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For a set A of non-negative numbers, let D(A) (the difference set of A) be the set of non- 
negative differences of elements of A, and let D k be the k-fold iteration of D. We show that for 
every k, almost every set of non-negative integers containing 0 arises as Dk(A) for some A. We also 
give sufficient conditions for a set A to be the unique set X such that 0 C X and Dk(X)= Dh(A). 
We show that for each m there is a set A such that D(X) = D(A) has exactly 2 m solutions X 
with 0CX.  

1. I n t r o d u c t i o n  a n d  N o t a t i o n  

For a set A of non-negative numbers, let D(A) = { l a - h i :  a,b E A}. We call 
D(A) the difference set of A. Difference sets of sets of positive density have been 
studied, for example, in [7] and [8]. For a general reference on sequences, see, for 
example, [5]. In 1974 I. Z. Ruzsa [6, p. 156] asked: Under what conditions will a 
set be the difference set of another? 

Our goal in this paper is to show that many sets (in various senses of "many") 

occur as difference sets and also to analyze the possibilities for D - I ( B )  = {A : 
D(A) = B} as B varies. In a sequel [1], we will use the concepts and methods 
of recursion theory to compare the "complexity" of D(A) to that  of A. One goal 
behind the results in both this paper and [1] is to characterize the family of all 
difference sets or else to show that this family is not Borel. (The latter result would 
indicate that no reasonable characterization is possible.) We have not yet reached 
this goal, but we hope that the results in these papers may provide some helpful 
steps in this direction. 
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The following is a simple example of a result (due to A. Ss given here 
as Theorem 2.1) showing that  many sets occur as difference sets: Let B be a set 
with 0 E B which contains arbitrarily long blocks of consecutive integers. Then 
there are uncountably many sets A such that  D(A)=B. It  follows tha t  the family 
of difference sets is of measure 1 and comeager on {B C_ No : 0 C B}, in terms of 
the usual (product) topology and measure on the latter set. Extending this result, 
we show that,  among sets B with 0 E B, almost every set B (in the sense of both 

measure and category) is a k th difference set for all positive integers k, i.e. for some 

A the set B is of the form Dk(A), where D~ and Dk+I(A)=D(Dk(A)). 
It  is obvious that  if B is a nonempty difference set it is the difference set of 

infinitely many sets (since D(A)= D(A+m) for all m.) To eliminate this triviality, 
we often identify sets which differ only by a translation. We say that  B is a unique 

difference set if there is a set A such that  D(A)=B and any set _~ with D ( A ) =  B is 
of the form A+k for some k. Ruzsa [6, page 156] also asked for conditions implying 
the uniqueness of D(A). He mentions an example where the members of A grow 
exponentially. Here we will give many more examples, even ones having positive 
density. 

Call A a Be-set if distinct multisets of t~ elements of A always have distinct 
sums. We show that  if A is a B3 set, then D(A) is a unique difference set. (This 
result was independently discovered by ErdSs, A. Ss and V. T. Sds [3].) We 
also give examples to show that  for each t there is a set B which is the difference 
set of exactly 2 t sets (modulo translation). 

All infinite and finite sets here consist of nonnegative integers, unless otherwise 
stated. The set of positive integers is denoted by N, and the set of non-negative 
integers is denoted by NO, as usual. The notations A + B ,  AB, as usual, denote 
the sets {a + b:a C A, b C B}, {ab:a C A, b E B} respectively. {p} + A and {p}A are 
abbreviated as p + A and pA respectively. 

The n + l ' s t  element of the sequence A (B, C . . . )  is denoted by an or a(n) (bn 
or b(n), ...), whichever is more convenient. 

2. A l m o s t  e v e r y  se t  is a d i f f e r ence  se t  

If  A _C No contains arbitrarily long strings of consecutive integers, then D(A)= 
No. Thus almost alt sets have No as their difference set. Nonetheless, the following 
result of Ss shows that  almost all sets containing 0 occur as difference sets. 
For completeness we repeat the (10-line) proof in a language which will be useful 
later. The result will be extended, with a much more complicated proof utilizing 

new ideas, to k th difference sets in Theorem 8.2. 

Theorem 2.1. (S~rkhzy, see [6, p. 156], and Erd6s, A. Ss and V. T. Sds [3, 
Corollary 1 to Theorem 14]). Let B be any set such that 0 E B and B contains 
arbitrarily long strings of consecutive integers. Then there are nncountabiy many 
sets A such that D(A)= B. 
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Proof. We construct a single set A such that  D(A) = B. It  will then be clear how 
to vary the construction to produce uncountably many such A. The set A will be 
constructed as the union of a chain F0 C_ F1 C_... of finite sets. Call a finite set F 
acceptable if D(F) C_ B. We will arrange tha t  each Fn is acceptable and that ,  if" 
h E B, then k C D(Fk). From this it follows that  D(A)= B, where A = UkF k. To 
obtain the sets F k reeursively, it suffices to prove the following lamina: 

Lenuna 2.2. Let F be any acceptable set, and assume that k E B. Then there is an 
acceptable set G D F  such that kED(G). 

Proof. Let G=FU{a,a+k}  where a is chosen so that  G is acceptable. Specifically, 
choose a > max(F) so that  a -  F C_ B and a + k -  F _  B, where this is possible 
because B contains arbitrarily long blocks of consecutive integers. I 

3. B3 s e q u e n c e s  h a v e  u n i q u e  d i f f e r ence  se t s  

Definition 3.1. A set of numbers A is called a Be-set (g a positive integer) if 
hi,.. .  ,a2g E A, y~d<i<gai = y-~g+l<i<2gai implies that  the sequences {a l , . . . , ag}  

and {he+l, . . .  ,a2g } are identical up to a permutation,  (i.e., identical as multisets). 
A B2 sequence is called a Sidon sequence (cf. [5]). The following result was obtained 
independently and at about the same time by P. Erdhs, A. Ss and V. T. Sds 

[3, Theorem 17]. It  will be extended to k tt~ difference sets, too, in Theorem 9.1. 

Theorem 3.2. Suppose that the .sequences of reals A = {a(0) = 0 < a(1) < . . .  < a(n) < 
. . . }  a n d  B = {b(0) = 0 < < . .  < < . . . }  have the  ame difference set, i.e. 
D(A) = D ( B ) .  IFA is a Ba sequence, then A = B .  

Proof. The proof presented below is considerably shorter than that  in [3], though 
it uses the same ideas. The proof of the generalization (Theorem 9.1) requires 
different ideas borrowed from linear algebra and the theory of hypergraphs. 

As D(A)= D(B), one can define functions f and g for all positive integers 
i such that  b(i) - b ( i -  1) = a(f(i)) - a(g(i)). Here f(i) > g(i) >_ O. Consider 
b ( i + l ) - b ( i - 1 ) E D ( B ) = D ( d ) ,  and write it in the form a(u) a(v), ( u > v > 0 ) .  
The identity (b ( i+ l ) -b ( i ) )+(b( i ) -b ( i -1 ) )=b( i+l ) -b ( i -1 ) impl i e s  that  a(f( i+ 
1)) +a(f(i))+a(v) = a(9(i+ 1) )+a (g ( i ) )+a (u ) .  So the multisets of indices coincide, 
i.e. { f ( i+l ) , f ( i ) , v}={g( i+l ) ,g ( i ) ,u} .  Hence { f ( i+ l ) , f ( i ) }N{g( i+l ) ,g ( i ) } r  
However, f ( i + l ) > g ( i + l )  and f(i)>g(i),  so either f ( i+ l )=g( i )  or f ( i )=g( i+ l )  
(but not both) holds. In the first case we say i E R, in the second i E S. The crucial 
point of the proof is the following claim: 

(3.3) i E R implies (i + 1) E R. 

