9~0(x ) denote those pairs where x = A M B c. Moreover, 9~(~r, Z) denotes 
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5~(a-) fq 9~(Z), and ~Ro(Ir, z, Z) stands for 9~(1r) M :R0(z) n :R(Z), etc. Beware, the 
maximality of ~" does not imply in general that the restriction of 7r to the members 
of 5~(Z) is maximal (as a (z; a, z - b) linear extension). 

LEMMA 6.3. Suppose that rc is a maximal linear extension of ~3n(a, n-b), Z C [n], 
IZl > (a + b)ab, and c(r) q! Z. Then 

a2+8ab+b2(: - l l ) (~-~)  
19~(7r' Z)I < z " (6) 

Proof. If r is of type I, then Lemma 6.2 says that for all (A, B) E 2 ( r )  one has 
c E A tO B e. So c(lr) ~ Z implies that 5~(r, Z) = 0.  From now on we suppose that 
r is of type II. 

Suppose, on the contrary, that (6) does not hold. Consider the subsequence defined 
by r and Z, i.e., the sequence consisting of the sets B E (~[~-]b) with B c C Z, A C Z. 
This can be viewed, after removing [n] \ Z from all affected B's, as a linear extension 
t i f f  of ~z(a, z - b) with underlying set Z. Then Lemma 6.1 and the negation of (6) 
imply that there exists a set A' E (z) with type I in the permutation r lZ.  Apply 
Lemma 4, as we did in the proof of Lemma 6.2, for the families ~c(rlg, < A') and 
,A(TrIZ, A' <~). We obtain that there exists an element e E Z which is contained in 
every member of these two families, i.e., 

~':={BC: ~r(B)<rr(At)and([n]\Z)CB}C{xE(Z): eEX} ,  

We claim that the inaximality of ~r implies c is a center of lr. Indeed, e E A for 
all A E A(~r,A' <.). If not, then for some A2 e ([~1) we have that e ~ A2 and 
7r(A t) < ~r(A2). Then A2 intersects all members of :B t, which implies that 

b - 1  

This contradicts the fact that A ~ is of type I (in rrIZ ). Then maximality implies that 
all B E (d~]b) with e ~ B precede A'. On the other hand, if a'(B) < r(A'),  then B c 
intersects all members of .,4. t, this is only possible whenever e E B e. We obtained 
that 

This (and the maximality) gives that 

e is indeed a center with e E Z. This contradicts c(r) q Z, completing the proof. [] 
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REMARK. Call two a-sets A1, A2 equivalent in rr if $(rr, < Al) = N(r,  < A2). 
In other words, they belong to the same segment in rr. Let A1,A2, . . . ,A,~ be a 
representative from each interval, 7r(A1) < 7r(A2) < . . .  < ~r(Am). The maximality 
implies that for each 1 ~< i ~< rn there exists a Bi with rr(Ai) < r (Bi)  < r(Ai+l),  
such that Ai C Bi. 

Frankl [7] and Kalai [15] proved the following ordered version of a theorem of 
Bollob~ts [2]. If X 1 , . . . , X m  are a-sets and Y1,...,  Ym are b-sets with the properties 
Xi N Y / =  ~ for all i and Xi n ~ # ~ for all 1 ~< i < j ~< m, then m ~< U +b) holds. 

k d / 

Applying this theorem for the sequences A1, A2 , . . . ,  A,~ and B c ,  B c . . . . .  B c ,  we 
obtain that the number of segments in a maximal ~r is at most (a+b) 

7. Proof of the Main Theorem 

Here we prove Theorem 2.3. The upper bound dim(n; k, n - k) ~< dim(n; 2, n - 
3) = n - 2 follows from the results of Hurlbert, Kostochka, and Talysheva in [14] 
mentioned at the end of Section 1. Let 7rl , . . . ,  ~ra be a system of linear extensions 
generating ~n(k, n - k), n > 250k 3, k /> 3. We may suppose that each of them is 
maximal. Suppose on the contrary, that d ~< n - 3. Classify the linear extensions as 
follows, 7r l , . . . ,  7r~ are of type II, while each 7ri for t < i <~ d has a center c(7ri). Let 
H = {z E [n]: z is not a center}, IHI = h. Our first aim is to prove that 

3 + t lar I .< 2k. (7) 

The lower bound follows from h/> n - ( d -  £). 

To prove the upper bound in (7) let 

5~'= U :2o(Z). 
zEH 

We have 

Consider ~ '  N 9~(~i). For i ~< £, 7r~ is of type II, so Lemma 6.1 gives that 

If i > g, and (A, B) E 9~(7ri) ~ 9~', then e(Tri) q~ A N B c, which implies that (A, B) is 
reversed by one of the lower or upper parts of 7ri (the definitions can be found after 
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n - 1  n - I  the proof of Lemma 6.2). Each half-permutation reverses at most (k - i ) (k -2 )  pairs, 
by Lemma 5. Summarizing, we get 

l<~i<~d 

Using the facts ~ < h, d < n, and rearranging, a short calculation gives (7) for 
n >t 50k 3. 

As we have seen, each half-permutation obtained from a 7rl of type I can be viewed 

as a maximal (n - 1; k, (n - 1) - (k - 1)) or (n - 1; k - 1, (n - 1) - k) linear extension. 

If a half-permutation is of type I (of its kind) its center is called a secondary center 
of 7ri. Altogether, the (d - g) permutations of type I have at most 2(d - g) secondary 
centers. For an x E H let C ,  C [n] \ H be the set of those elements V for which one 

can find a permutation of type I with center V and semicenter x. We obtain, that 

This implies that for some z E H we have lC~l ~ 2 ( d -  g)/h. Define 

z = { , }  u ([nl \ c ,  \ Izt = 

We obtain that z >/1 + (n - h) - (d - £)(2/h). Using (7) and the fact that n is large 

we get z >/ (n /3) .  

(~-1) pairs, we upper bound (k- l )  Next give an Consider 9~o(z,Z), it consists of  z-1 ~-k 
for ]~0(z, Z)[. If 7r/ is of type II (1 ~< i ~< £), then Lemma 6.3 gives 

If 7r~ is of type I, and e0ri ) ¢ Z, then 5~0(z, Z) A 2(7ri) = 0 .  Finally, if 7ri is of 
type I, and cOri ) E Z, then all the reversed pairs from 5~0(,ri, z, Z) are reversed by 
one of  the half-permutations. These half-permutations can be viewed as maximal 

linear extensions of type (n - 1; k , (n  - 1 ) -  (k - 1)) or (n - 1;k - 1,(n - 1) - k). 
If the half-permutation has no (secondary) center, or its center does not belong to 
Z, then Lemma 6.3 implies that the number of its reversed pairs from 5~0(z, Z) is at 
most (lOkZ/z)(~-])(~Z~. If the half-permutation has a center it can not be x, so all 
of its reversed pairs are reversed by one of the halves of the half-permutations. Such 

a quarter of permutation reverses at most (~_~)2 pairs from Y,o(z, Z). So altogether, 
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using generous upper bounds on the number of cases, we get 

( 2 - 1 1 )  ( ; - k l ) =  ]:Ro(z, Z) I 

+2n(lOke/z)(; - 1 1 ) ( ; - 1 2 ) + 4 n ( ; - 1 2 ) e .  

A short calculation implies that this could not hold for 3z t> n > 250k 3, finishing 
the proof of the theorem. [] 

Finally, we remark that some of our results (Proposition 2.1 and (5.3)) have been 
independently discovered by Hurlbert and will appear in [13]. 
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