Indeed, suppose, on the contrary, that  i belongs to R and (i + 1) E S, i.e., g(i) = 
f ( i+ l )=g( i+2) .  This and the conditions f ( j )>g( j )  imply that  

(3.4) f ( i  + 2), f(i) > g(i + 2) = g(i) = f ( i  + 1) > g(i + 1). 
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Write b ( i + 2 ) - b ( i - 1 )  in the form a ( x ) - a ( y ) .  On the other  hand  

b(i+ 2 ) - b ( i - 1 )  = a ( f ( i + 2 ) ) - a ( g ( i + 2 ) ) + a ( f ( i +  l ) ) - a ( g ( i +  l ) ) + a ( f ( i ) ) - a ( g ( i ) )  

= a ( f ( i  + 2)) + a ( f ( i ) )  - a(g(i  + 1)) - a(g(i)) ,  

so the B3-proper ty  implies tha t  { x , g ( i +  1),g(i)} = { y , f ( i + 2 ) , f ( i ) } .  However,  
{ g ( i + l ) , g ( i ) } n { f ( i + 2 ) , f ( i ) } = ~  by (3.4), a contradict ion.  This  proves (3.3). 

If  R r (~, say i E R, then (3.3) implies tha t  all integers j > i belong to R. We 
have g(i) = f ( i +  1) > g ( i + l )  = f ( i + 2 )  > g ( i + 2 )  = f ( i + 3 )  > . . .  > . . .  an infinite 
descending sequence of nonnegat ive integers, a contradict ion.  

I t  follows tha t  R = 0 ,  so f ( i ) = g ( i + l )  holds for e v e r y i > l ,  i.e. b ( i + l ) -  
b(i) = a ( f ( i  + 1)) - a( f ( i ) ) .  Define f (0 )  := g(1). Then  we have tha t  b(i) - b(i - 
1) = a ( f ( i ) )  - a ( f ( i  - 1)) for all i > 1. This  implies t ha t  for all j > i > 0 one has 
b(j) - b(i) = a ( f ( j ) )  - a ( f ( i ) ) ,  which gives b(i) = b(i) - b(O) = a ( f ( i ) )  - a( f (O))  for all 
i, and f ( 0 ) < f ( 1 ) < . . .  < f ( i )  < .... We obtain  t ha t  f ( j ) > j .  

We claim tha t  f ( j )  = j for all j .  Suppose,  on the contrary,  t ha t  j is the 
smallest  number  with f ( j )  > j .  Then  j ~ f (N0) ,  because f is s t r ic t ly  monotone ,  
0 = f (0 ) ,  . . . , j  - 1 = f ( j  - 1), j < f ( j )  < f ( j  + 1) < ... .  The  Ba -p rope r ty  implies t ha t  
a ( f ( j ) ) - a ( j )  cannot  be  wr i t ten  in the form a ( f ( x ) ) - a ( f ( y ) ) ,  because a ( f ( j ) ) - a ( j )  = 
a ( f ( x ) )  - a ( f ( y ) )  implies { f ( j ) ,  f ( y )}  = { f ( x ) , j } ,  but  j • f (No) .  So a ( f ( j ) )  - a( j )  
does not belong to D ( B ) ,  contradict ing t ha t  D ( B ) = D ( A ) .  Since f ( j ) = j  for all j ,  
b ( i ) = a ( f ( i ) ) - a ( f ( O ) ) = a ( i ) - a ( O ) = a ( i )  for all i. Hence A = B .  l 

4. D e n s e  s e q u e n c e s  w i t h  u n i q u e  d i f f e r e n c e  s e t s  

A B3-sequence, A, can have at most  O(n  1/3) members  f rom { 0 , 1 , 2 , . . . , n } .  

(This is so, because for IAN{0,1,2,. . .  ,n}l = c  all the dist inct  (c+2) tr iple sums,  where 

now we have counted the triples with repeti t ions,  lie in the interval  {0, . . .  ,3n}, so 
this binomial  coefficient is at most  3 n + l . )  In this section we present  fur ther  exam-  
ples with unique difference sets which can have far more  elements,  even a rb i t r a ry  
posit ive densi ty up to 1/3. If 0 E A C_ No has a unique difference set, then  D ( A )  r No, 
say df~D(A) ,  which implies tha t  [ { x , x + d } N A I  < 1 for all x, so the  densi ty  of A is 
at  most  1/2. Whe the r  it can exceed 1/3 remains  undecided. 

We say t ha t  the sequence C with 0 C C = {co = 0 < Cl < . . .  < ci < . . .} C_ No 

is decomposable if it can be wr i t ten  in the form C = C I + S, where C/, S C No and 
ISI > 1 but  S is finite. Note t ha t  0 E S, C I because 0 E C and no element  of C l US  

is negative.  Otherwise,  C is indecomposable, i.e., CIC_ No, S___N0, S is finite, and 
C = C I +  S imply  S = {0}. Most  sequences are indecomposable .  For example ,  C is 
indecomposable  if it has arbi t rar i ly  large double gaps: 

(4.1) lim sup min{ci - ci-1,  Ci+l - ci} = oc. 
i 

Such a C can have density 1. To see tha t  decomposable  sequences cannot  sat isfy 
(4.1), consider a decomposi t ion C = C I + S  with 0 C S  and m a x S > 0 .  Let  c C C  be 
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given, and let c = c ' + s  for some c / E C  l, s E S .  Choose s t E S  w i t h s / r  Then  
c'+s'E C and 0 < Ic-(c'+s')t<< max S. I t  follows tha t  min{c i -c i_ l ,  c i+l -c i}  <_ m a x S  
for all i, so (4.1) fails. 

T h e o r e m  4.2. I f  C is indecomposable and 0 E C, then the sequence A = {1} U 3C 
has a unique difference set. 

The  proof  of this Theorem is immedia te  from the following Lemma.  

L e m m a  4.11. Suppose that 0 E C C_ No, p _> 3 integer, A = {1} U pC , and 0 E X C_ No 
with D ( X )  = D(A).  Then either X = A, or there exists a decomposition of 

C = C~+ S such that X can be obtained as follows. S is a finite subset of C, 
with 0 E S, c k = max{x  : x E S} > O, and C I is a subsequence C t C C, such that 

x = (pck - p s )  u ( p c '  + (pek - 1)). 

Proof .  Suppose tha t  0 E X C_ No, D ( X )  = D(A).  As X C_ D ( X )  = D(A),  every 
element  x E X can be wri t ten  either in the form x = p ( c j -  ci) (where j >_i_> 0), or 

in the form x = p c i - 1  (i_> 1), or x = l .  Let X (~) = { z E X : x - r  (rood p)}. Then  

X = X ( ~  (1) and X(1) C_{1}. 

Suppose,  first, tha t  1 E X ,  i.e., X(1) = {1}. There  is no m e m b e r  x E X (-1) 
with x > 2, because then x - 1 - - 2  (rood p), x - 1 > 1, (x - I) E D ( X )  = D(A) ,  a 

contradict ion.  If  2 C X (-1),  i.e. p = 3, then there is no y E X (~ (y -- 0 (mod 3)) 

with y > 3, otherwise we get another  difference (namely  y -  2) belonging to X(1). 
Hence in this case X C_ {0,1,2,3}, contradict ing the fact t ha t  X is infinite. So 
X C_ { 1 } tO { 0,p, 2p , . . . ,  ip,. . .  }. D (X)  contains all the differences of the form pci - 1, 
so we obta in  tha t  pC C_ X .  For the same reason X cannot  have more  elements  of 
the form ip, so X = A. 

From now on, we suppose tha t  1 ~ X,  i.e. X = X(~  (-1).  As 1 E D ( X ) ,  there 

is an element py E X (~ such tha t  ( p y - 1 )  E X (-1).  But  X (-1) C_ {pci-1 :i 2 1}, so we 

have tha t  for some k _  1, y = c  k. We claim tha t  PCk is the largest  e lement  of X (~ 

and pclc- 1 is the smallest  element of X (-1).  Indeed, for py E X (~ with y > %,  we 
get ( p y - ( p % -  1 ) ) E D ( X ) ,  however 1 is the only element  of D ( X )  congruent  to 1 

(rood p). Similarly, for (PY-  1) E X (-1) with ~1 < ck, we get (p% -- (py -- 1)) E D (X) ,  
the same contradict ion.  

Define S =  {s :p(c k - s) E X (~ } and c ' =  {t: (pt+pc k - 1) C X( -1 )} .  We claim 

tha t  C~CC, S C C ,  I S I > I  and C = C ~ + S ,  so they form a decomposi t ion  of C. To 

see t ha t  C~_C C suppose tha t  (p t+pck -  1)E X (-1) ,  t > 0 and consider the difference 

between ( p t + p % - 1 )  and pc k E X (0). I t  must  be of the form p c i - 1 .  Similarly, 

for s E  S, s > 0, we obta in  sE  C considering the difference of (pck - 1) E X (-1) and 

p(e k - s) E X (~ I t  must  be of the form pci - 1, too, so s E C. Moreover,  0 C C, so 
we conclude tha t  S C C. Since {0,pc/c} _C X we have {0, c k } C S, implying ISI > 1. 
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For s E S, t E C I with st  :fi 0 we have t ha t  the difference of the member s  

(pt+p%-l) E X (-1) and p(ck-s) E X (~ is p(t+s)-l .  This belongs to D(X) = D(A), 
so it is of the  form pc i - 1, implying (t + s) E C. Hence C r + S C C. Finally, the 

differences {x(-1)  - z  (c) :x(i) E X (i) } yield all the numbers  of the  form pc~- 1. To 

see this, note  t ha t  every x (-1) E X ( - 1 )  can be wri t ten in the  form pt+pc k - 1  wi th  

t E C ~, and every x (~ E X (~ can be wr i t ten  in the form p ( %  - s) with s E S. Thus,  

pc i - 1  can be wri t ten  in the form p t + p % -  1 - p ( c  k - s ) ,  where s E S and t E C ~. 

Hence ci=t+s,  and so CC_C~+S. We are done. I 

5. A n y  n o n t r i v i a l  s e t  o f  p o w e r s  o f  2 h a s  a u n i q u e  d i f f e r e n c e  s e t  

Al though the set of powers of 2 does not  form a B3-set  (e.g., 2n-t - 2m-[ - 2 m =  

2 n -1  + 2  n - 1  +2m+1) ,  the following holds. 

P ropos i t ion  5.1. Any infinite set of powers of 2, P = P(A) = {2 a : a E A C_ No }, has  a 
unique difference set, except when A is a final segment of  NO. 

Fix  k E NO, and let p[k] = {2 a :a  > k}. We have D ( P [  k]) = D ( P  [k} U {0}). Our  
proof  will show tha t  (up to t ranslat ion,  of course) this is the only other  sequence 
with the same difference set. So we have an example  B such tha t  D(X) = B 
has exact ly  two solutions modulo  t ranslat ions.  We re turn  to this phenomenon  in 
Section 6. 

Note  t ha t  the above remark  corrects  a small  error f rom [6, page  t56], where  it 
was mis takenly  claimed tha t  the set of powers of 2 has a unique difference set. 

P r o o f  of  5.1. The  proof  is similar to the proof  of L e m m a  4.3. Let  X C_ No such tha t  
D(X) = D(P) and minX=minP .  If  m i n P  is denoted by 2 c, then all member s  of P 
(and therefore X)  are divisible by 2 c. So wi thout  loss of general i ty we m a y  suppose 

t ha t  m i n P - - 1 ,  i.e., 0 E A .  D e f i n e X  ( r ) = { x E X : x - r  ( rood2)} .  Now l = m i n X  

implies t ha t  (X - 1) C D(X) = D(P) = {2 b - 2 a :b > a > 0, b, a E A}. So we have t ha t  

X ( ~  a n d X ( 1 )  c { 2 b - 2 a + l : b > a > l ,  b, a E A } .  

Suppose,  first, t ha t  IX(1)l >2 ,  i.e., (2b--2a+l)  E X  (1) for some b>a>_ 1, b, aEA. 

We claim tha t  for every member  2 c E X  (~ one has c<b, i.e., X (~ is finite. Indeed,  

(5.2) 2 x + 2  y = 2  u + 2  v , x , y , u , v E N 0  imply  {x ,y}  = {u,v}.  

For e > b the difference 2 c -  (2 b -  2 a +  1) is odd and belongs to D ( P ) ;  therefore it 

must  be of the form 2 d - 1. Then  {c, a} = {b, d}, so c = b (because c > d). As X(~ is 

finite, X (1) should be infinite. 
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The set X(~ cannot be empty, so let 2 c C x  (0) be an arbi trary element (c_> 1), 

and suppose that  y c X ( 1 ) ,  y > 2  c+1. Write y in the form 2 u - 2 V + l .  Consider the 

difference (2 ' ~ -  2 v +  1 ) -  2c; it must be in the form 2 d -  1, so 

(s.a) 2 u + 2 = 2  v + 2  d + 2  c. 

Here d E A and d > c because, by definition, 2 u - 2  v + 1 is larger than 2 • 2 c, so 

2 d - 1  is larger than 2 c. Moreover, u>_c+2, so subtracting (1/4)2 u from both sides 

of (5.3) yields that  (3/4)2 ~ < 2 ~ + 2 d. But u > v, u > d, so we obtain u - 1 = v = d. 

Then (5.3) gives c = l ,  so X( ~  the only even member  of X.  To get the 

odd differences for D(X) the only possibility is to take an element of X (1) and the 

element 2 C X (~ So all the elements of X(1) exceeding 4 have the form 2 a + 1 

(aEA, a > 2 ) ,  i.e., X(1)\{1,3}C_{2a+I:aCA, a_>2}. 

We are going to show that  A = N 0  and X={1,2}u{2a+l:aeNo\{O}}. As 

{1,2}C_X, we have that  1cD(X)=D(P), so 2 1 c p .  Choose 2bcp such that  b > 2  

and consider the difference (2 b - 21) E D(P) ;  it is in D(X(1)). As all elements of 

X(1)\{1} have the form 2Z+l,  this difference cannot be obtained using the element 

1, so (5.2) implies that  ( 2 b + l ) E  X and (21+ 1)E X. Hence 2C D(P) which implies 

that  22,21 C P. Now let a be any member of A with a _> 2. As 2 a E P,  we have 

(2 a - l )  C D ( X ) ,  so (2 a + I )  E X  (1). This implies that  2 a E D ( X  (1)) C_D(P), so 
( a + I ) E A .  We have shown that  indeed, A=N0 ,  and X = l U ( I + P )  as claimed. 

From now on we may suppose that  Ix(ill= ~, i.e., x(1) = {1}. Considering the 
odd differences of P we obtain that  X = P. I 

6. F in i t e ly  m a n y  s e q u e n c e s  w i t h  the  s a m e  di f ference  se t  

In this section we show that  for each positive integer t there is a sequence 
B such that  D ( X ) = B  has exactly 2 t solutions X with 0 E X  C_No. Let C =  
{co = 0 < cl < ...} C_ No be an infinite sequence, and suppose that  A is obtained 
from C by multiplying by a large number p and by taking a little perturbation.  
This means that  p, r are positive integers, p > 4r, 0 E Ri C_ {0,1, . . . ,  r} = [0, r], and 
A = Ui(pci + Ri). Suppose that  D(X) = D(A). Then X C_ D(A) = Uj>i(p(cj - 
ci)+(Rj-Ri))UUiD(Ri). Write X in the form Ug(pyg+Qg), where Qg c [-r,r], 
0 E Q0 c [0, r]. Then for the sequence Y = {Y0 < Yl <- . . }  we claim that  

(6.1) D(X) = D(A) implies D(Y) = D(C). 

Indeed, (yi-Yj)CD(Y) means that  for some i>j>O, qiEQi, qjcQj we have that  

(pyi+qi)EX and (pyj+qj)EX. Hence P(Yi-Yj)+(qi-qj) belongs to D(X). But 
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then it also belongs to D(A), so it can be written in the form p ( c u - C v ) + ( r u - r v ) ,  
where cu, cv C C, u > v > 0 and ru C Ru, rv CRv. Here ]qi] + [qjl + ru + rv <_ 4r < p, 

so the above equality yields Yi - Yj = cu - cv, implying D(Y)  C_ D(C).  The proof 

of the reverse inclusion, D(C) C D(Y), is similar: Take Cu, cv E C, u > v > 0. Then 
there exist ru E Ru, rv ERv such that (pcu + ru) C A, (pcv + rv) E A and therefore 
p(c~ -c~)  + (r~ - r~ )  e D ( A )  = D(X).  Write it in the form P(Yi - Y j )  + (qi - q j )  and 

apply again that  ]qi[ + ]qj ] + ru + rv <_ 4r < p. 

From now on, we suppose that C itself is a B3-set, so Theorem 3.2 and (6.1) 
give that Y = C .  So X=Ui(pc i+Qi) ,  where 

(6.2) Q j - Q i = R j - R i  for a l l j > i _ > 0 ,  

(6.3) 0 e Q0 c_ [0, r], uiD(Qi) = UiD(Ri). 

Suppose now, that r E R / fo r  all i E No. We will show that this implies that  

(6.4) {0, r} _C Qi c_ [0, r] for all i. 

Indeed, (6.2)-(6.3) give (which we already know) that Qj = Qj - 0 C_ Qj - Qo = Rj  

RO C_ [-r,r], i.e., maxQj  _<r (j > 1, but this holds for Q0, too). On the other hand, 

r = (r - O) E Rj - RO = Qj - Qo. As Q0 consists of only non-negative numbers, 
this implies that maxQj  > r, implying maxQj  = r for all j > 1. Let ~i be the 
length of the shortest interval containing Qi, ~i = m a x Q i -  minQi. We have that 
 j+ i=maxQj-minQj+maxQ -minQi=(max%-minQd-(minQj-ma Qd = 

max(Qj - Qi) - min(Qj - Qi) -- max(Rj - Ri) - min(Rj - Ri) = r - ( - r )  = 2r. This 

implies that  ~i=r for all i, so we get (6.4). 
Recall that  our aim is to define a sequence B such that D ( X ) = B  has exactly 

2 t solutions X with 0 E X C N 0 .  Let S(i)={O,i ,4},  where i = 1  or 3. Fix an integer 

m > 100, let i = ( io , i l , . . . , i t -1 )  E {1,3} t be a vector of dimension t, and define 

S ( i ) = S ( i o ) + m S ( i l ) + . . . + m r - i s ( i t - i ) .  Then S ( i ) - S ( i ) = D + m D + . . . + m t - l D ,  

where D = { - 4 , - 3 , - 1 , 0 , 1 , 3 , 4 } .  Let D ( t ) = D + m D + . . . + m t - l D ,  and let D(t) + 
be the set of non-negative elements of D(t). 

Theorem 6.5. Let 0 C C C No, C a B3-set, and let B = Uj>i{p(cj-ci)+D(t)}UD(t)  +, 

where p > 4m t-1 . Then there are exactly 2 t sequences X with 0 E X C_ No satisfying 
D ( X )  =B,  namely X =pC+S( i ) ,  where i c  {1,3} t and S(i), D are as above. 

Proof. First, note that D ( p C + S ( i ) ) =  B for all i C {1,3} t. Now, suppose that 
D(X)  = B, 0 E X C NO and apply (6.1). We get that  X = Ui(pci +Qi) ,  satisfying 

(6.2)-(6.4) with r = E o < i < t 4 m  ~, i.e., 

Q j - Q i = D ( t )  for a l l j > i _ > 0 ,  

0 ~ Q0 c_ [0,r], uiD(Qi) = UiD(t) + 

{0, r} C_ Qi c_ [0, r] for all i. 

Then, our theorem follows from the following: 
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Proposi t ion 6.6. {0 ,r}  C U, V C_ [0,r], U - V = D ( t ) ,  U - U C_ D ( t )  - D ( t ) ,  V - V CC 
D( t ) -  D(t) imply that U= V=S(i)  for some i � 9  {1,3} t. 

Proof. As 0 E U and U - U C_ D(t),  we have that  U C_ D(t). Write any member 

of u E U (and v C V) in the form u = ~j<tu jm  j (and v = ~j<tvjmJ).  Such 

a form is uniquely determined if we suppose that  ui �9 D (and vj �9 D). Let 

Uj = {uj : u �9 U}, Vj -- {vj : v �9 Y}. To complete the proof, it suffices to show 

that  Uj = Vj �9 {S(1), S(3)). We have that {0, 4} C_ Uj, Vj (because 0,r  �9 U, V), and 
that  

U j - V j = D ,  Uj -UjC_D,  V j -V jC_D.  

It follows that  Uj,Vj G [0,4]. As 2, - 2  ~ D we get that  2 ~ Uj, Vj. Similarly 1 and 
3 cannot be in Uj simultaneously, because Uj -Uj  C_ D. The roles of Uj and Vj are 

symmetric (also the role of 1 and 3), so suppose that  leUj ,  so Uj ={0,1,4}.  Then 

3 ~ Vj, but 1 G Vj (to get the difference 3 e Uj - Vj = D). Hence Uj = Vj = S(1) (or 

S(3) in the symmetric case.) In the only remaining case, Uj = Vj = {0,4}, we get 
Uj - V j r  D, a contradiction. I 

7. S e que nces  w i t h  u n i q u e  d i f fe rence  se ts  do  no t  f o r m  an  idea l  

We have seen in the third section that  every infinite B3-set A has a unique 
difference set. All subsets of A are B3-sets, so all of its infinite subsets have unique 
difference sets. Let a~ denote the set of sequences with a unique difference set 
(0 C A C_ No for all A E a/). There are sequences A E a/ such that some of their 
subsets are not in ~d. (Of course, for all infinite sequences 0 C B C_ No there exist 
continuum many A CM with A C_ B.) 

The easiest example is to take a sequence 0 C C C_ No with arbitrarily large 
double gaps, (limsupi min(ci-ci_l, ci+l-ci) = ~ )  and with arbitrarily long segments 

in it. Then D(3C) = 3N0, so 3C is one of the 2 ~~ solutions. However, 3C is 
indecomposable, so 1U3C has a unique difference set as was shown in Theorem 4.2. 

Another example can be obtained from the results of Section 6. Let 0 C C C_ No 
be a B3-set, and consider A=pCU(pC+l)tO(pC+4)U{3}, with p >  16. A\{1} is one 
of the two solutions of the equation D(X)= D(A\{1}) (by Theorem 6.5). However, 
A has a unique difference set. Indeed, assuming that  D(X)= D(A) and using (6.1)- 
(6.4) we get that  X =U(pci+Qi) where {0,4} C_ Qi c_ [0,4]. We obtain from Theorem 
6.5 that  X \ { 0 ,  I,3,4} should be either p (C \{0} )+{0 ,1 ,4}  or p (C \{0})  +{0,3,4}.  
In the latter case 1, 2 ~ Qo, i.e., Q0 g {0,1,4}, hence - 2  ~ Qi-Qo  contradicting 
(pci-2) E D(X).  We obtain that Q1 . . . . .  Qi . . . . .  {0,1,4}. As pci+2 ~ D(X) ,  we 
have that  2 r  soQoC_{0,1,3,4}. On the other h a n d 2 E D ( X ) , s o  2 E Q 0 - Q 0  
implying {1,3} c Q0, hence Q0 = {0,1,3, 4}. I 
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Ruzsa [6, p. 156] gave an example, namely A1 = {2 k : k E NO} and A2 = {2k: 
k E No}, where D(A1)U D(A2)is  not a difference set at all. 

8. A l m o s t  all se ts  a re  k t h  d i f f e rence  se ts  

It was shown in Theorem 2.1 that  every set B with 0 E B which contains 
arbitrarily long strings of consecutive integers is a difference set. Below, we extend 

this result to k th difference sets by strengthening the hypothesis that  B contains 
arbitrarily long strings of consecutive integers as follows. 

Definition 8.1. Let t be a positive integer. A set BC_N0 is t-big if for any finite set 
{ul x+vl, u2x+v2,..., uj x+vj } of linear polynomials with integer coefficients, where 

1 < ui <_ t, there are infinitely many x E No with (uix + vi) E B for all i, 1 < i < j.  

For example, the 1-big sets are precisely the sets B which contain arbitrarily 
long blocks of consecutive integers. Hence, by Theorem 2.1, every 1-big set is a 
difference set. More generally, a set B is k-big if and only if for each positive 
integer n there exists x ~ n such that each of the k intervals [ x - n , x + n ] , [ 2 x -  
n, 2x + n] , . . . ,  [kx - n, kx + n] is contained in B. Also almost every set is t-big for 
every t (in the sense that the family of sets which are t-big for every t is comeager 
and of measure 1). (For measure, this follows because for any sequence {Fj}jENo 

of pairwise disjoint finite subsets of No of fixed cardinality, almost every set B 
will have the property that Fj C B for some j .)  Note also that  the linear case 
of Schinzel's hypothesis almost says that the primes are t-big for every t, except 
that  it is required that  no integer n > 1 can divide all values of the product  of the 
polynomials. The following result subsumes Theorem 2.1. 

Theorem 8.2. Every 2k-l-big set B with 0 E B  is a k th difference set. 

Proof. Let B be 2k-l-big. We first need some definitions. 

For any sequence A _C NO and any positive even integer s let :s163 be the 
set of nonnegative numbers which can be obtained as a linear combination of the 
form ~io~iai, where all ~i's are nonzero integers, ~iai =0 ,  a n d  ~~i ]oli] _~.  An 

element xEZ(s  can be written in the form ~-~l<i<,e(i)a (i) where e(i) E {1 , -1} ,  

~ e  (i) = 0, and (a(1),. . . ,  a(i),... ,a (~)) is a sequence (or multiset) of some members 

of A. Then Dk(A) C~s for any sequence A C NO. Here equality does not 
necessarily hold. 

Call a finite set F acceptable (more precisely, k-acceptable for B) i f~s 
B. Just as in the proof of Theorem 2.1, it suffices to prove the following lemma. In 

fact, it follows from the lemma there is a set A such that  Dk(A)=:s 

Lemma 8.3. Let F be acceptable and suppose that b E B. Then there is an 
acceptable set GD F with bEDk(G). 
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Proof. Let Xl,X2,... ,x2k be indeterminates, and define the following homogeneous 

linear polynomials pj (Xl , . . . ,  x2J) for 1 <_ j _< k by recursion on j:  

p l ( X l , X 2 )  = X2 -- X l ,  

P j + I  ( X l , .  . . ,X2J+I  ) = p j ( x 2 J + l , .  . . , x 2 J + l  ) -- p j ( X l , .  . . , x 2 j  ). 

I t  is clear by induction on j that  pj (x l , . . . , x2J  ) has the form ~ X l  + ... + 

4jx2J  where 141 = 1 for 1 < i  < 2J. It  is also clear by induction on j that  if 

values are assigned to x l , . . . ,  xj in a way which pj (x l , . . . ,  x2J) and the polynomials 

which arise in its recursive definition above are all positive, then p j ( x l , . . . , x 2 j ) C  

D j ({Xl, . . . ,  x2j }). (For example, if j = 2, we have P2 (Xl , . . . ,  x4) = ( x 4 - x 3 ) - ( x 2 - x l )  
and require that  z2 > xl ,x4  > x3, and (x4 - x 3 )  > (x2 - X l ) .  I t  then follows tha t  

p2(Xt, . . .  ,X4) E D2({Xl, . . .  ,x4}). ) 
We will let G = F U { x l , . . . x 2 k  } for values of x l , . . . , x2k  chosen so that  

pk(x t , . . . , x2k  ) and the polynomials used in its inductive definition are all posi- 

tive as required above. Thus, to ensure that  b E Dk(G),  we also require that  
pk(x l , . . .  ,x2k ) = b  for these values of Xl , . . . ,x2k.  This condition determines x2k in 

terms of Xl, . . .  ,x2k_ 1, and in fact solving it for x2k yields x2k = q ( z l , . . .  , x2k_ l )+b  

where q is a homogeneous linear polynomial in Xl , . . . ,  x2k_ 1 with coefficients of ab- 

solute value 1. The main part  of the argument is then to use the 2k-t-bigness  of B 

to show that  we can choose xi for 1 _< i < 2 k to make G acceptable. To do this we 
use the following lemma which implies that  B has an apparently stronger property 
involving several linear polynomials in several variables. 

Lemma 8.4. Suppose that A is t-big and that P is a finite set of linear nonconstant 
polynomiMs with integer coefficients in the indeterminates X l , . . . , z s .  Suppose 
further that for each polynomial ~i<_s aixi + d in P, we have 1 <_ a i ~ t for the 

leading coefficient ai, i.e. the greatest i such that ai ~ O. Then it is possible to 
choose positive integer values of Xl, . . .  ,xs in such a way that all of the polynomials 
in P take values in A. 

Proof. The proof of this is easy. First choose a value for xl  so that  all polynomials 
in P having no variable other than Xl take values in A. From now on, t reat  xl  as a 
constant. Then choose a value for x2 so that  all polynomials in P having x2 as their 
only (remaining) indeterminate take values in A. Continue in this fashion until all 
of Xl , . . .  ,Xs have been assigned values so that  all polynomials in P take values in 
A. Note that  in the above process it is possible to first choose xl  arbitrari ly large, 
and then x2 arbitrarily large, etc. | 

By Lemma 8.4, to make G acceptable it suffices to construct a finite set P 

of polynomials satisfying the hypotheses of Lemma 8.4 with A = B, t = 2 k-1 and 

s =  2 k -  1 so that  every element of Z(2 k, G) \ (~ (2  k, F)tJ{b}) can be expressed as the 
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value of a polynomial in P.  First note that each xi, i < 2 k, is obtained simply as 
the value of the polynomial xi, while x2k is obtained as q(x l , . . .  , x 2 k _ l )+  b, where 

all the coefficients in the linear homogeneous polynomial q have absolute value 1. 

It follows that any element u o f~(2k ,G)  can be written as ~ j < 2  k bjxj  ~-e, where 

Ibl -< 2k and lel _< m, where m = 2 k-1 max(FU{b}). (The coefficients used to express 

elements of ~(2k,G) as linear combinations of elements of G cannot exceed 2 k-1 
in absolute value because these coefficients must sum to 0 and the sum of their 
absolute values is at most 2 k. Also, each xj  for j < 2 k occurs exactly twice in the 

polynomials giving Xl , . . . ,  x2k.) 

Let Q be the (finite) set of linear polynomials over the integers which are 

of the form }-~.j<2kbjxj + e where Ibjl <_ 2 k for all j < 2 k and lel <_ m. The 

preceding argument shows that  each u E ~g(2k,G) is the value of a polynomial 
in Q. Now let P be the set of all (necessarily nonconstant) polynomials in Q 

whose leading coefficient bi satisfies 1 < bi <_ 2 k-1. Assume u E :~(2k,G) and 
u = b ( x l , . . . , x 2 ~ _ l )  = ~j<_2kbjxj  + f ,  where b ( x l , . . . , x 2 k _ l )  E Q, and in fact 

b(x l , . . .  ,x2k_l) is obtained by the procedure outlined above. Let bi be the leading 

coefficient of b(x l , . . . ,  x2k_ 1), where we assume temporarily that  this polynomial is 

nonconstant. It must be shown that  1 < bi <_ 2 k-1. Finally we justify the assumption 

that  the polynomial is nonconstant, provided that,  in addition, u ~ Z ( 2  k, F)U{b}. 

We first use a sign argument to show that  Ibil <_ 2 k-1. (Of course, this can be 

omitted if we assume that  A is 2k-big rather than 2k-Lbig.)  Since u EZ(2k,G) ,  
we have u = ~j<_2 kd jx j  + r, where the sum of the positive (and also of the 

negative) dj's is at most 2 k-1 in absolute value and ]r I _< 2 k-1 .  maxF .  Replacing 

x2k by q(x l , . . .  ,x2k_ 1) + b, where q(x l , . . .  ,x2k_ 1) = ~ j<2 k  qjxJ, we obtain u = 

~-]j<2k(d2kqj+dj)xj+r+d2kb, so we may define bj =d2kqj+d j for j < 2 k. Consider 

first the case where i = 2 k - 1 for the leading coefficient bi. Then bi = d2k + d2k_ 1 , 

since q2k_l = 1. If d2k .d2k-1 _> 0, then ]bil = Id2k +d2k_l] _< 2 k-1. If d2k .d2k-1 < 0, 

then Ibil < max{Id2k I,Id2k-ll} -< 2k-1. This completes consideration of the case 

where i = 2 k - 1. Suppose now that i <: 2 k - 1. If qi = 1, then bi = d2k + di, and we 

conclude that [bil ~ 2 k-1 since the argument for the case i = 2 k -  1 actually shows 

that  Idv +dul <_ 2 k-1 whenever ] < u < v < 2 k. Suppose now that  qi = -1 .  Note 
that 0 = b2k_ 1 = d2k -t-d2k_ 1 (since b2k_ 1 is not the leading coefficient). Hence 

bi = -d2k + di = d2k_ 1 + di, and again Ibil ~ 2 k-1 by the same principle, with 

u - - i , v = 2  k -  1. This completes the proof that  Ibil < 2 k-1. 

Next we show that bi ~> 0. For this it suffices to ensure that  the value of any 
polynomial in Q will have the same sign as the leading coefficient of the polynomial. 
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Specifically, we require that  Xl > m and, for 1 < i < 2 k, x i > 2 k - l ' m a x { x j  :j < i}+m. 
This is possible by the final remark in the proof of Lemma 8.4 and completes the 
proof that  we may take b i > 0. We also use the fact that  polynomials in Q have the 
same sign as their leading coefficient to show that  the polynomials pi(xa,...,xc) 
(where 1 < i < k, 1 _< a, and c = a + 2  i -  1 <_ 2 k) take positive values and thus 

that  b C Dk({Xl,...,x2k}) as mentioned at the beginning of the proof. This is 

immediate when c < 2 k, since each Pi has a positive leading coefficient and x2k does 

not appear,  so pi(Xa,...,Xc) C Q. However, if c = 2 k, then x2k must be replaced 

by q(xl,... ,x2k_ 1) + b before the leading coefficient is computed, so an additional 

argument is needed. We show by reverse induction on j that  pj (Xa,..., x2k ) := nj > 0 

for 1 _< j < k, a = 2 k - 2 j + 1. The base step when j = k is immediate since nk = b > 0 
by choice of x2k. Also, nj+l =nj -p j (xa , . . .  ,Xc) where c=2k-2  j and a=c-2J+l ,  
by the definition of Pj+I. We have already remarked that  pj(xa,...,Xc) > 0 for 

e<2 k, so if nj+l >0,  it follows that  nj >0,  completing the reverse induction. 

The above arguments show that  every element u o f ~ ( 2 k , G )  can be expressed 
as the value of a polynomial in Q which is constant or is in P.  We complete 
the proof by showing that  the polynomial is non-constant, under the additional 

hypothesis that  u ~ ~ (2k ,F) .  Thus there are no polynomials needed to express 

elements o f ~ ( 2 k , G )  in which all the xi's for i < 2 k are used but "unexpectedly" 

cancel out, which would ruin the argument. To prove this, let vj =xj for 1 _<j < 2  k, 

and let v2k = q ( x l , . . . , x 2 k _ l ) .  (Recall that  q(x l , . . . , x2k_l )+b=x2k cG.)  We 

view Vl,. . . ,v2k as elements in the vector space of homogeneous linear forms in 
Xl , . . . ,  x2k-1 over the real field. Obviously, Vl, . . . ,  v2k_l are linearly independent 

since they form the standard basis of this (2 k - 1)-dimensional space. Now, let N 

be the set of 2k-tuples (cl , . . . ,c2k)  in R 2k such tha t  ~2k=lCjYj:O. Then N is a 1- 

dimensional subspace of ]R 2k , by basic linear algebra. Since q has 2 k -  1 coefficients 
and all have absolute value 1, there is a vector p = (Pl,P2,. . .  ,P2k)C N such that  

p2k = 1, ~--~j_<2 k lPjl = 2k, and each pj is an integer. Since N is 1-dimensional, it 

follows that  any vector in N with integer components is an integer multiple of p. 
Thus + p  are the only nonzero vectors in N whose components are integers whose 

absolute values sum to at most 2 k. 

Suppose now that  d E ~ ( 2 k , G ) \ Z ( 2 k , F ) .  We must show that  either d is the 

value of a polynomial in P or d = b. Write d as y'~.j dig(J), where g(J) E G, ~ dj = O, 

and y'~]djl <_2 k. We cannot have g(J)EF for all j since d ~ ( 2 k , F ) .  Now let ci be 

the coefficient of xi for 1 < i < 2 k in this linear combination, and let n = (Cl, . . . ,  c2k ) 

0. If n ~ N ,  then d is the value of a polynomial in P,  since Xl , . . . , x2k_  1 do not all 

cancel out. If  n E N ,  then n = + p .  Thus }-~ Icil = 2  k >_~ldjl >_~-~.]cil, so no terms 
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from G \ F  appear. Hence d= ~i<_2k cixi =clvl+...+C2~_lV2k_I+C2k (v2k +b). Since 

(cl , . . .  ,c2k ) E N and Ic2kl = 1, it follows that  d =  +b. Since d,b are nonnegative, it 
follows that  d=b, so the proof is complete. | 

Remark  8.5. The following is a slightly different approach to the proof of Lemma 
8.3. I t  is based on the same choice of G as FU{xl , . . .  x2k }, where b = p k ( x l , . . . ,  x2k), 
but the xi's are now expressed in terms of new variables Yl, . . . ,Y2 k. Considering 
the dual of the inequality system required for the xi's in Lemma 8.3 one can write 
them as linear polynomials of the non-negative variables Yl,...,Y2k as follows. Let 

h(n) be the maximum h such that  2 h divides n. Define Xn =Yn+Yn-l-~Yn-2+Yn-4+ 
Yn-8+...+Yn_2h(n)-i (exactly h (n )+ l  terms), for example xn =Yn for all odd n, and 

x8 = YS+YT+Y6+Y4. In general define x (i) = ~ {yj : j = 2 i n, 2 in -2 i , . . . ,  2 in -2  i+h- 1}. 

Then for even n we have x(n/) x(n/)_l (i+1) x~k) - = xn/2 , finally = y2k. Fix y2k = b, 

and choose y l , . . . , y 2 k _ l  to be any rapidly growing sequence. Then positivity of 

the differences used to obtain b E Dk(G) and the inequalities 0 < b i _< 2 k-1 for 
the coefficients of the leading terms of polynomials in the variables Yl,.- . ,Y2k-1 

needed to express elements of ~ ( 2 k , G ) \  (~(2k,F)t0{b})  follow immediately. Of 
course, Lemma 8.4 is now applied to these polynomials rather than to polynomials 
in x l , . . .  ,X2k_ 1. The rest of the proof (linear independence, b is the only constant 

added to ~(2k ,G))  becomes somewhat more involved. 

9. S e q u e n c e s  w i t h  a u n i q u e  k th d i f f e r ence  se t  

The following result is an extension of Theorem 3.2. The reader may wish to 
assume that  k - -  1 in a first reading of the proof. This simplifies some aspects of 
the argument and gives a proof of Theorem 3.2 which is different from, but related 
to, the proof in Section 3. 

Theorem 9.1. Suppose that 0 6 A C N 0  is a Be-set with ~ = 2 2 k - l + 2 k - 1  ( k 6 N 0 ,  

k >_ 1). I f  0 6 X C No has the same k' th difference set, D k (X)  = D k (A), then X = A. 

Proof. As in the proof of Theorem 8.2, let ~ ( t ,A)  be defined as the set of positive 
numbers which can be obtained as a linear combination of the f o r m  x----~icso~iai, 

where all a i ' s  are nonzero integers, ~-~iESai = 0, and ~ i e S  ]ai[ ~_ t. (For S = 

the sum is 0.) The set S = S(x)  = {i : ai r  C_ No is called the support of 
the sum, and also the support  of x. Note that  the number x E ~ ( t ,A)  can have 
more than one support,  (then S(x)  is defined as one of the supports),  and distinct 
numbers (like 2ai -2a j  and a i - a j )  can have the same support.  Moreover, an x can 

have a unique support  in ~ ( t ,A)  and several supports in ~ ( t  t,A) for some t t > t. 
(Hence the precise notation would be S( t ,x )  for a support  of x E . f ( t ,A) ,  but  the 
omission of t will not cause any misunderstanding.) We frequently write an element 
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x C~f(t,A) in the form ~-]~iele(i)a (i) where e(i) C {1 , -1} ,  III_ t, Ee(~) = 0, and 
(a(1), . . . ,  a( i ) , . . . ,  a ([II)) is a sequence (or multiset) of some members  of A. 

We have that  Dk(C)C_~(2 k, C) holds for any sequence with 0 C C _  No. Here 
equality does not necessarily hold, but one can prove by induction on k that  for 

any sequence e(1),... ,e(i),... ,c (2k) (c (i) C C, c(i) =c(J) is allowed) of length 2 k one 

can find a sequence ~(i) E {1 , -1}  such t h a t  ~ ~ l < i < 2 k  e (i) = 0  and 

(9.2) ~ r = y E Dk(C). 
1 < i < 2  k 

Note that  S(y) contains each element i of the multiset {i:  cA E (c0) , . . .  ,c(i),...)} 
which occurs only once (and those appearing with odd multiplicities). 

As A is a Be-set, every element of X ___~(2k,A) has a unique support.  Even 

more, Xl E ~f(4k,A), x2 E ~g(2k,A), Xl = X 2 imply that  S(x l )  = S(x2). To see 
this, note that  Xl = U l - v l ,  where Ul,Vl are each sums of n 1 elements of C (with 

repetitions allowed) and 2nl < 4 k. Similarly, x2 = u 2 - v 2 ,  where u2,v 2 are each 

sums of n2 elements of C (with repetitions allowed) ~nd 2n2 _< 4 k. We then apply 
the Be-property of C to the equation Ul + v2 = u2 + Vl to conclude that  the terms 
from C used in the combined sum ul + v2 coincide as a multiset with the terms in 
u2 +Vl.  Since there is no overlap between the terms in Ul and Vl or between the 
terms in u2 and v2, it follows that  the terms for ul coincide with those for u2, and 
the terms for v2 coincide with those for Vl, and thus the corresponding supports 

are the same. We now apply this fact to show that  elements x of Dk(X)  can be 
represented as a linear combination of elements of X whose supports have a special 

property. Let x E Dk(X) ,  and write it in the form x = ~"~icictixi (where ai are 

non-zero integers with ~ ai = O, ~ l ail <_ 2 k, because O k (X) C_ 5f (2 k, X)) ,  and let 

S~ = S (x i ) \  (Ujci , je iS(xj) ) ,  (i.e., S~ consists of the indices of the aj's used only in 

the linear combination providing xi C~g(2k,A)). Then 

(9.3) IS l _< 2 k. 
iEI  

Indeed, as xi = ~ m c &  Oq,rnam E~(2 k, A), x can be written as a member  o f~ (4  k, A). 

However, x E D k ( X ) =  Dk(A)C_Z(2k,A), so we can write it as a • sum of at most 

2 k members of A. 

o~i( ~ oZi,mam ) = x = ~ e(J)aj. 
iEI mEI~ jEJ 

The B e property, (where 2g=4k+2k) ,  implies that  these two sums coincide. So all 

but at most 2 k terms in the left hand side cancel each other. Obviously, the terms 
corresponding to the elements in (9.3) do not cancel, finishing its proof. 
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The very same proof gives the following sharpening of (9.3). Not only is the 

total size of the disjoint sets S~ at most 2 k, but the total size of the coefficients 
appearing in them cannot exceed the same bound. Using the notations of the 
previous paragraph we have 

ice \mCS~ / 

Let 3 ~ be the family of supports of the elements of X in ~(2k,A),  i.e., fix 

t = 2 k. Then S(x) is uniquely determined and has at most 2 k elements for each 
x E X. Using (9.3), (9.4), and some hypergraph theory we are going to prove that  
5 r = {0}U{ {0, i}: i �9 N0\{0}}, which will easily imply Z = A. In the course of the proof 
we will verify more and more properties of the family 30 until our final conclusion. 

Note that  the support of ao=O is 0, and, for i r  the support of a i � 9  in ~f(4k,A) 

is S(ai)={O,i}; (we have (AUX)CDk(A)=Dk(X)C_~(2k,X)C_~(4k,A)). 
For any S �9 J there are only finitely many x �9 X with the same support 

S = S(x). As IX I = c~ this implies that 3 ~ contains infinitely many distinct 
supports. Divide J into subfamilies according to the cardinalities of its members, let 

5Pi={SEJ:ISI=i } (0_<i_<2k). Suppose that 5%U...U3~a_l is finite, but IJal=Cx~. 
We will use the following result of Erd6s and Rado [2]: For all positive integers a, 
b if :~ is a family of sets each having at most a elements such that  ]:~1 > a!(b- 1) a, 
then ~ contains a delta system of size b, i.e., there exist $1,. . .  ,Sb �9 and a set K 
(called a kernel) such that KC_ Sj for all 1 <_j ~b, and the sets Sj \ K  are pairwise 

disjoint. Actually, for our application we may assume that  :~ is infinite, and in this 
case the result is very easy. (Let K be a set of maximal cardinality such that  K C_ S 
for infinitely many S �9 :~. If T is any finite set such that T _D K,  then all but finitely 
many S �9 :~ satisfy S N T = K. Then one may recursively define sets $1, $2, . . .  �9 
so that  Si D_ K and Si A Uj<iSj = K. Thus K is a kernel for the infinite sequence 

$1,$2,....) Applying the result of Erd6s and Rado [2] with b=2  k+l and ~=SPa, 

we obtain that there exists a 2k+l-element set JC_N0, a set K such that  KCS(x j )  
for all j �9 J,  and the sets S ( x j ) \ K  are pairwise disjoint, distinct, nonempty sets. 

We claim that for all x �9 X, 

(9.5) IS(x) \ K I <_ 1. 

Indeed, let x � 9  be arbitrarily chosen. As IS(x)l _< 2 k the pairwise disjointness of 

the members of {S(xj) \ K: j �9 J} imply that there exists a (2 k - 1)-element set 

IC_J such that  (S(xi)\K)AS(x)=O for all i � 9  The 2 k sets of the form S ( x ) \ K  
and S(x i ) \K  ( i �9  are pairwise disjoint. By (9.2) there is a linear combination of 
xi's and x with suitable ~,~i = +1 coefficients such that  y = Ex+ ~iEI~iXi belongs 

to Dk(X). Then (9.3) implies that  IS(x) \K[ +~-~iEI IS(xi) \KI -<  2k" Here all the 

2 k - 1 sets S(xi) \ K  are non-empty, hence IS(x) \ K  I <_ 1. 



DIFFERENCE SETS 103 

Let N = { x e X :  [S(x) \K]=I}.  (9.5)implies that  Ya forms an (infinite) delta 
system (with kernel K).  All but finitely many members of X belong to N. For 

any member y = ~--],iaiai E~(2k,A)  the restriction YiK is defined as ~icge~iai . 
One can find Xl,... ,x2k E N such that  x j i K = d  is a constant, and the 1-element 

sets S(x j ) \  K are pairwise disjoint. (Here we are dropping the convention that  

xi is the ( i+l)  st element of X.) Write the elements xj (1 < j  < 2 k) in the form 

xj = ~-~iEge~iai § ) = d§ ). As the sum of the coefficients of 

any member of ~(2k,A) is 0, we get that  oL(z j )=-~ieKc~i  =: c~ is a constant, 

too. Fix the numbers xj, 1 <j  < 2 k and the corresponding coefficients aj(x) and 

ai (i E K),  as well as the numbers d and a. 

Write all x E N in the form ~iEKai(x)ai+a(x)af(z) .  We claim that  for all 

x E N their restrictions coincide and in fact: 

(9.6) o~i(x ) -~ O~ i for a l l / � 9  K and (~(x) = c~. 

Indeed, there is a set J C {1, . . . ,2  k} of size 2 k -  1 such that  for every j �9 J the 

sets S(xj) \ K avoid S(x) \ g .  Consider a suitable linear combination, y �9 D k (Z) ,  

provided by (9.2) of these 2k--1 numbers {xj : j  �9 J} and x. We get the coefficients 

ej �9 {1 , -1}  (j �9 J)  and e ( x ) � 9  {1 , -1}  such that  z ( z ) §  = 0  and 

jEJ 

(9.7) ~ + ~-~c~cjaf(xJ) § ~-~ (c~i(x)~(x) § ~ Y~"cJ) iEK jEJ 

The support of this linear combination (in DI~(X) C ~(2k,A))  contains the 2 k 
elements ay(z),af(xj ),j �9 J outside K,  so its restriction to K should give 0 (by the 

uniqueness of the support in Dk(X)). We have that  y[K=O, so the coefficient of ai 
in (9.7) is 0 for every i � 9  giving c~i(x)~(x)=-ai ~--:~jej~j. However the last sum 

equals - c ( x ) ,  so it gives the first statement in (9.6). The second statement follows 
from the fact that the sum of coefficients of x is 0, a ( x ) +  ~-~ieh" ai = 0, and this is 
the same for all xj. 

From (9.6) and the fact that all x �9 N have the restriction d fixed two para- 
graphs above, we see that each x E N can be written in the form x = d § (~af(x). 

Inequality (9.4) (applied to y in (9.7)) implies that  2kl~l < 2 k, so Ic~I = 1. Only 
finitely many numbers of the form d -  aj can be nonnegative, but N is infinite, so 
necessarily c~ = 1. Hence, for all x �9 N 

(9 .8)  x = d + a f ( x ) ,  
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where the af(x)'s are distinct members of A. 

Our next claim is that  IK] = 1. If x E X,  then its support  S(x)  cannot be 

a singleton, because the sum of the coefficients (in 2s is 0. Since N is 
nonempty, there exists x E X with I S ( z ) - K  I = 1, so K 7 ~ 0. Let x0 = 0 so 

x0 has empty support,  i.e. S(xo) = 0. Take an appropriate 2k-element linear 

combination :oxo + ~ j E j c j x j  = z C Dk(A)  provided by (9.2), (here IJI = 2 k - 1, 

xj E N,  xj  = d+af (x j ) ) .  The support  of z is UjEjS(Xj)  , which has cardinality 

I J] + IKI = 2 k - 1 + ]K]. Since any element of Dk(A)  has support  of cardinality at 

most 2 k, it follows that  IKI <_ 1, so IKI =1.  

Let K = {v}, so by the definition of d, d = avav. Thus, by (9.8), each x E N 
can be written in the form x = c~vav + 1.a](x).  Since the coefficients in this linear 

combination must sum to 0, we get that  av = - 1 ,  implying 

(9.9) x = af(x) - av 

for all x E N. 

We claim that  each element x E X, other than x0 = 0, can be writ ten in the 
form (9.9). To prove this it suffices to show that  X\{0} C_ N. But this is clear, since 
if x G X and x 7~ 0, the support  of X cannot be a singleton (as already remarked) 
and so must have at least two elements, so S ( X )  C K cannot hold. 

Next, we show that  av = O, and hence, by (9.9) that  X C A. We now return 

to our usual convention that  xi is the (i + 1) st element of X (instead of being fixed 

as before). Since av = av - ao E Ok(A)  = O k ( X ) ,  we have that  av E~g(2k,X). Let 

av---- ~-~iEi ~ixi, where ~-~iEi ~i=O and ~ i E l  [~il <-- 2k. Then, by (9.9) 

(9.10) av = E/3iaf(x~)- Efliav = E/Jiaf(x~). 
iEI iEI iEI 

We now assume for a contradiction that  av > 0 and show tha t  (9.10) violates the 
hypothesis that  A is a B e set. To do this, we first rewrite (9.10) as an equality of 
sums of elements of A. Let I+  = {i E I:/3i > 0} and I_  = {i E I :  t3i < 0}. Then, by 
(9.10), 

(9.11) av + E Iflilaf(x~) = E 13iaf(x~)" 
iEI- iEI+ 

By "padding out" each side of (9.11) with sufficiently many terms equal to a0 =0 ,  
each side of (9.11) may be viewed as a sum ofg elements of A. Thus, since A is a B e- 
set, the two sides of (9.11) are identical up to a rearrangement,  after this padding. 
Since, by (9.9), f ( x i ) >  v for a l l / >  0 (and we may take f ( x o ) = v  to make (9.9) hold 
for x=xo) ,  it follows from the assumption that  av >0  that  O ~ I = I _ U I + .  Thus the 
two sides of (9.11) are padded with the same number of terms ao, and thus the two 
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sides of (9.11) differ by at most a rearrangement even before the padding. Hence 
I_  C I+ ,  since every te rm which occurs on the left-hand side of (9.11) must occur 
on the right-hand side also. Since I_  N I+  = 0, it follows tha t  I_  = 0, so I = I+.  
Summing the coefficients from the two sides of (9.10), we get tha t  1 = ~-~-iEI/~i =0, 

our desired contradiction. Hence av = 0. (We thank I. Ruzsa for pointing out a gap 
in our original proof that  av =0.) 

To complete the proof that  X = A, we show that  A C_ X. We have a0 = 0 E X 
by hypothesis. Assume for a contradiction that  aj E A \ X ,  where j > 0. Then 

aj C Dk ( X ) C_ Dk ( A \ {aj}), since X C_ A \  { aj }. Thus j r S ( aj ) , contradicting the 
fact that  aj = a j -  ao and the uniqueness of supports. | 

Remark  9.11. With a little more effort we can prove the following result about  

finite B e sequences. If a0--- -0(al  < . . .  <an is a Bs sequence with s  + 2  k - l ,  

xo = 0 < xl  < ... < Xm, Dk(A) = D k ( x )  and n > 24k2k, then either X = A or 
X -~ an - A. One can get a smaller bound for n if instead of the Erdhs-Rado 
theorem one uses the following result of Ffiredi and Tuza [4]: If 5 ~ is a family of at 

most a element sets with I~l > (a+b-1), then it contains b disjointly representable 

members, i.e., S1,... ,SbE2~ such that  S i \  ( U j r  for all l < i < b .  

10. S o m e  q u e s t i o n s  

1. Is { D ( X ) : X C N 0 }  a Borel subset of 2 No with its usual (product) topology? 

2. Is there a sequence B such that  D ( X ) =  B has exactly R0 solutions X with 
0EXC_N0? 

3. For which positive integers m is there a sequence B m such tha t  D ( X ) = B  m 
has exactly m solutions X with 0 C X C_ No? (We showed that  every power of 2 is 
such an m.) 

4. Which real numbers occur as densities of sets which have unique difference 
sets? 

5. Given k, what is the least t= t (k )  such that  every t-big set is a k th difference 
set? It  seems reasonable to conjecture that  t (k )= k although from Theorem 8.2 we 

know only that  t(k) <_ 2 k-1. It  seems likely that  the proof of Theorem 8.2 can be 
modified to show that  t(3)<_3. We have no lower bounds for t(k). 

6. Does the set of primes have a unique difference set? What  about  other sets 
of integers commonly studied in number theory? 
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